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ABSTRACT Video processing software is often used to remove specific moving foreground from a video.
Existing forgery algorithms for detecting this type of tampering generally suffer from inefficiency and are
not effective for the forged videos under complex background. To address these problems, we propose a
novel forgery detection algorithm for detecting video foreground removal. The algorithm first calculates
the energy factor (EF) of each frame to identify forged frames. An adaptive parameter-based visual
background extractor (AVIBE) algorithm is then designed to detect suspected regions from the forged frames
determined in the first stage. After eliminating false detection by calculating the difference of EF between
suspected regions in the forged frames and the corresponding regions in the authentic frames, the algorithm
finally locates the tampering traces. The experimental results show that our proposed algorithm has higher
computational efficiency and accuracy as well as better robustness than those of previous algorithms.

INDEX TERMS Video forgery, passive forensics, foreground removal, energy factor.

I. INTRODUCTION

With the rapid development of multimedia technology and
user-friendly editing software (e.g., Photoshop, Premiere by
Adobe, and Mokey by Imagineer Systems), manipulating
videos and changing their content is becoming a trivial task.
For example, one can add or delete significant informa-
tion, such as an object, from a video without leaving any
visible signs of such tampering. These manipulations are
sometimes not innocent, involving, for example tampering
videos acquired by surveillance systems and used as evi-
dence. Consequently, there is an increasing research interest
in video forensics, which is used to authenticate the veracity
and integrity of videos [1]-[4].

Video forensics can be classified into two categories: active
forensics and passive forensics. In active forensics, validation
information used for authentication is added during the gen-
eration of a video, i.e., digital watermarks, digital signatures
and fingerprinting [S5]-[7]. In passive forensics, the veracity
and integrity of a video are authenticated, typically without
any validation information, which is more practical in real
applications than active forensics [3], [8], [9].

Recent works in passive video forensics include the
following studies. In [10], the authors propose a method for
detecting forged regions in the video based on inconsistencies
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in the noise characteristics of forged regions. Other forgery
detection techniques are proposed in [11] and [12]. These
techniques use double quantization coefficients to detect
forgeries; however, they only work within a limited range
of compression rates. In [13], an effective similarity-
analysis-based method for frame duplication is proposed,
which has outstanding performance in terms of computa-
tional efficiency. In [14], a novel copy-move forgery detec-
tion scheme using adaptive over-segmentation is proposed,
which combines block-based method with feature-point-
based method and provides strong performance. A novel
video region duplication detection algorithm is proposed
in [15], which has satisfactory performance for detecting
videos subjected to mirror operations. In [16], a fast forgery
detection algorithm based on Exponential-Fourier Moments
for video region duplication is proposed which has higher
computational efficiency and better robustness than those of
previous algorithms.

Video forgery is mainly divided into intra-frame forgery
(e.g. region duplication, foreground removal, blue screen
matting) and inter-frame forgery (frame replacement, frame
insertion and frame deletion) [17]. Foreground removal is
an important part of intra-frame forgery and an exam-
ple of foreground removal is shown in Fig. 1. However,
few algorithms have been reported for detecting this type
of tampering. A method based on accumulated differential
images is proposed in [18], which uses textural features
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FIGURE 1. An example of video foreground removal: authentic (top) and
tampered video (bottom).

around the tampered area to detect traces of moving objects
removed from static backgrounds. However, the method
requires the configuration of multiple empirical parameters
and the detection accuracy can be affected by the shoot-
ing environment, such as trees, flowers and plants. In [19],
the authors design a video forgery-detection algorithm based
on spatial and temporal matching. The algorithm finds the
best-matching pixels in spatial and selects the best-matching
units in temporal using a variety of matching methods. How-
ever, it does not perform well for low bit-rate videos. In [20],
an algorithm based on compressive sensing for detecting
moving foreground removed from static background is pro-
posed. Compressive sensing is first introduced to digital
video forensics and has been found to deliver favourable
performance. Nevertheless, it has a low efficiency due to
complex detection procedure. An automatic algorithm in [21]
is proposed to identify object-based video forgery based on
a frame-manipulation detector. Experiments show that the
approach achieves excellent results in both forged video
identification and automatic temporal forged-segment local-
ization. However, it is not satisfactory for videos under com-
plex background. A fast passive forensic method to expose
dynamic object removal and frames duplication using sensor
noise features is proposed in [22]. The method extracts sensor
noise features from each frame of video by DWT and SURE
shrinkage. Then, Gaussian Mixture Density (GMD) is used
as Bayesian classifier and EM algorithm set the parameters
of the GMD. However, the algorithm does not perform well
for videos under complex scenes.

