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ABSTRACT In this paper, we present a novel framework for interactive segmentation problems. It integrates
anonparametric model into the Conditional Random Field (CRF) framework, which can effectively combine
high-level features with low-level features to represent image information. In the nonparametric model,
multiple region layers are used to estimate data likelihood terms to overcome the bad regions generated
by unsupervised methods. The likelihood values of each layer are calculated separately to reduce the
computational cost. In addition, we analyze that the pixel layer has little effect on data estimation, so we
remove it to further reduce the complexity of the algorithm. We employ the label consistency between pixels
and their corresponding regions in smooth term estimation, which can be regard as a higher order potential for
pixels. The data term and the smooth term are then performed together in Conditional Random Fields (CRFs)
as a fine-tuning of the results. Experimental results show that the proposed method can segment images

efficiently and accurately with fewer user inputs.

INDEX TERMS Higher order CRFs, interactive segmentation, region-based model, nonparametric model.

I. INTRODUCTION

Image segmentation is a fundamental task in computer vision
and has obtained much attention in recent decades. It can
be viewed as a labeling problem that assigning each pixel in
the image a predefined label based on its color, intensity and
other features. The challenge in segmentation problems is that
the boundaries and appearance of natural images are often
complex. In these years, various interactive segmentation
algorithms have had significant success due to their ability to
improve the performance by incorporating user interactions
to the segmentation models, such as graph cut [1]-[3], lazy
snapping [4], [5], random walker [6]-[8], geodesic segmen-
tation [9], shortest path [10], [11], and deep convolutional
networks [12], [13]. In interactive methods, users are allowed
to provide a few strokes [1] or a bounding box [14] as initial
labels which can help to improve the segmentation results.
The primary goal is to extract object boundaries or regions
with as little user interaction as possible [15].

CRF framework has been the most widely used frame-
work for segmentation problems. It explicitly models the
relationship between pixels and minimizes the energy func-
tion defined based on pixels intensities. The basic form of
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the energy function in CRF framework is to combine data
terms with smooth terms. The data term is typically the unary
potential obtained from a classifier. Thus, the segmentation
performance is heavily influenced by the classifier. Paramet-
ric models are widely used as classifiers for data term estima-
tion. Model parameters are treated as variables and optimized
together with the energy function [15]. However, parametric
models require a large numbers of initial inputs to get accurate
segmentation results, most of which are strongly sensitive to
the seed quantity and placement. The commonly used smooth
term is the pairwise potential which encourages the nearby
pixels to have the same label if their intensities are similar.
Although pairwise models can be inferred efficiently, they are
very limited to express complicated energy formulations as
they can only propagate information to the pixels in the local
neighborhoods [16]. They are unable to model high-level
features which have been shown to be significant powerful
for segmentations.

To overcome this problem, [16] proposed higher order
potentials to capture high-level structural information of
the images. Their algorithms were built on the image
regions which had been generated by unsupervised meth-
ods. They encouraged the pixels in a region to have
the same label. [17] combined a semi-supervised learn-
ing technique and region-based models together. They first
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FIGURE 1. Segmentation examples with a few strokes. (a) shows the input images with strokes. (b)-(d) show
segmentation results obtained by OneCut, GBMR and our method, respectively.

over-segmented regions and integrated user inputs with
regions. Then a k-regular sparse graph was constructed to
segment the objects. Therefore, the performance of these
algorithms is heavily affected by the regions produced by
unsupervised methods.

In this paper we propose a novel interactive segmentation
algorithm that can effectively estimate the binary labels based
on nonparametric models combining region-level informa-
tion with pixels-level information. The main contributions of
this research are demonstrated as follows:

1. We take advantage of the power of both nonparametric
models and higher order CRF models in this paper. Com-
pared with appearance-based models, the proposed method
can reduce the computation of parameters and is robust to
the quantity and placement of the initial seeds, as shown
in Fig. 1(d).

2. Our method reduces the computational complexity of
the problem by simple graph construction and can segment
images effectively.

3. To overcome bad segmentations and label inconsistency,
we employ the label consistency between pixels and their
corresponding regions in the smooth term estimation, which
can be regard as higher order potentials for pixels.

4. The experiments show that our method is able to produce
high quality segmentations in almost real time with only a few
user inputs.

