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ABSTRACT Nonnegative matrix factorization, as a classical part-based representation method, has been
widely used in pattern recognition, data mining and other fields. However, the traditional nonnegative
matrix factorization directly factoring decomposes the original data, and the original data often contains
a lot of redundancy and noise, which seriously affect the subsequent processing of the data. In this work,
we propose an adaptive graph regularization discriminant nonnegative matrix factorization (AGDNMF)
for image clustering. The AGDNMF algorithm makes full use of local structure information and a small
amount of label information. In AGDNMF, the local structure information can be more accurate and the
label information can prevent the points with the same label from being merged into one point. These two
items are combined into the objective function of NMF. In addition, we provide the update rules for the
corresponding optimization functions and prove its convergence. A large number of experiments on different
data sets show that the proposed algorithm has good clustering performance.

INDEX TERMS Nonnegative matrix factorization, graph regularization, discriminative information, image
clustering, data representation.

I. INTRODUCTION
In today’s information age, we can get the information
we want regardless of time or place. As a carrier of
the information, data exist in many real applications. For
example, we take photos, upload videos, and write text.
High-dimensional data although brought us good life expe-
rience, but there are still many problems in the process of
dealing with data. Therefore, how to extract effective infor-
mation from high-dimensional data becomes very signifi-
cant. In recent years, data representation plays an important
role in pattern recognition and image processing [1]–[3].
A suitable data representation is helpful to reveal the poten-
tial information structure of the data very well, which is
convenient for the next processing. In recent years, matrix
factorization technology has attracted more and more atten-
tion as a popular technology for data representation [4]–[6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xi Peng.

The matrix factorization technique consists of finding two
or more low-dimensional matrices, so that their products
are good enough to approximate the original data matrix.
At present, some popular matrix decomposition techniques
are vector quantization (VQ) [7], singular value decomposi-
tion (SVD) [8], principal component analysis (PCA) [9], and
non-negativematrix factorization (NMF) [10], and so on. Dif-
ferent from the VQ, SVD, and PCA methods, the two matri-
ces obtained by NMF decomposition are all non-negative.

Nonnegative matrix factorization adds a nonnegative con-
straint to the matrix factorization, that is, all elements in
the decomposed matrix are greater than or equal to zero.
Because nonnegativity properties allow only additive com-
binations of original data, not subtractive combinations, they
lead to a parts-based representation for NMF. This attribute
is consistent with the physiological and psychological ele-
ments based on the representation of the parts of the human
brain. As an ideal algorithm, NMF has shown advantages
in image clustering [11]–[13], face recognition [14]–[16],
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pattern recognition [17]–[19], and text clustering [20]–[22]
and so on [23]–[25]. In recent years, some researchers put
forward some new algorithms by adding additional con-
straints to NMF. By using the label information and the
non-negative coefficient matrix to construct the regulariza-
tion constraints, Babaee and Tsoukalas [26] propose dis-
criminative NMF (DNMF). By adding sparse constraints to
the decomposed base matrix, Li et al. [27] proposed local
nonnegative matrix factorization (LNMF). Liu and Wu [28]
presented constrained NMF (CNMF) by utilizing label infor-
mation, in which the data points with the same labels
will have the same representation. Guan and Tao [29]
proposed manifold regularization discriminant nonnegative
matrix decomposition (MD-NMF), which aims to add orthog-
onal constraints to the base matrix. Shang and Jiao [30]
considering that the properties of the data are distributed
according to the manifold, and propose a nonnegative matrix
based on graph dual regularization.

In recent years, some studies have shown that more data
information is likely to come from low-dimensional manifold
structures embedded in high-dimensional space. In order to
find potential manifold structures, many manifold learning
algorithms are proposed, such as local linear embedding
(LLE) [31], isometric mapping (ISOMAP) [32], and Lapla-
cian feature mapping (LE) [33]. These algorithms all make
use of local invariance and have been proved that the learning
performance of such algorithms is significantly improved.
Combined with local geometry structure, Cai et al. [34]
proposed graph regularized nonnegative matrix factorization
(GNMF). In GNMF, the data structure is encoded by the
nearest neighbor graph.