In digital video forensics, the issues of detection accuracy
and computational cost are central to the design of algorithms
because even a video of modest length can run into thousands
of frames. Most previous detection algorithms are frame-by-
frame methods, which result in inefficiency. What’s more,
they are unable to detect videos under complex background
(e.g., slightly shaking screens, swaying trees, water ripples,
noise and brightness change). To address these problems,
we propose a novel forgery detection algorithm for video
foreground removal. The algorithm first calculates the energy
factor (EF) of each frame to determine the forged frames.
Then, an adaptive parameter-based visual background extrac-
tor (AVIBE) algorithm is designed to detect suspected regions
in the forged frames as determined in the first stage. In order
to eliminate false detection, the algorithm calculates the EF
difference between suspected regions in the forged frames
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and corresponding regions in the authentic frames and finally
locates the tampering traces.

The main contributions of this paper address the following
elements:

1. Energy factor (EF) is constructed to identify forged
frames, avoiding the deficiency of detecting videos frame by
frame, which improves the detection efficiency greatly.

2. ViBe algorithm is first introduced into video foreground
removal detection. Furthermore, we improved the ViBe algo-
rithm with two aspects by the optimization of Euclidean
distance threshold and pixel update threshold to increase the
detection accuracy of the algorithm.

3. Our algorithm is effective for detecting videos under
different bit rate compression. More importantly, it realizes
the detection of videos under complex background (e.g.,
slightly shaking screens, swaying trees, water ripples, noise
and brightness change), which has better robustness and is
more practical in applications.

Il. PRELIMINARIES

A. VISUAL BACKGROUND EXTRACTOR (VIBE) ALGORITHM
ViBe is a sample-based moving-object detection method pro-
posed by O. Barnich that considers a moving-object detection
problem as a pixel classification problem [23]. A single pixel
is divided into a moving object or background pixels. ViBe
uses the Ist frame to initialize the background model by
building a sample set of each pixel and begins to classify new
pixels from the 2nd frame. In this section, we briefly describe
the principle and basic steps of the ViBe algorithm.

1) INITIALIZATION OF THE BACKGROUND SAMPLE SET

ViBe designates v(x) as the value in each Euclidean colour
space of the pixel located in image position x and designates
v; as a background sample value with an index i. Each back-
ground pixel x is modelled via a collection of N background

sample values from previous frames, which is expressed
by M.

M (x) = {vi,va, ..., vn} @€))

where v; i = 1, ..., N) denotes the value of a sample that
is randomly chosen from the 8-connected neighbourhood of
each pixel according to the uniform law.

2) DETECTION OF THE FOREGROUND
To classify a pixel value v(x) according to its corresponding
model M(x), a sphere Sg(v(x)) of radius R centred on v(x)
is first defined, as is shown in Fig. 2. Then, ViBe counts the
number of samples in the background sample set contained
in Sg(v(x)). The pixel is classified as the background if the
number is larger than or equal to the given threshold, U,,,.
Otherwise, the pixel is classified as the foreground. The entire
calculation method is expressed by equation (2):
Num = {Sg (v (x)) N M (x)}

y {Num > Unin v (x) € background

Num < Upin v (x) € foreground
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FIGURE 2. Example of a 2-D Euclidean colour space (C1, C2).

3) BACKGROUND MODEL UPDATE

In practice, the scene typically changes over time, illumina-
tion variation, the appearance of new objects or water ripples,
for example. The background sample set should be updated
continuously to adapt to the dynamic background.

ViBe algorithm uses a conservative background-updating
algorithm. The pixels that are determined as moving targets in
the current image are not included in the background update.

