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ABSTRACT The vertex k-center problem is a classical NP-Hard optimization problem with application
to Facility Location and Clustering among others. This problem consists in finding a subset C € V of
an input graph G = (V, E), such that the distance from the farthest vertex in V to its nearest center
in C is minimized, where |C| < k, with k € Z™ as part of the input. Many heuristics, metaheuristics,
approximation algorithms, and exact algorithms have been developed for this problem. This paper presents
an analytical study and experimental evaluation of the most representative approximation algorithms for
the vertex k-center problem. For each of the algorithms under consideration and using a common notation,
we present proofs of their corresponding approximation guarantees as well as examples of tight instances
of such approximation bounds, including a novel tight example for a 3-approximation algorithm. Lastly,
we present the results of extensive experiments performed over de facto benchmark data sets for the problem

which includes instances of up to 71009 vertices.

INDEX TERMS Approximation algorithms, k-center problem, polynomial time heuristics.

I. INTRODUCTION
Perhaps one of the first center selection problems for which
there is historical register is the following: ““given three points
in the plane, find a fourth point such that the sum of its
distances to the three points is minimized” [1]. Given its
simplicity, it is hard to establish who first stated this problem.
However, this problem is usually associated to Pierre de
Fermat, who asked this question around 1636, and its first
registered solution is associated to Evangelista Torricelli [1].
An extension of this problem is known as the Weber’s prob-
lem, where the points have an associated cost and the goal
is to locate not 1 but k centers [1]. By adding new properties
and restrictions to a basic k-center problem, the collection of
k-center problems have become larger over the years.

One of the basic center selection problems that more
directly gave rise to many other center problems is known
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as the absolute 1-center problem. This problem was formally
introduced by Hakimi when he faced the problem of finding
the best location for a police station in a highway system [2].
The goal of this problem is to minimize the distance from the
farthest community to the police station. In a graph, an abso-
lute 1-center is a location along any edge that minimizes
the distance from the farthest vertex to such location. The
k-center problem is a more general version of the absolute
1-center problem, where the goal is to locate k > 1 centers
in the graph, such that the distance from the farthest vertex to
its nearest center is minimized. These centers may be located
along any edge (absolute k-center) or may be restricted to ver-
tices (vertex k-center). Besides, there can be a cost associated
with the selection of every vertex (weighted vertex k-center
problem) [3].

There are many other restrictions that yield to different
k-center problems. As instance, the following problems aims
at minimizing the maximum distance from vertices to its near-
est centers under different assumptions and/or restrictions:
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o The asymmetric k-center problem, where the input
is an asymmetric directed graph that satisfies the
directed triangle inequality. The best possible polyno-
mial algorithm for this problem delivers a O(log* n)
approximation [4], [5].

« The capacitated k-center problem, where each center can
attend only a fixed number of vertices [6].

« The heterogeneous capacitated k-center problem, which
is similar to the capacitated k-center problem, except that
the capacities of each center are also assigned [7].

o The aligned k-center problem, where the centers must be
selected from a previously defined line or polygon [8].

o The edge-dilation k-center problem, where the goal is
to minimize the maximum ratio of the distance between
any two nodes via their respective centers to their true
graph distance [9].

o The fault tolerant k-center problem, where each selected
center must have a set of @ < k centers close to it [10].

o The fault tolerant capacitated k-center problem, where
each center can attend only a fixed number of vertices,
and after the failure of some centers, the vertices can be
reassigned to another centers [11].

o The p-neighbor k-center problem, where given an inte-
ger p the goal is to minimize the maximum distance of
any non-center vertex to its p’h closest center [12].

e The k-center problem with minimum coverage,
where centers are required to attend a minimum of
vertices [13].

o The mixed k-center problem, where m centers must be
in the set of vertices, and the rest can be anywhere (m <
k) [14].

o The p-next center problem, where the objective is to
minimize the distance from the farthest vertex to its
closest center plus the distance between this center to
its closest alternative center [15].