The rest of this paper is organized as follows. The related
works are introduced in Section II. In Section III, we explain
the formulation of energy function and the proposed method
in detail. We also discuss how to estimate the data likelihoods
and construct our graph. Section IV shows the experimental
results compared with the state-of-the-art methods. Finally,
the conclusion of this research is stated in section V.

Il. RELATE WORKS

The commonly used interactive segmentation approach
integrates appearance models and pairwise consistency con-
straints into energy functions. The two most popular appear-
ance models are the histogram model and the Gaussian
Mixture Model (GMM). However, pixel-level appearance
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models are sensitive to user inputs as they need initial seeds
to model foreground and background appearance representa-
tions. Some algorithms consider appearance model parame-
ters as extra variables in the optimizations which makes the
problem NP-hard [15]. Nonparametric models have proved
powerful in segmentation problems because they do not
require any basic model to describe the appearance of the
image [19]. Therefore, they can accept any unknown data
distribution. Marquez-Neila et al. [20] presented a nonpara-
metric model for image labelling problems. They designed
a patch-based representation for higher order potentials and
then convert it to a pairwise form.

Many methods based on higher order potentials have been
proposed to model expressive and high-level features of the
images. Robust P" [21] extended the pairwise CRF model
to a higher order CRF model by incorporating higher order
potentials and reformulating the energy function of Grab-
Cut. They optimized the appearance model and the labelling
problem together. OneCut [22] presented L; distance in the
energy function and used appearance entropy to calculate
the likelihood term for segmentation problems. They added
auxiliary nodes into the graph to optimize higher order poten-
tials. Regular shaped patches was utilized in [2] as higher
order potentials. They considered all the pixels in a patch
equally and their results were more robust to overcome noise.
Krihenbiihl and Koltun et al. [23] used densely connected
CRFs to represent the remote connections between pixels,
which improved the segmentation results. However, as the
density of edge connections in the graph increases, so does
the computational cost of the algorithm.

The optimization of higher order CRF is computational
complex. It is difficult to capture boundary information
especially fine structures and weak boundaries. To solve
this problem, algorithms combining region-level informa-
tion with pixel-level information have been developed these
years. NHO [24] extracted more expressive information by
combining region-level features with pixel-level features.
They obtained regions by the unsupervised segmentation
method [25] and constructed pairwise relationships between
regions and their corresponding pixels. Tao et al. [26] also
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FIGURE 2. The framework of the proposed method.

added label-layer to the multilayer model to improve segmen-
tation results. They employed the parallel partial optimality
strategy to optimize the energy function. Although these
approaches improve the segmentation accuracy, they are still
restricted by the performance of the unsupervised segmenta-
tion method used to obtain regions. It is hard to produce sat-
isfied results if regions do not share boundaries with objects.
Besides that, the regions they got may not preserve the bound-
ary details which can results in bad performance. [18], [26]
used multiple region layers of the image in case some regions
were bad. Chen et al. [27] proposed a full feature cover-
age sampling method for image matting and segmentation.
They used the edges as clues to search all possible samples
of the whole image area. In [28], a local similarity factor
which depends on spatial distance and intensity difference
was utilized to improve the results. Yu et al. [29] presented
a novel region-based model for image segmentation. They
integrated local patch similarity measure into their model.
However, these methods are limited to the computational cost
due to the large number of relations between layers. Our
algorithm introduces a new approach incorporating region-
based likelihood into the CRF models and using global con-
nection between regions which can model long connections
within the image. It can reduce the computational cost and
get satisfactory performance with less user inputs compared
with the state-of-the-art methods.

Ill. PROPOSED METHOD

We propose a novel method combining the nonparametric
data term and the higher order smooth term together into
CRFs in this paper. The CRFs are defined on the discrete
random variables x = {x;|[i € {1,2,...,n}}, where x; € L
represents the label of pixel i, £ = {0, 1} is the label set with
1 for foreground and O for background, n is the number of
pixels in the image. The widely used energy function in CRF
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is defined as follows:

Eq= Zieﬂ Di(xi)+2{i,j}eN Vi xjH_Zcec Velxe)
&)

where D; is the data term, v; is the pairwise potential, and
Y. is the higher order potential defined over the clique c. Q2
denotes the set of all pixels, N is the neighborhood defined
over the image which is widely chosen to be a 4 neighborhood
for local CRFs, and C refers to the set of cliques.