Considering camera vibrations, background gradients and
other disruptions, ViBe algorithm uses the following method
to update the background model. The pixels that are detected
as moving targets in current frame don’t participate in back-
ground update. When a pixel x is detected as the background,
it has a 1/¢ likelihood of updating a sample in the sample set
M (x). Simultaneously, the neighbourhood pixels also have a
1/¢ likelihood of updating a sample in the sample set M (x).
The update process uses v;(x) (v(x) at time ¢) to replace a sam-
ple in the sample set M (x), and the updating process gradually
propagates outward. The probability of a sample existing at
time 7o and still existing at time #; can be mathematically
expressed as:

Pt — tg) = e~ M= h/m@=0) 3)

The equation above provides the probability that a sample
remains in the sample set M (x), which is monotone decreas-
ing. The accuracy of background pixel estimation is improved
by using the above background update method.

lll. PROPOSED METHOD

Video processing software is often used to remove specific
moving foreground from a video. In order to delete some
moving foreground without any visual traces, the attacker
may manually fill and modify the forged regions with the
information provided by the areas around them. And then a
gentle blur will be run over the edge of the forged regions.
This tampering method requires tampering with the video
frame by frame, so it is difficult for naked eyes to judge
whether the video content has been tampered through colour,
texture or other information of single frame. However, Due
to blur operation and the large number of frames needing
to be tampered in the video, the tampering traces left in the
frames will cause inconsistence in temporal. More specifi-
cally, the energy ratio of high-frequency component to low-
frequency component of tampered frames will be changed.
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Based on this phenomenon, a novel forgery detection algo-
rithm for video foreground removal is proposed in this paper.
The algorithm consists of three stages: (1) Forged frames
detection in temporal based on EF; (2) Suspected regions
detection based on AVIBE; and (3) Tampering traces location.

The first stage of the algorithm calculates the energy factor
(EF), which represents the proportion of low and high energy
in each frame to determine the forged frames of the video.
The second stage employs the AVIBE method to detect the
suspected regions in the forged frames determined by the
first stage. In the final stage, a series of steps is designed to
eliminate detection errors and locate the tampered traces.

A. FORGED FRAMES DETECTION BASED ON EF

For a suspicious frame at a resolution of m*n, the energy
ratio of the high-frequency component to the low-frequency
component is defined as follows:

The frequency domain entropy is defined as follows:

mxn

pe 3| |
i=1 §|ﬁi| §|ﬁi|

where r represents the number of low-frequency coefficients
of DCT at the top left. Then the DCT coefficients are rear-
ranged in descending order after using Z-scan technique,
named new DCT coefficients, and B; represents the i-th coef-
ficient. The numerator in equation (4) represents the average
of the low-frequency coefficients, while the denominator rep-
resents the one of the high-frequency coefficients. We have
found that a larger value of B and a smaller value of H indi-
cate more low-frequency components of a frame. Conversely,
a smaller value of B and a higher value of H indicate more
high-frequency components of a frame.

In order to make the change in energy of a frame more
apparent, we specify EF to measure the degree of energy
change in videos on the characteristics of B and H, which
is defined as:

1
EF =—+H 6
B+ (6)

Obviously, the smaller the value of EF, the more proportion
of low-frequency information of a frame is. For an authentic
video, the EF of each frame will keep certain continuity
and consistency. Once some moving foreground has been
removed from a video, filling, blurring and patching in tam-
pering process will significantly increase the low-frequency
component, and eventually result in that the EF of each frame
in the forged frames is significantly smaller than that of
frames without tampering.

Furthermore, in Fig. 3, we illustrate the EF curves for
both the original and forged videos with EF on the y-axis
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FIGURE 3. EF for the original (a) and forged videos (b) (tampered frames:
21-55).

and the frame number on the x-axis: (a) is the EF of an
original video, and (b) is the corresponding forged version.
We observe from Fig. 3(a) that the EF of each frame changes
mildly and keeps certain continuity. When the video suffers
from foreground removal forgery, there are obvious changes
in the EF curve, as shown in Fig. 3(b), a sudden drop appears
in the EF curve (forged frames: 21-55). Thus, calculating EF
for each frame to construct the EF curve is a feasible method
to judge whether a video has been manipulated by foreground
removal. What’s more, the forged frames in the video will be
determined by analysing the EF curve.