The traditional methods of constructing graphs are often
based on the original data, which often contains other influ-
encing factors such as noise. This can result in a constructed
neighbor graph that is not optimal. And in the real world,
the original data usually contains a small amount of label
information. Inspired by these conditions, this paper pro-
poses a new algorithm called adaptive graph regularized
discriminate nonnegative matrix factorization (AGDNMF).
We construct a neighbor graph by adaptively assigning
weights. The label information of data is simultaneously
combined into our model to improve the recognition abil-
ity. The proposed algorithm not only captures local struc-
ture information better, but also makes full use of label
information. The main contributions of this algorithm are as
follow
• In our method, nonnegative matrix factorization, man-
ifold learning and the label information are integrated
into a unified framework.

• Adaptive to obtain the constructed neighbor graph. This
can better capture local structural information and get
better recognition performance.

• The introduction of this label constraint item can ensure
that when there are a large number of labelled data
points, the data points will not disappear and the clus-
tering performance will be increased.

• In this paper, we propose an iterative scheme. The exper-
imental results show that the algorithm has a good clus-
tering effect.

The rest of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
adaptive graph regularized discriminate non-negative matrix
factorization in detail, and gives the convergence proof of the
algorithm. In section 4, a lot of comparison experiments are
conducted to prove the performance of the algorithm. The
final section draws a conclusion.

II. THE RELATED WORKS
Before introducing our algorithm, let us briefly introduce
some of the work that is closely related to this paper.

A. NONNEGATIVE MATRIX FACTORIZATION(NMF)
Suppose that there is a data matrix with n samples X =
[x1, x2, . . . , xn] ∈ Rm×n, and each column of X represents
a face image. The dimension of each image is m-dimension.
K represents the number of clusters. The purpose of NMF is
to find two matrices U ∈ Rm×k and V ∈ Rn×k to represent
the original data set as much as possible. We use the square
of the Euclidean distance as the objective function to measure
its similarity:

O =
∥∥∥X − UV T

∥∥∥2
F

(1)

where ‖·‖F is a Frobenius matrix. The variables U and V are
not convex together in this algorithm. Therefore, it is difficult
to find the global minimum of this algorithm. In order to solve
this problem, Lee and Seung proposed an iterative algorithm
to find the local optimal solution.

uik ← uik
(XV )ik(
UV TV

)
ik

(2)

vjk ← vjk
(XTU )jk(
VUTU

)
jk

(3)

B. GRAPH REGULARIZED NONNEGATIVE MATRIX
FACTORIZATION(GNMF)
By introducing manifold regularized entries in the decompo-
sition of the basic nonnegative matrix, Cai et al. [34] propose
a graph of regularized nonnegative matrix decomposition.
GNMF can keep the local structure information very well.
The objective function of the GNMF is as follows:

minO =
∥∥∥X − UV T

∥∥∥2
F
+ λTr

(
V TLV

)
s.t. U ≥ 0, S ≥ 0 (4)

where Tr (•) is the trace of thematrix. L is a Laplacianmatrix.
This objective function is a convex function for variablesU

and V , so we find the local minimum by iteratively updating
the rules.

uik ← uik
(XV )ik(
UV TV

)
ik

(5)
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vjk ← vjk

(
XTU + λWV

)
jk(

VUTU + λDV
)
jk

(6)

C. CONSTRAINED NONNEGATIVE MATRIX
FACTORIZATION (CNMF)
Both nonnegative matrix factorization and graph regulariza-
tion nonnegative matrix factorization are unsupervised learn-
ing algorithms, and they do not use label information. Liu and
Wu [28] introduce label information as a constraint, so that
sample points with the same label are reduced in dimension
and mapped into the same class. Assume that the first l
samples in the original data have labels and n-l samples have
no labels. This algorithm introduces a label matrix C . When
Xi is labelled with j-th class, Cij = 1, otherwise Cij = 0.
Based on this we obtain a label constraint matrix A:

A =
(
Cl×k 0
0 In−l

)
(7)

where In−l is an identity matrix.
The objective function of this algorithm can be expressed

as:

O =
∥∥∥X − U (AZ )T∥∥∥2

F
(8)

The iterative update rules for this algorithm are as follows:

uik ← uik
(XAZ )ik(

ATAZUTU
)
ik

(9)

z ← z

(
ATXTU

)(
ATAZUTU

) (10)

III. ADAPTIVE GRAPH REGULARIZATION DISCRIMINANT
NONNEGATIVE MATRIX FACTORIZATION (AGDNMF)
With the research on manifold learning in recent years,
the local structure can represent data better than global struc-
ture. The GNMF algorithm preserves the local structural
information by constructing neighbor graphs, but the con-
struction of traditional neighbor graphs has the following two
disadvantages: First, it is sensitive to the value of the param-
eters. Second, the weight of the construct depends on the
original data. Therefore, the obtained neighbor graph is not
optimal. At the same time, the weight matrix does not change
after it is generated. Although CNMF considers the label
information of the data, it doesn’t use the manifold structure
information. Based on these problems, we propose a semi-
supervised adaptive graph regularization discriminant non-
negative matrix factorization (AGDNMF). We build weight
maps by adaptively and add label information as constraints.
AGDNMF can perform graph construction and nonnegative
matrix factorization simultaneously and satisfies points with
the same label in low-dimensional spacewithoutmerging into
one point.

A. AGDNMF MODEL
We firstly define a similarity matrix S, the probability
between any two points vi and vj is sij.The greater the sim-
ilarity between the two samples is, the closer the distance

between the two points is. We can determine S according to
the following.

min
n∑
i,j

∥∥Vi − Vj∥∥22sij
s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1 (11)

where si is the i-th column vector in similarity matrix S.
In spectral analysis, Ls = D − ST+S

2 is called a Laplacian
matrix. D is the degree matrix, its i-th diagonal element is∑
j

sij+sji
2 . GivenF = [f1, . . . , f2] ∈ Rn×k , we can get classical

spectral clustering:∑
i,j

∥∥fi − fj∥∥22sij = 2Tr
(
FTLsF

)
(12)

The neighbor graph in the ideal state wants the similarity
matrix to contain k connected components, while the tra-
ditional similarity matrix generally has only one connected
component. So we use an important property of Laplace to
solve this problem.
Theorem 1: In the Laplacian matrix, the number of zero in

the eigenvalue is equal to the number of connected regions of
the graph. According to this theorem, we add this constraint
to Equation (11), we have:

min
∑
i,j

∥∥vi − vj∥∥22 sij
s.t. ∀i, sTi = 1, 0 ≤ sij ≤ 1, rank (Ls) = n− k (13)

This problem is difficult to solve because this constraint is
dependent on the similarity matrix S. To solve this problem,
we can define the i-th minimum eigenvalue of the Ls matrix
as σi (Ls). Since Ls is a positive semi-definite matrix, we can
get σi (Ls) ≥ 0. At this point, rank (Ls) = n − k can be

expressed as
c∑
i=1
σi (Ls) = 0. According to Ky Fan’s theorem

(Fan 1949), we can get

k∑
i=1

σi (Ls) = min
F∈Rn×k ,FTF=I

Tr
(
FTLsF

)
(14)

Equation (13) can be rewritten as

min
∑
i,j

∥∥vi − vj∥∥22 sij + 2λTr
(
FTLsF

)
s.t.∀i, sTi =1, 0 ≤ sij ≤ 1, F ∈ Rn×k ,FTF = 1 (15)

In order to get better clustering results, a little label infor-
mation contained in the data is used. We introduce matrix
Q ∈ Rc×n as follows:

Qij =


1 if the sample j is labeled

and is from class i
0 otherwise

(16)

where c is the class number of the observed data. Suppose we
have n = 6 samples, nl = 4 of which are labelled as c1 = 1,
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c2 = 3, c3 = c4 = 2. According to this matrix Q can be
expressed as

Q =

 1 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0

 (17)

We introduce this introduced matrix as a constraint into
NMF.