The data term D; in (1) is known as the penalty of allocating
label x; to the pixel i which is typically formulated by the
negative log likelihood as follows:

Dj(x;) = —logPr(x;) (2)

We introduce a nonparametric model to calculate the like-
lihood term, then use negative log of the probability to
represent the data term in (2). The nonparametric model is
based on image regions obtained by unsupervised methods.
In contrast to other multilayer models [24], [26] which use
complex relationships between different layers to improve
accuracy, we calculate the probabilities of different layers
separately to reduce computational complexity. Dense con-
nections are used in each region layers to model large area
information. This is feasible since the number of regions is
limited. To overcome the problem of inconsistency between
regions and object boundaries, we utilize the label consis-
tency between pixels and their corresponding regions in the
smooth term estimation, which can be regard as higher order
potentials for pixels. The framework of the proposed method
is shown in Fig. 2.

A. REGION LAYERS CONSTRUCTION

Firstly, we generate region layers by cluster algorithms, such
as mean shift with different parameters. The set of pix-
els within the image I is partitioned to R' = {R;<|k €
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FIGURE 3. Graph for pixel layer and region layer. (a) pixel layer, (b) region
layers.

{1, 2,..., |Rt|} regions where t € {1, 2, ..., m} is the layer
index, m is the number of layers we choose. For layer ¢, R}
denotes region k, |R'| denotes the number of regions, which
is related to the parameters we set. Let y} refers to the label
of regionk, k € {1,2,..., [R'|}, Q is the set of all pixels in
region k, so Q@ = J, Q. The graph construction for region
layers is illustrated in Fig. 3.

In the graph of region layers, each node represents a region.
In layer ¢, a region’s color is defined as the average color
values of its corresponding pixels as follows:

— 1
=T D ieay 3)

where vk is the average color values of the pixels in this
region.v! is the color of pixel , and |R{ | is the pixel number
inside region k.

Densely connected CRF is employed in region layers to
construct long connection information within the image. It is
tractable since the nodes in region layers are quite small. The
local CRF with global color models [15] in segmentation
problems can be replaced by densely connected CRF [30],
so the image features can be obtained without parametric
prior models such as histograms or GMM. We use both
color information and position information to define the edge
weight between region k and region ¢ in layer ¢. Let 8 control
the relative strength between ¢ and ¢, thus the edge weight
is given by:

wp, = Bo1 (k. ) + (1 = B) g2 (k. @)

where ¢ is the color-dependent consistency term. It encour-
ages neaby nodes with similar colors to be assigned the same
label and is formulated as below:

k<qg 4

— 2
r__ ot
% Vq( _ptk, )

k,q)= 5
o1 (k, q) =exp o 5 &)
@2 is the global color model which takes the forms as:
@2 (k, q) =exp | ————— ©6)
03
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Here p (k, q) is the distance between region k and region q.
It is calculated by Euclidean distance. For any pixel in region
k with location (kx, ky) and any pixel in region g with location

(q)n Qy),

pk,q) = min
VI (ky.ky)€RY,, I(qx,q)-)ERf]

\/(kx - CIx)z + (ky - %’)2

01, 62, 03 are constants that control the relative importance
between color similarity and nearness.

B. LIKELIHOOD TERM ESTIMATION
To estimate the likelihood term, a nonparametric model is
employed in this paper inspired by [24]. The running cost
of multilayer-based methods is normally large because of
the complex relationship between different layers. Unlike
these multilayer models, we do not consider the relationships
between different layers to reduce the complexity of the
algorithm. Instead we calculate the likelihood term for each
layer and then combine them together rather than using the
connections between layers. Now the main computational
cost of the proposed method focuses on the pixel layer since
the number of nodes in it is quite large. Whereas our experi-
ments show that the pixel layer is not necessary in likelihood
estimation because we use pairwise and higher order smooth
terms to fine tune the boundary consistency, as Fig.1 and
Fig.5 shown. Thus, we propose to deduct it to further reduce
the computations and it allows our approach to segment
images efficiently.