B. SUSPECTED REGIONS DETECTION BASED ON AVIBE
Actually, removing specific moving foreground from a video
is bound to leave traces in the video, even though they
are invisible to the naked eye. In order to detect these
traces, AVIBE algorithm is proposed in this section, which
is improved on the ViBe algorithm with two aspects by the
optimization of Euclidean distance threshold R and pixel
update threshold ¢.

1) AVIBE ALGORITHM

ViBe is a sample-based moving-object detection method with
strong real-time performance. However, its global Euclidean
distance threshold R and pixel update threshold ¢ are both
fixed, which significantly impact the accuracy and robust-
ness. When R is too small, the slow-moving objects in the
background (e.g., swaying leaves or water ripples) can be
easily detected as the foreground. Otherwise, they are eas-
ily regarded as the background. Meanwhile, in the ViBe
algorithm, when a pixel x matches its background model,
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the samples of x and its neighbour pixels will be updated
based on the probability of 1/¢. It helps to improve the time
efficiency of the algorithm, but also greatly affects the accu-
racy and robustness. Once the pixel belonging to the fore-
ground is wrongly detected as the background due to noise
and the background model is updated, simultaneously, it will
lead to more detection errors, which greatly reduces the accu-
racy of the algorithm.

To overcome these limitations, firstly we introduce stan-
dard deviation o (x), which is used to describe the degree of
changing content of each frame, and make R to be an adap-
tive parameter. Then, R will be adaptive adjusted according
to o (x). The standard deviation o (x) is defined as

N

u(x) = }v;si @) )
1 N
0@ = |5 i@ —u@)? ®)

i=1
where N represents the sample size for each pixel, s;(x) rep-
resents the i-th sample point for pixel x, and u(x) represents
the gray-scale average of all sample points for pixel x.
Therefore, R will be refreshed according to (9), as in:

R(x) = Rg+ax*o(x) if(o(x)=Rg)
 |Rg—axo (x) if(c (x) <Rg)
R, < R(x) <Ry ©)]

where R(x) represents the adaptive Euclidean distance thresh-
old for x pixel, while « is a constant. We note that Rg is
an initial value, which is set as Rz = 20, Ry and R;,
are the upper and lower limits of R(x). Thus, the Euclidean
distance threshold will be adaptively adjusted according to
the video content, which improves the detection accuracy and
robustness of the algorithm.

@ is the other important parameter in the ViBe algorithm,
which may result in high false detection rate. In the AVIBE
algorithm, the accuracy of the background model of the cen-
tral pixel will be judged according to the matching informa-
tion of the neighbour pixels, so as to reduce the false detection
rate and improve the accuracy as well as the robustness
against complex background.

Assume that NR, represents the neighbour pixels of x with
the size of m x m, and g, represents the number of pixels
in NR, that match their respective background models. The
neighbourhood-matching factor NF(x) is adopted to measure
the correctness of background models, which is defined as

NF (x) = & (10)
m X m

According to (10), the higher value of NF(x), the more
pixels that match their respective background models, thus
the higher accuracy of the background model. In this, ¢(x) is
refreshed according to (11):

@ x) = o
2 x NF (x)
oL <@ x) <oeu (11)
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FIGURE 4. The effect of Ry and ¢y on the detection accuracy (DA).

where ¢ is an initial value, which is set as oG = 16, ¢y
and ¢y, are the upper and lower limits of ¢(x). It is indicated
from (10) and (11) that the more pixels in NR, that are
consistent with the background models, the higher accuracy
of the background model, thus the higher update probability.