Ol =
∥∥∥Q− AV T

l

∥∥∥2 (18)

where Vl = [v1, v2, · · · , vnl , 0, 0, · · · 0]
T
∈ Rn×k . Matrix

A ∈ Rc×k is an auxiliary matrix and its value can be negative,
its purpose is to get betterQ to get the best value.We apply the
above constraints to the NMF, and finally we get the objective
function of AGDNMF as follows.

minO =
∥∥∥X − UV T

∥∥∥2
F
+ α

∑
i,j

∥∥vi − vj∥∥22 sij
+ 2λTr

(
FTLsF

)
+ γ

∥∥∥Q− AV T
l

∥∥∥2
s.t. U ≥ 0, V ≥ 0, ∀i, sTi = 1, 0 ≤ sij ≤ 1,

F ∈ Rn×c, FTF = 1 (19)

B. THE UPDATE RULES OF AGDNMF
In the objective function Equation (19), the variables (U ,
V , S, F , A) are not simultaneously convex, so it is difficult
to directly find the global minimum. Below we propose an
iterative update algorithm to get the local optimal solution of
the objective function O.

1) FIX U, V , A AND F , UPDATE S
With fixed U , V , A and F , the Equation (19) can be rewritten
as

minα
∑
i,j

∥∥vi − vj∥∥22 sij + 2λTr
(
FTLsF

)
s.t. ∀i, sTi = 1, 0 ≤ sij ≤ 1 (20)

According to Equation (12), we get

minα
∑
i,j

∥∥vi − vj∥∥22 sij + λ∑
i,j

∥∥fi − fj∥∥22 sij
s.t. ∀i, sTi = 1, 0 ≤ sij ≤ 1 (21)

We define the matrix M , let mij =
∥∥vi − vj∥∥22. And matrix

N , let nij =
∥∥fi − fj∥∥22. We use the vector dij = mij + λnij to

represent di ∈ Rn×1. We can rewrite Equation (21) as follows.

min
si

∥∥∥∥si + 1
2σ

di

∥∥∥∥2
2

s.t. sTi = 1, 0 ≤ sij ≤ 1 (22)

The variable σ is determined by an adaptive number of
neighbors, and this variable changes during each iteration.

2) FIX U, V , A AND S, UPDATE F
With fixed U , V , A and S, the Equation (19) is transformed
into

min
F∈Rn×c,FTF=1

Tr
(
FTLsF

)
(23)

The optimal solution of F is formed from the eigenvectors
of the k minimum eigenvalues in the Ls.

3) FIX S AND F , UPDATE U, V AND A
When S and F are fixed, the third term in Equation (19) can
be considered as a constant. Equation (19) can be can be
rewritten as follows.

O = Tr((X − UV T )(X − UV T )T )+ λTr(V TLV )

+ γTr((Q− AV T
l )(Q− AV

T
l )

T )

= Tr(XXT )− 2Tr(XVUT )+ Tr(UV TVUT )

+ λTr(V TLV )+ γTr(QQT )− 2γTr(QVlAT )

+ γTr(AV T
l VlA

T ) (24)

We introduce the Lagrange multipliers ϕik and φjk , con-
strain uik ≥ 0 and vjk ≥ 0. The corresponding Lagrangian
function 0 can be written as

0 = −2Tr(XVUT )+ Tr(UV TVUT )+ Tr(ϕU )

+Tr(ψV ) + λTr(V TLV )− 2γTr(QVlAT )

+ γTr(AV T
l VlA

T ) (25)