For layer ¢, let n,ﬁl denotes the likelihood of assigning label
[ to region k. Then we formulate the cost function for the
likelihood as follows:

1 IR!|
J (”ZI)ZE Zk a’kq(”kz i ?

)‘t( Ty —

2 I IR
;l) + 2 Zk
(7N

Here 7}}" is the region-seed likelihood. More specifically, for
region k in layer t, if there are seeded plxels and all seeded
pixels belong to label /, then we set 7} = 1. Otherwise,
if there are no seeded pixels in region k or the seeded pixels
belong to different labels, then 7} = 0. A} is the parameter
for seeded regions. It is set to be A if region & is a seed and
0 otherwise. The first term in (7) is the consistent constraint
which encourages nearby regions to have the same label.
The second term is the constraint which assumes that each
region tends to have the user-input label.

Equation (7) is reformulated into a matrix form as follows:

J (af)=37l" (0 = W) mf 3 (efnf*)” A (] )

®)

[t . .
Here m; = [nkl] R|x1 denotes the matrix form of the region

likelihoods. W' = [w’t‘q]lR’l R represent the edge weight
. R

- dzag([d',.. i ]) -l = XU o}, and

Al = diag([)»t1 ‘]) To get the likelihood nl that

matric, D!
|Rt
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minimize the cost function J, we differentiate (8) with respect
to 7/, and set it to zero:

8J (nf)
o/

= (D' = WYY n/ + A' (7] — n[*)

=D -W'+A)7[ —A'n[*=0 (9

Since B = D' — W' + A'is positive definite, the region
likelihood for layer ¢ is given by:

wl =B 'A'nl (10)
wl =B 'A'ml (11)
We calculate the probability for each label. In binary seg-

mentations, the probability of y} belong to the foreground and
the background are given by:

TTk1 Tkl

EGR) = = (12)
TS e ™ a4+ mo
ko ko
E(V) = = (13)
Yk0 DT Tkl + Tko

Each layer’s probabilities have been obtained from (12)
and (13), now we combine them layer by layer to get a
probability map Q for pixels. A pixel’s probability to label
! is combined by its corresponding region probability from
all layers. It is formulated by gy = >_, p/&(y!)). The weight
pl = o}/, 0! is used to measure the quality of regions
obtained by unsupervised algorithms at each layer. For layer
t, if pixel i belongs to region k, then o is the variance of pixel
color values in region k. The data term for the energy function
canbe set D(x) = — ZieQ In g;. Algorithm 1 shows our data
term estimation step.

Algorithm 1 Data Term Estimation
Input: Image I, region layer array R, initial seeds x*
Output: Probability P to pixels in /

1. Set the edge weights for the data term.

2. for i=l: the size of R

3. Construct the D,W, A matrices for (8).

4.  Calculate the B matric by (9).

5 Compute the probability for each label by (12) and

13).

end

. For each pixel in I, combining its corresponding
regions of each layer to estimate its probability.

~ o

C. SMIOOTH TERM ESTIMATION

In order to fine tune the segmentation results and avoid object
inconsistence in regions caused by inaccurate unsupervised
region segmentation, we use the smooth term in our model
to encourage the label consistency among similar pixels. It is
presented by pairwise potentials and higher order potentials
in this research for local similarity constraints and global
similarity constraints, respectively.
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FIGURE 4. Graph construction for higher order potentials.

1) PAIRWISE POTENTIALS

The local similarity constraints measure the penalty of neigh-
boring pixels taking different labels. It helps the image to be
partitioned as close as possible to the boundaries. The form
of the constraints can be expressed by pairwise potentials as:

E, = Z{i,j}eN Vi (xi, x;) (14)

Vi (xi, %)

where a)l’; is the edge weight between pixel i and pixel j,
which is usually obtained by applying a Gaussian kernel to
the distance between them. Here we f0110\27v [22], [23] to use
L, based Gaussian kernel a)l’; = exp(—%), d(i,j) is the
Euclidean distance between the colors of pixel i and j, o
denotes the average d? (i, j) over all neighboring pixel pairs in
the image. It can penalize discontinuities a lot between pixel

i and pixel j when d(i,j) < o. However, if pixels are very
different, the penalty is small.

= w?} }x,-—xj‘ (15)

2) HIGHER ORDER POTENTIALS

We extend the pairwise smooth model by incorporating
the global constraint E. defined over regions we got in
section III-A. E,. is defined over a set of regions to capture
higher order cues for pixels. It is converted to a sum of the
unary potential over region node ¢ and the pairwise potentials
between ¢ and its corresponding pixel i (i € €2.) which
encourage pixel i to take the dominant label of region c.
In this case, it can be optimized using traditional pairwise
CRF algorithms such as graph cut. The form of E, is given
by:

E. = Zc @c (X¢) (16)
G (%) = (fuOe) + ) o inye) (A7)

where f,, refers to the likelihood of region C, f, (x;, yc) =
8 (xi # y¢), 6 (+) is an indicator function which takes 1 for
true input and 0 otherwise.S2. denotes the set of all pixels in
region c.