In Fig. 4, we illustrated the effects of Ry and ¢y on the
detection accuracy (DA) with “DA”’ on the y-axis and “Ry”
(Fig. 4(a)) or “@r”’ (Fig. 4(b)) on the x-axis. The experiments
were performed on 10 videos (3600 frames in total) at a
resolution of 1280x 720 pixels. In Fig.4(a) and (b), we fixed
Ry = 5 and ¢ = 4 respectively. It is observed from
Fig. 4 that both of two curves have tendency of ascending
first and descending in succession. What’s more, Ry = 50
and ¢y = 32 are the respective turning points of the curves.
Based on this, we finally fixed the parameters as Ry = 50,
oy = 32.

The screenshots of two of the sampled detection results for
the AVIBE and ViBe algorithms are shown in Fig. 5. The
videos using in Fig. 5 were downloaded from the Internet.
(a) is the screenshots from the original videos. (b) and (c) are
the screenshots of detection results for the ViBe and AVIBE
algorithm, respectively. It is indicated from Fig. 5(b) that
when using the ViBe algorithm, detection errors (white points
in Fig. 5(b)) occur in the background, and many holes arise in
the detected foreground areas. However, these problems are
well solved when using the AVIBE algorithm. The moving
foreground can be extracted more accurately and more com-
pletely, as shown in Fig. 5(c).

2) SUSPECTED REGIONS DETECTION
As reported in Section A, the forged frames of the video have
been obtained. In this section, the AVIBE algorithm is used
for detecting the suspected regions in the forged frames.

Let us consider a video sequence V, whose frames are
denoted by V; (t = 1,2, ..., L); the i-th frame is expressed
by V;. Assume that the forged sequence of V is from V}, to V.
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FIGURE 5. The screenshots of the detection results for the ViBe (b) and
AVIBE (c).

The AVIBE is used to detect the suspected regions in V
and then obtain binary images (i.e., VBy, VBj+1, ..., VBy).
Because of the few suspected regions for each frame, we con-
struct a binary image IB,.s,;; to make the suspected regions
more apparent, as in:

IBresuir = VBu|VBi+1l| ... |VBi—1|VBj (12)

where | is the OR operation. In order to enhance the dis-
play effect of suspected regions, the dilation processing is
applied to the /By, and then multiple suspected regions
are obtained in /By, Which are referred to as white connect
areas. The algorithm considers that these white connect areas
contain all the tampering traces in forged frames which are
recorded in PS, and the i-th white area is expressed by PS;.

C. TAMPERING TRACES LOCATION

As we know, the white connect areas obtained in previous step
contain tampering traces as well as detection errors. In this
section, the objective is to eliminate detection errors and
locate the tampering traces by employing the EF algorithm,
as described in Section III-A.

According to the location of the white connect areas in
1B esuir, the corresponding areas in the authentic frames are
obtained. Then, the EF of the suspected areas in the forged
frames and the corresponding areas in the authentic frames

are calculated, denoted by EFZiipered(i = 1,2,...) and

PS; . .
EFamhem%g =1,2,...), re;gectlvely.
If Ean;pere g =< CEF, ... (we fix the parameter of

¢ = 0.7 based on numerous experimental analyses), then i-th
white area is considered as a tampering trace, otherwise, it is
eliminated. We apply this method until the last white area in
IB,esyi; 1s verified, thus locating all tampering traces in the
video.

D. THE WHOLE ALGORITHM
Input the suspected video V.

Step 1: Calculate the EF for each frame, and construct EF
curve to determine the forged frames of the video.

Step 2: Use the AVIBE algorithm to detect the suspected
regions in the forged frames and construct a binary image.
Apply dilation operation to the binary image to obtain B¢z .

Step 3: Calculate EF for all white connected areas in the
forged frames and the corresponding areas in the authentic
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FIGURE 6. The flow chart of the whole algorithm.

frames, denoted by EF PSi FrSi

Ps s authenic and E tampered’
i i . . .
If EF rampered = CEF 1 .nic» then the i-th white area is con-

sidered a tampering trace, otherwise, it is eliminated.

Step 4: Mark the pixel positions of the remaining white
connected areas in the video and output.

Fig. 6 shows the flow chart of the whole algorithm.

respectively.