The partial derivative of the function0 relative toU , V and
A is

∂0

∂U
= −2XV + 2UV TV + ϕ

∂0

∂V
= −2XTU + 2VUTU + 2λLV

− 2γQTA+ 2γVlATA+ ψ
∂0

∂A
= −2QVl + 2AV T

l Vl (26)

We use the KKT condition to solve the equations ∂0
∂U = 0,

∂0
∂V = 0, ∂0

∂A = 0. We can get

uik ← uik
(XV )ik

(UV TV )ik
(27)

vjk ← vjk
(XTU + λWV + γ (VlATA)− + γ (QTA)+)jk
(VUTU + λDV + γ (VlATA)+ + γ (QTA)−)jk

(28)

A ← QVl(V T
l Vl)

−1 (29)

For any matrix W , W+ and W− are respectively defined:
W+ = (|W |+W )/2, andW− = (|W |−W )/2. We introduce
the following theorem to get the local optimal solution of
convergence.
Theorem 2: The objective function in Equation (19) is

non-increasing under the update rules in Equation (27). The
objective function is invariant under this update rule if and
only if U , V and A are at a stable point. This theorem ensures
that when U , V and A converge to a point, a local optimal
solution can be obtained.
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C. CONVERGENCE PROOF
In this section we present the proof of Theorem 2. We can
see that the iterative formula for U in the objective function is
consistent with the NMF. In NMF algorithm, the author has
proved that the objective function of NMF is non-increasing
under this iterative formula. For this we only need to prove
that the objective function of AGDNMF does not increase
under the iteration formulas (28). We introduce a helper
function that uses the expectation maximization algorithm to
prove theorem 2.
Lemma 1: Assuming that there is a function G, when the

condition G
(
v, v′

)
≥ F (v) ,G (v, v) = F (v) is satisfied,

the function f does not grow under the following rules.

vt+1 = argmin
v

G
(
v, vt

)
(30)

F
(
vt+1

)
= F

(
vt
)
is established only if the local minimum

value of G
(
v, vt

)
is X t . The local optimal value F , which

converges to vmin = argmin
v

F (v), can be obtained by iter-

ative Equation (30). Therefore, we prove that the iteration of
V is the same under update rules (28) (30) when constructing
an appropriate helper function. Fvab represents elements in v
that are only related to vab, F ′, F ′′ are the first derivative and
second derivative of the vab. F ′ and F ′′ are defined as follows.

F
′

ab
(Vab) = (−2XTU + 2VUTU + 2λLV

− 2γQTA+ 2γVlATA)ab (31)

F
′′

ab
(Vab) =

{
2(UTU + λL + γ (ATA))bb if a ≤ Nl
2((UTU )bb + (λL)aa) otherwise

(32)

Lemma 2: An auxiliary function Fvab (v) for vab is defined
as follows.

G(vab, vtab = Fab(vtab)+ F
′

ab(v
t
ab)(vab − v

t
ab)

+
1
vtab

[V tUTU + λDV + γ (V t
l A

TA)+

+ γ (QTA)−]ab(vab − vtab)
2 (33)

Proof :Obviously, ifG (v, v) = Fvab (v), we only need to
prove G

(
v, vtab

)
≥ Fvab (v). The Taylor expansion of Fvab (v)

at vtab is as follows.

Fab(v) = Fab(vtab)+ F
′

ab(v
t
ab)(vab − v

t
ab)

+
1
2
F
′′

ab(v
t
ab)(vab − v

t
ab)

2 (34)

We prove that G
(
v, vtab

)
≥ Fvab (v), we only need to prove

that the following inequality is true.

1
V t
ab
[V tUTU + λDV t

+ γ (V t
l A

TA)+ + γ (QTA)−]ab

≥
1
2
F
′′

ab(V
t
ab) (35)

TABLE 1. The description of data sets.

Combining Equation (31) to (34), Equation (35) can be
rewritten as

1
V t
ab
[V tUTU + λDV + γ (V t

l A
TA)+ + γ (QTA)−]ab

≥ (UTU + γ (ATA))bb + (λL)aa
if a ≤ Nl

1
V t
ab
[V tUTU + λDV + γ (V t

l A
TA)+ + γ (QTA)−]ab

≥ (UTU )bb + (λL)aa
otherwise

(36)

We compare the inequalities on both sides.