We use auxiliary nodes to construct the graph for higher
order potentials of our model. Fig. 4 shows the graph con-
struction. We add auxiliary nodes (such as A, A,) to rep-
resent the regions we generated. S, T refer to the label
nodes which represent foreground label and background
label, respectively. The edges between region nodes and label
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(b)

FIGURE 5. Sample results with trimaps using different layers for data term estimation: (a)Input images (b) trimaps
(c) combining one pixel layer and three region layers, (d) combining three region layers, and (e) using one region layer.

nodes reflect the unary potentials f;,, which is based on the
calculations we discussed in section III-B. Edges between
region nodes and their corresponding pixel nodes are utilized
to encourage the label consistency. The labelling results can
be optimized by the max-flow/min-cut algorithm [31]. Algo-
rithm 2 shows the proposed segmentation method.

IV. EXPERIMENTS

We compare our performance with the state-of-the-art meth-
ods including OneCut [22], GBMR [17], and NHO [24] in
this section. All of these algorithms are implemented based
on the public codes provided by the authors. Firstly, region
layers were obtained by the mean shift algorithm [25]. The
segmentation performance is related with the region quality.
For example, smaller regions are able to capture more detailed
boundaries while larger regions can obtain more structure
features. Thus, we generated three region layers by vary-
ing the algorithm’s parameters to employ different scales of
features. The spatial bandwidth parameter Hy and the range
bandwidth parameter H, in mean shift are set to {(10,7),
(10,10), (10,15)} as [24]. For the constant A which is usually
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Algorithm 2 The Proposed Segmentation Algorithm

Input: Image /.User scribbles S, number of region layers N
Output: Label X of pixels in /
1. Generate seed x* from 5.
Construct N region layers R by mean shit
Estimate data term from algorithm I based on /, R. x*.
Set the edge weights for smooth term.
Construct the graph. Local connected edges are used
in the pixel layer.
Use auxiliary nodes to construct the higher order
potentials.
7. Optimize the energy function and get X by the max-
flow algorithm.

AN

o

bigger than max;cq Zj:{i,j}eN wjj, 18 set to 1000. The values
of B = 0.38, 01 = 20,60, = 33 and 83 = 3 are empirically
set followed by [28] for all experiments in this research.

The experiments were conducted on the GrabCut
dataset [15], the Berkeley dataset [32], and the PASCAL
VOC dataset [33]. The GrabCut dataset is a commonly
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FIGURE 6. Sample segmentations with trimaps: (a)lnput images (b) One Cut (c) GBMR, (d) NHO, (e) Ours, and (f) Ground truth.

used benchmark for interactive segmentation problems and
consists of 50 images with ground truth masks and trimaps.
We also used the test set of the Berkeley dataset which con-
tains 100 single object images. It includes images with similar
foreground/ background appearances, complex textures and
so on, so it is usually used to represent the challenges in
interactive segmentation problems. In addition, we selected
400 images from the PASCAL VOC dataset. All the object
classes have been included in our dataset.

A. EFFECTIVENESS OF MULTILAYER RELATIONS

The pixel layer and three region layers are combined for
calculating the likelihood term. In order to analyze the impact
of these layers on the segmentation results, we used different
layers to segment the images. Fig. 5 demonstrates the influ-
ence of each layer in likelihood estimation step for pixels.
Fig. 5(a) is the input image. Fig. 5(b) is the trimaps. Fig. 5(c)
shows the results of combining the pixel layer and three
region layers together. Fig. 5(d) gives the results by using
the three region layers. Fig. 5(e) shows the results of using
only one region layer which was generated by the bandwidth
values of (10, 10). It can be found that since we employ
pairwise and high order smooth constraints as fine-tuning,
the pixel layer containing the most nodes is not necessary for
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segmentations. This can help us reduce the calculation time of
the algorithm. We built two architectures in our experiment.
The first one does not contain the pixel layer, which means
we only use three region layers to estimate the data term,
and the second one combines the pixel layer and the region
layers together. The quantitative results provided by these two
architectures are shown in Table 1.