IV. EXPERIMENTS AND ANALYSIS
To evaluate the performance of the proposed algorithm,
we conducted a series of experiments. The videos used in
our experiments can be classified into four classes: 1) videos
recorded by fixed/hand-held cameras, 2) videos downloaded
from the Internet, 3) videos downloaded from the Surrey
University Library for Forensic Analysis (SULFA) [24], and
4) videos downloaded from the SYSU-OBJFORG dataset
(http://media-sec.szu.edu.cn/SYSU-OBJFORG.html.) (We
will not public the video contents in our paper for the
SYSU-OBJFORG’s authors still cannot get the authorization
from the people in the video scenes to use their portraits in
public domain). Table 1 shows the details of some of the test
videos used in the experiments.

The computer used for all the experiments in our study was
configured as follows:

CPU: Intel(R) Core(TM) i7-4700 3.6 GHz.

Memory Size: 16 GB.

Video Card: NVIDIA GeForce GT 970M.

OS: Microsoft Windows 7.

Coding: MATLAB Version 7.12.0.635 (R2011a).

A. DETECTION OF FOREGROUND REMOVAL UNDER
STATIC BACKGROUND

In the experiments in this section, all the videos to be used are
under static background. Fig. 7 presents screenshots of some
detection results.
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TABLE 1. Details of the test videos.

Video Length Resolution Forged frames
Video 1 140 320%240 51~140
Video 2 145 640*480 1~115
Video 3 130 640*480 1~29,61~130
Video 4 275 320%240 1~70
Video 5 100 1280*720 20~54
Video 6 212 1280*720 121~212
Video 7 138 1280*720 1~58
Video 8 130 640*480 25~61
Video 9 210 640*480 125~210

Video3

FIGURE 7. Frames and analysis of the test videos: (a) original video;

(b) original video with a moving foreground; (c) tampered version of (b);
(d) EF for (c); (e) detection results of (a) using our algorithm; (f) detection
results of (c) without eliminating detection errors; (g) detection results of
(c) after eliminating detection errors.

In Fig. 7, video 1 and video 3 were downloaded from
the Internet, while video 2 was recorded by fixed cameras.
(a) and (b) are screenshots from the original videos, where
(b) contains a moving foreground. (c) is screenshots from
tampered versions of (b) where the moving foreground has
been removed. (d) shows the EF for (c). (e) shows the
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Video 5

FIGURE 8. Frames and analysis of the test videos: (a) original video;

(b) original video with moving foreground; (c) tampered version of (b);
(d) EF for (c); (e) detection results of (a) using our algorithm; (f) detection
results of (c) without eliminating detected errors; (g) detection results of
(c) after eliminating detection errors.

detection results of (a). (f) shows the detection results of
(c) without eliminating detection errors. (g) shows the final
results of (c) after eliminating detection errors.

Fig. 7 shows that the proposed algorithm accurately locates
the tampering traces in videos, demonstrating its effective-
ness in detecting the video foreground removal forgery under
static background.

B. DETECTION OF FOREGROUND REMOVAL UNDER
COMPLEX BACKGROUND

In real life, the scenes of most videos typically change over
time, e.g., water ripples, shaking leaves, noise and bright-
ness change. In the experiments in this section, videos with
complex backgrounds were considered. Video 4 which was
downloaded from the SULFA contains water ripples. Video 5
and video 6 which were recorded by hand-held cameras with
a slight shaking contain swaying trees and brush. One of the
swimming ducks was removed from video 4, and the moving
people in video 5 and video 6 were removed, respectively,
as shown in Fig. 8 (c). Similarly, (d) shows the EF for (c).
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Video 7

Video 8 Video 9

FIGURE 9. Frames and analysis of the test videos: (a) original video;
(b) original video with moving foreground; (c) tampered version of (b);
(d) EF for (c); (e) detection results of (a) using our algorithm; (f) detection
results of (c) without eliminating detected errors; (g) detection results of
(c) after eliminating detection errors.

(e) shows the detection results of (a). (f) shows the detection
results of (c) without eliminating detection errors. (g) shows
the final results of (c) after eliminating detection errors. The
detection results shown in Fig. 8 demonstrate the effective-
ness of our algorithm in detecting the forgery of foreground
removed from the video with complex background.