(V tUTU )ab =
K∑
h=1

v(t)ah(U
TU )hb

= V t
ab(U

TU )bb+
K∑

h=1,h 6=b

V t
ah(U

TU )hb (37)

⇒

(V tUTU )ab
V t
ab

≥ (UTU )bb

λ(DV )ab = λ

N∑
h=1

Dahvthb

= λDaaV t
ab + λ

N∑
h=1,h 6=a

Dahvthb

λDaaV t
ab ≥ λ(D−W )aaV t

ab = λLaaV
t
ab

⇒

λ(DV )ab
V t
ab

≥ λLaa (38)

It can be seen from the above that the inequality holds,
so G

(
v, vtab

)
≥ Fvab (v) is established and Lemma 2 is true.

Since G
(
v, vt

)
is a helper function of Fvab (v), it can be

concluded that Fvab (v) is non-incremental under the update
rule (28).

Regarding the convergence of the A update rule, since this
update is obtained by deriving A for the Lagrangian function,
but A is not subject to this constraint. In fact, from the
perspective of the convexity of A, each iteration is equivalent
to minimizing A. Thus, Theorem 2 is true for (29).
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FIGURE 1. Clustering results of each algorithm on four data sets. (a) Yale, (b) ORL, (c) COIL20, (d) HD, (e) JAFFE, (F) AR.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
In this paper, the objective function proposed is obtained
through continuous iteration. So we discuss the computa-
tional complexity of AGDNMF.

We use O to represent the computational complex-
ity of the algorithm. The computational complexity of
the algorithm is described by three arithmetic operations.
Each iteration update based on AGDNMF requires addition
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FIGURE 2. The clustering results on AGNMF on two databases versus parameter α. (a) Yale, (b) COIL20.

operation

2MNK + 2 (M + N )K 2
+ N (p+ 3)K −

2
3
K 3

+ (3Nl + S)K 2
+ 4NlK +

1
2
K (K − l)+M

multiplication operation

2MNK + 2 (M + N )K 2
+ (M + N )K + N (p+1)K

−
2
3
Kn3 + (3Nl + S)K 2

+ 6NlK +
1
2
K (K − l)+M

division operation

(M + N )K + K

The overall complexity of AGDNMF is

O (MNK )

IV. EXPERIMENTS
In this section, a lot of image clustering experiments with
AGDNMF algorithm have been implemented on six common
databases. And some related algorithms are also carried out
for comparison.

A. DATA DESCRIPTION
Six image data sets are used to validate our method, which is
described in detail as follows (also see Table 1).

1) YALE FACE DATABASE
The Yale face database contains 165 grayscale images
of 15 people, each with 11 images. The image size of each
picture is 80× 100. In this experiment we manually adjusted
the image to a size of 40× 50.

2) ORL FACE DATABASE
The Yale face database contains 400 grayscale images of
40 people, each with 10 images. The image size of each
picture is 92× 112. In this experiment we manually adjusted
the image to a size of 23× 28.

3) COIL20 DATASET
The COIL20 dataset contains 1440 grayscale images of
20 objects, each with 10 images. The image size of each
picture is 64 × 64. In this experiment we manually adjusted
the image to a size of 32× 32.

4) HANDWRITTEN DIGITS DATASET
The handwritten digits database contains 10000 images from
0 to 9 totally, each containing 1000 images. The image size
of each picture is 16× 16.

5) JAFFE FACE DATABASE
The Jaffe face database contains 213 grayscale images of
10 objects. The size of each picture is 256 × 256. In this
experiment, we manually adjusted the image to a size
of 64× 64.

6) AR FACE DATABASE
The AR face database contains over 4000 different face
images. We select 25 male and 25 female for testing.
In this experiment, we manually adjusted the image to a size
of 32× 32.