B. RESULTS COMPARISONS

To measure the performance of the segmentations, we employ
two metrics: error rate and F-measure. The error rate takes the
form:

|xmis|

|xunlabel

(18)

Yerror=

where |x,is| denotes the number of misclassified pixels,
|*uniapet | refers to the number of all unclassified pixels.

F-measure is defined as the weighted harmonic mean value
of precision and recall:

(a2 +1)Precision x Recall
Fy =

19
a?Precision + Recall (19

where « states the relative importance between precision and
recall and is set to 0.3 as [22].
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TABLE 1. Comparison results of error rate and f-measure among the three datasets.

Method GrabCut Berkely PASCAL VOC
YError(%) F[l YError(%) Fa Yerrar(%) F[l
OneCut 5+3.8 0.90 6.5+438 0.85 74+62  0.765
GBMR 39+32 0.91 46+42 0867 6.7+56 0.784
NHO 28+2.1 0934 3.1+28 0.882 4.2+4.1 0.84
Ours (no pixel layer) 22+19 094 265+25 0914 3.8+27  0.90
Ours 212+£1.8 0942 25+22 0.92 3.6£2.6 0912

(@)

(e) ®

FIGURE 7. Segmentations with a few scribbles: (a) Input images with scribbles, (b) One Cut, (c) GBMR, (d) NHO, (e) Ours, and

(f) ground truth.

We got initial seeds from the trimaps. The GrabCut dataset
uses its own trimaps, while the Berkeley dataset and the PAS-
CAL VOC dataset use the trimaps generated by dilation and
erosion the ground truth masks with the radius of 10 pixels.
The quantitative results of different methods are summarized
in Table 1. It can be found that the proposed method has
more satisfactory performance than OneCut and GBMR.
That is because we take advantage of the multiple region
layers which can model expressive feature representations
of the images. Compared with NHO, which also introduced
multilayer-based model, our method provide better results
by combining nonparametric model and higher order smooth
constrains together. Some segmentation examples achieved
by the state-of-the-art methods and the proposed method are
given by Fig. 6.
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The user inputs play an important role in interactive seg-
mentation problems. For qualitative comparison, we used
mouse to draw strokes as the initial seeds. Not like many
algorithms utilizing long strokes along object boundaries to
get good performances, we only use a few scribbles and it
is not necessary to be placed near the boundaries. To give
a fair comparison, the seeds for each method are the same.
The segmentation results with a few user scribbles are illus-
trated in Fig. 7. It is observed that OneCut is not able to
achieve satisfactory results with a small amount of inputs
because it requires enough initial seeds to build the parametric
model. The foreground objects in the GBMR method are
discontinuous due to the wrong region partition. NHO obtains
better performance for using multiple region-level features.
However, the results they get sometimes have small ““islands”
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TABLE 2. Error rates for different combinations of each part in the proposed method.

D P . . h H h d h YET'T'OT %)
ata term airwise smoot igher order smoot| GrabCut | Berkely | PASCAL VOC
v x x 2.9 33 4.5
v v x 2.35 2.78 4.05
v v v 2.2 2.65 3.8

©

FIGURE 8. Effectiveness of the smooth term. (a) shows the input image
with a few scribbles, (b) shows the results without using the smooth
term, and (c) shows the results refined by the smooth term.

and the boundaries are inconsistent. The proposed method
gets more robust and satisfactory results compared with these
approaches. It can be seen that the higher order smooth term
help to improve the performance of our method.

C. EFFECTIVENESS OF THE SMOOTH TERM

We combine the nonparametric model with the CRF model
to improve the segmentation accuracy. The data term is esti-
mated by the region-based nonparametric model. The smooth
term is used to fine-tune the segmentation results and avoid
object inconsistence in regions caused by inaccurate unsu-
pervised region segmentation. The pairwise and higher order
smooth terms are calculated by (14) and (16), respectively.
To justify the proposed architecture, we analyze the effect
of each part in our method. We only used region layers to
test the results and the initial seeds were generated from the
trimaps. The error rate for different combinations of each
part is summarized in Table 2. It can be observed that adding
smooth term enhances our performance. We get better results
when using higher order and pairwise smooth terms together.
Fig. 8 gives a visual comparison of the segmentation results to
illustrate the effects of the smooth term. Fig.8 (b) and (c) show
the results without and with the smooth term. Here we used
both higher order and pairwise smooth terms to refine the
outputs. As shown in Fig.8 (b), the outputs often have some
small isolated regions and the boundaries are coarser. Using
smooth terms to refine the results, we obtain more satisfactory
results.