In Fig. 9, video 7 and video 9 were downloaded from Inter-
net, while video 8 was recorded by hand-held cameras. After
the salt & pepper noise with density of 0.01 and Gaussian
white noise with variance of 0.005 were added on video 7
and video 8, respectively, the fast-moving vehicle in video 7
and the moving person in video 8 were removed. In video 9,
the brightness was darkened by 40% and the cyclist was
removed. In Fig. 9, (a) and (b) are screenshots from original
videos. (c) is screenshots from tampered versions of (b).
(d) shows the EF for (c). (e¢) shows the detection results of
(a). (f) shows the detection results of (c) without eliminating
detection errors. (g) shows the final results of (c) after elimi-
nating detection errors. The detection results shown in Fig. 9
demonstrate that the proposed algorithm has better robustness
to noise as well as brightness change. A major reason is
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TABLE 2. Comparison of the average detection time of various algorithms for each video in different video sets.

Length of

Video . Resolution ZHANG! SONG!™! SuY CHENP?!  RAMESH®  Proposed
each video
Video set 1 140 320%240 232 4.61 18.77 30.98 10.85 2.69
Video set 2 275 320%240 7.95 17.13 58.95 114.58 47.61 4.62
Video set 3 145 640*480 10.89 28.13 96.12 160.42 81.71 6.99
Video set 4 130 640*480 9.79 25.67 89.18 15433 77.02 6.23
Video set 5 100 1280%720 83.22 161.23 782.62 >1000s 524.36 23.28
Video set 6 212 1280%720 168.44 351.57 >1000s >1000s >1000s 44.94

that the Euclidean distance threshold R in AVIBE can be
adaptively modified the values according to the complexity
of background in video while the noise is somewhat similar
to swaying grass.

C. COMPARISON OF THE EXECUTION TIME

In this section, we compared the execution time of our algo-
rithm to those proposed in [18] (denoted as ZHANG), [19]
(denoted as SONG), [20] (denoted as SU), [21] (denoted
as CHEN) and [22] (denoted as RAMESH). The compari-
son experiments were performed on the experimental dataset
of 30 videos which downloaded from SULFA and Internet
and recorded by fixed/hand-held cameras, respectively. The
database was divided into 6 video sets and each set contains
5 videos with the same resolution, the same frames, and the
same number of forged frames but different contents. The
average detection time of various algorithms for each video
in different video sets are provided in Table 2.

Table 2 clearly shows that our proposed algorithm exhibits
outstanding performance in terms of the computational effi-
ciency. As is shown in Table 2, the execution time of all
algorithms is closely related to the length and resolution of the
video. A longer video with higher resolution indicate more
execution time. Obviously from Table 2, our algorithm has
higher computational efficiency than those proposed in [18]
(denoted as ZHANG), [19] (denoted as SONG) and [21]
(denoted as CHEN), which are frame-by-frame algorithms.
Next, because of the high complexity, the efficiency of the
algorithm proposed in [20] (denoted as SU) and [22] (denoted
as RAMESH) are lower than that of our algorithm, although
the algorithm in [17] runs every five frames.

D. COMPARISON OF THE DETECTION ACCURACY
To evaluate the capabilities of the proposed algorithm,
we consider three performance indices, namely, the precision
rate (PR), recall rate (RR), and detection accuracy (DA),

which are defined as follows:

TP
R=—— RR=——
TP + FP TP + FN
TP+ TN
~ TP+ TN + FP+FN

(13)

(14)
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TABLE 3. Performance evaluation of the proposed algorithm.

Positive Negative
True 93.58% 83.41%
False 6.42% 16.59%

TABLE 4. Comparison of the detection accuracy among various
algorithms.