B. COMPARISON METHOD
In order to demonstrate that our AGDNMF method improves
the clustering performance, we compare it with the following
algorithm, such as other K-means clustering method [35],
PCA [9], non-negative matrix factorization NMF [10], graph
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FIGURE 3. The clustering results on AGNMF on two databases versus parameter λ. (a) Yale, (b) COIL20.

FIGURE 4. The clustering results on AGNMF on two databases versus parameter γ . (a) Yale, (b) COIL20.

regularized nonnegative matrix factorization (GNMF) [34],
constrained nonnegative matrix factorization (CNMF) [28],
robust graph regularized nonnegative matrix factorization
(RGNMF) [36], discriminative nonnegative matrix factoriza-
tion (DNMF) [26].

C. EXPERIMENT SETUP
In order for each algorithm to achieve the best results,
the parameters in each algorithm are appropriate. All exper-
iments are repeated 20 times on each dataset, we take the
average of 20 test results as the final result. For all experi-
mental results, we adopted accuracy (AC) as a unified evalu-
ation standard. We use this precision standard to measure the
clustering performance of each algorithm. Suppose a data set
contains n images. For the i-th data point, li and ti represent

the obtained cluster label and real label, respectively.

AC =

∑N
i=1 δ(ti,map(li))

N
(39)

where δ(x, y) is the measurement function. If x = y, the
value of δ(x, y) is 1, otherwise it is 0. map(l i) is a mapping
function that maps the clustering labels of each data point to
the real label.We can get the optimalmapping result byKuhn-
Munkres algorithm [37]. Fig. 1 show the clustering results in
Yale, ORL, COIL20, HD, Jaffe, AR.

D. EXPERIMENTAL RESULTS
Fig. 1 shows the clustering resulting of several methods on
four image databases. From Fig.2, we can conclude that we
can get the following conclusions. First of all, we can see that
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FIGURE 5. The convergence of GDNMF on four databases. (a) Yale, (b) ORL, (c) Jaffe, (d) AR.

the algorithm based on NMF is superior to other algorithms,
which shows that part-based learning can better retain data
information and get better results. Second, the graph-based
approach performs better than other algorithms, indicating
that the local structure information contains a lot of hid-
den information. Third, our algorithm is superior to other
algorithms that do not use label information, which shows
that label information is very important to image clustering.
Finally, our proposed AGDNMF algorithm is superior to
other algorithms in most cases. This shows that this algorithm
can make good use of local structure information and label
information to obtain better data representation.

E. PARAMETERS SELECT
The algorithm we proposed contains three parameters α, λ
and γ . We experimented on two of the databases to verify the
effect of these three parameters on the algorithm. We take all
the classifications of each database for testing. When testing
one parameter, the other two parameters are fixed. Figure 2,
Figure 3 and Figure 4 show the clustering results when the
three parameters are different. We can see that changing the

value of the parameters, the results of different databases are
not the same.

F. CONVERGENCE STUDY
The updating rules of this algorithm are obtained through
iteration. In order to prove its convergence, experiments were
carried out on four databases. Figure 5 shows the convergence
curve on Yale, ORL, Jaffe and AR databases. We can find
that AGDNMF converges at a very fast speed and can con-
verge iteratively within 100 iterations. This also verified in
our statement of the computational complexity, although this
algorithm needs a lot of iterations, but the whole process is
very fast.

V. CONCLUSION
In this paper, we propose a novel semi-supervised adap-
tive graph regularization discriminant nonnegative matrix
factorization (AGDNMF). Neighbor graphs are constructed
adaptively in the algorithm to obtain better local struc-
tural information to promote the image clustering accuracy.
At the same time, the label information is employed as a
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constraint, to avoid the data points with the same label are not
merged into the same point, and the clustering performance is
improved. We simultaneously propose an update rule method
to solve AGDNMF. A large number of experiments have
proved that AGDNMF algorithm has better performance than
other algorithms.
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