D. INITIAL SEEDS SENSITIVITY
Although initial seeds are necessary for the interactive image
segmentations, a good algorithm should not be sensitive to
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the quantity and location of the seeds. We further analyze
the proposed method’s robustness to user scribbles compared
with the state-of-the-art methods. We generated seeds from
the trimaps firstly. The positive seeds and negative seeds
were randomly sampled from the object region and the back-
ground region, accounting for 1% to 100% of the total seed
amount, respectively. These seeds can be regarded as the user
inputs. Fig. 9 and Fig.10 demonstrate the average error rate
and F-measure of our method and other methods at differ-
ent seed counts, respectively. It can be noticed that OneCut
and GBMR are very sensitive to the number of seeds since
they have less powerful representations of images. When the
number of seeds is less than 40% of the total, the segmenta-
tion error is very large. This is because the above algorithms
often need significant user interactions to estimate the object
distribution. In contrast, we use nonparametric models to
calculate likelihood term which can simplifies user inputs to
a few scribbles. NHO achieves better results compared with
the first two models. The proposed method can obtain the
best performance when the number of initial seeds varies.
Even with only 10% of the seeds, we can still get satisfactory
results. That is because we do not need initial seeds to build
the appearance model of the image and the smooth terms help
us improve the label consistency along the object boundaries.
Therefore, our method can obtain more stable segmentation
results, which are not sensitive to the initial seeds.

E. COMPUTATIONAL COST

For running time, we conducted our experiments on a PC
with an Intel Core i7 running at 3.7GHz and 16 GB of
RAM. Table 3 displays the average running time for different
methods on our testing dataset. The region generation time for
the proposed method and the NHO method is not included
in the running time. It is noted from Table 3 that the NHO
algorithms needs the most time, more than 10 seconds, to deal
with an image because its graph construction is complicated
for modelling the relationship between different layers. Our
method (no pixel layer) can segment images in about 0.3 sec-
ond, which is much faster than the NHO method. That is
because instead of using the relationship between the layers,
we calculate the likelihoods for each layer separately and then
combine them together. In addition, we also find that pixel
layer with the most nodes and the highest computational cost
has little effect on performance as we use higher order smooth
term to refine the results. Therefore, we further remove the
pixel layer in the data estimation step, which makes our
algorithm more computationally competitive. The proposed
method of combining the pixel layer with the region layer
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FIGURE 9. The error rate against the percentage of the total number of seeds.
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FIGURE 10. The F-measure against the percentage of the total number of seeds.

TABLE 3. Comparison results of running time(s).

Method GrabCut Berkely PASCAL VOC
Avg. Max. Min. Avg. Max. Min. Avg. Max.  Min.
OneCut 056 432 024 052 375 022 0.62 584 0.27
GBMR 1.2 732 052 108 837 046 2.3 8.74  0.62
NHO 9.68 148 652 942 157 565  9.68 9.68  9.68
Ours (no pixel layer) 022 234 0.08 022 278 0.07 035 32 0.13
Ours 1.32 4.6 062 134 5.3 079  1.62 5.83 0.82

requires about 1.3 to 2 seconds to segment the image, which is
similar to the GBMR method but with higher accuracy. When
we remove the pixel layer, our method requires the least time
to process an image and still achieve satisfactory results.

V. CONCLUSION

In this paper, a novel interactive segmentation algorithm
incorporating a nonparametric model into the CRF frame-
work is introduced. Multiple region layers are utilized in the
nonparametric model for data term estimation to overcome
bad regions generated by unsupervised methods and increase
label consistency. The densely connected connections are
employed in the region layers. Unlike other models that use
the relationship between pixel and region layers, we calculate
the likelihood of each layer separately to reduce computa-
tional cost. At the same time, we analyze that the pixel layer
has little effect on the data estimation since we use smooth
term to fine tune the results. Therefore we remove the pixel
layer to further reduce the complexity of the algorithm. The
results show that our algorithm can segment images accu-
rately and efficiently and is robust to the initial seed. The

VOLUME 7, 2019

running time of our algorithms is competitive compared to
other region-based methods.
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