Detection accuracy(DA)

Algorithm
Static background Complex background

ZHANG!' 73.12% 32.18%
SONG!"! 80.87% 42.98%
sy 86.16% 67.18%
CHEN! 88.79% 74.48%
RAMESH™ 90.92% 69.18%
Proposed 93.17% 86.58%

where TP indicates that an authentic frame is detected as
authentic, TN indicates that a forged frame is detected as a
forgery, FP indicates that an authentic frame is detected as
a forgery, and FN indicates that a forged frame is detected
as authentic. Theoretically, if the algorithm used to detect
foreground removal achieves higher precision and recall, its
detection rate is considered better. (TP+7TN) corresponds
to the total number of detections, and (TP+TN—+FP+FN)
corresponds to the total number of frames in the experiments.
Therefore, DA is the percentage of correct detection. A higher
DA corresponds to a better detection rate using the proposed
algorithm. Table 3 shows the performance evaluations of the
proposed algorithm.

We compared the proposed algorithm with other meth-
ods in terms of accuracy. The comparison experiments
were performed on the experimental dataset of 60 videos
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TABLE 5. Comparison of the detection accuracy in different bit rate
videos among various algorithms.

Detection accuracy(DA)

Algorithm
3M Bit Rate 6M Bit Rate

ZHANG! 39.28% 57.15%
SONG!! 36.78% 50.35%
syt 69.89% 78.51%
CHENEY 75.32% 83.71%
RAMESH™ 80.55% 86.98%
Proposed 88.12% 90.64%

(28000 frames in total) downloaded from SULFA, SYSU-
OBJFORG and the Internet and recorded by cameras. The
experimental dataset was divided into two parts: 28 videos
(13000 frames in total) with static background, and the
remaining 32 videos (15000 frames in total) with complex
background. The results are presented in Table 4. As is shown
in Table 4, the detection accuracies of our algorithm are
93.17% and 86.58%, which are higher than those of the
other methods. According to Table 4, when detecting the
forgery of foreground removed from the video with static
background, except for ZHANG, the detection accuracies
of the algorithms are higher than 80% and only those of
RAMESH and our algorithm are above 90%. By contrast,
the detection accuracies of all algorithms have an appreciable
decline when detecting the forgery of foreground removed
from the video with complex background. Among them,
the drops of ZHANG and SONG are the most because of
the high background requirements of the video. Furthermore,
although the methods of SU, CHEN and RAMESH show cer-
tain robustness, false detections still arise in the experiments
when detecting videos with complex background.

Additionally, we compared DA of our algorithm to those
of other methods in detecting different bit rate videos. The
comparison experiments were performed on the videos at
a resolution of 1280x720 pixels with static background
downloaded from SYSU-OBJFORG and the Internet. The
videos are divided into two parts: 10 videos (3600 frames)
with 3M bit rate, and 10 videos (3600 frames) with 6M
bit rate. The results are provided in Table 5. According to
Table 5, the detection accuracies of the proposed algorithm
are 88.12% and 90.64%, respectively, which are higher than
those of the other algorithms. When detecting the forgery of
low bit rate videos, all the algorithms decrease to some extent.
Furthermore, the lower the bit rate of the videos, the lower
the accuracy of the algorithms. The results in Table 5 show
that videos with bit rate play the relative small role to the
detection performance of our algorithm. The experimental
results in Table 4 and Table 5 demonstrate that our algorithm
has better robustness than those of the other algorithms.
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V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel forgery detection algorithm
that detects video foreground removal. First, the algorithm
calculates EF for each frame to identify the forged frames in
the video. Then, an AVIBE algorithm is used to detect the
suspected regions in the forged frames as determined in the
first stage. Finally, the difference of the energy factor degree
between the suspected regions in the forged frames and the
corresponding regions in the authentic frames is calculated
to eliminate false detection and confirm the tampering traces.
The experimental results show that our proposed algorithm
has higher computational efficiency and accuracy as well as
better robustness than those of previous algorithms.

However, it is found in the experiments that our algorithm
has the following limitations:

1. The proposed algorithm is capable of detecting whether
the video is subjected to tampering, but it can only locate
part of the tampering traces, instead of the complete tampered
regions.

2. When the foreground to be removed is too small, or the
background moves too fast, the detection accuracy of the
proposed algorithm will be significantly decrease.

In the future work, we will try to fix these problems and
investigate to locate the tampered regions accurately. Besides
of this, we will also try to extend our method for detecting
other types of video forgery.
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