This paper focuses on the “‘uncapacitated unweighted ver-
tex k-center problem” and its known approximation algo-
rithms for graphs in a metric space. We think this reduction
is necessary because the approximation algorithms for this
problem are conceptually so close that they should be stated
as clear as possible as similar expressions of the same basic
ideas. For the rest of the paper, we refer to the “uncapacitated
unweighted vertex k-center problem™ just as the “vertex
k-center problem”.

The remaining of the paper is organized as follows.
Section II presents a brief summary on the vertex k-center
problem and its related algorithmic solving techniques.
Section III presents an analysis of the known approximation
algorithms for the vertex k-center problem which includes
proofs of their approximation guarantees, and examples of
tight instances of the approximation bounds. The main goal
of this section is to present all the known approximation
algorithms for the vertex k-center problem as similar expres-
sions of the same basic ideas by using a common notation.
Section IV shows the result of applying all the described
algorithms over a set of the most well known benchmark
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data sets for the vertex k-center problem. Finally, Section V
presents the concluding remarks.

Il. THE VERTEX K-CENTER PROBLEM

Formally, the vertex k-center problem is defined as follows.
Given a complete undirected graph G = (V, E) with edge
costs satisfying the triangle inequality, and a positive integer
k; find a subset C C V of centers, with |C| < k, such that the
distance from the farthest vertex v € V to its closest center
in C is minimized [16]-[20]. More specifically, the goal is to
find a subset C of centers of cardinality at most k that min-
imizes r(C) = max,{d(v, C)}, where d(v, C) is the distance
between a vertex v and the set C, which is defined as the cost
of the cheapest edge from v to any of the vertices in C. The
solution size r(C) is usually known as the covering radius
because on a two dimensional euclidean space the centers
define disks that cover its nearest vertices and the radius
of the larger disk is the solution size. The vertex k-center
problem is perhaps the most fundamental among the k-center
problems. In addition, it has potential application to different
areas, such as Facility Location [20]-[22], Clustering [23],
emergency services, computer network services, distribution,
and more [1].

Due to its importance, the vertex k-center problem has
been addressed through different algorithmic approaches,
such as heuristics, metaheuristics, exact algorithms, and of
course approximation algorithms. Among these approaches,
the approximation algorithms stand as the most efficient and
reliable, because the vertex k-center problem can not be
solved in polynomial time within an approximation factor of
0 < 2,unless P = NP [3], [17]-[19], [24], [25]. Therefore,
under P # NP, the best possible polynomial time algo-
rithms for this problem must deliver 2-approximated solu-
tions. To date, there are at least three known approximation
algorithms that achieve this approximation factor: the Sh
algorithm [19], [26], the Gon algorithm [3], [17], and the HS
algorithm [18], [19]. Section III describes these algorithms
using a common notation, which helps to understand how
these algorithms relate to each other.

Even though the Sh, Gon and HS algorithms achieve
the best possible approximation factor (if P # NP),
they tend to perform poorly on most benchkmark data
sets [27]-[29]. For this reason, many heuristic, metaheuristic
and exact algorithms have been designed through the years.
Even though these algorithms do not guarantee to converge
quickly or to find optimal solutions, they find the best-known
solutions (or even optimal solutions) on most benchmark
data sets [21], [22], [28]-[33]. So, in one hand there are
2-approximation algorithms, which are theoretically the best
possible, but practically useless on many specific instances.
On the other hand, there are heuristics that may run in poly-
nomial time, but do not give any guarantee about the quality
of the generated solutions, and yet may find near optimal
solutions on benchmark data sets. There are metaheuristics
that do not run in polynomial time, give no guarantee on the
quality of the generated solution, and yet may deliver near
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optimal solutions on benchmark datasets. And finally, there
are exact algorithms, which deliver the optimal solution, but
give no guarantee about the termination time.

Among the polynomial heuristic algorithms are the Gr
greedy pure algorithm [27], [28], the Scr algorithm [28], and
the CDSh algorithm [34]; the last two being considered as
the polynomial time algorithms for the vertex k-center prob-
lem with best empirical performance [28], [29], [34]. Among
the exact algorithms are those proposed by Daskin [35],
Ilhan et al. [36], Elloumi et al. [37], Al-Khedhairi and
Salhi [38], Chen and Chen [39], Calik and Tansel [40], and
Contardo et al. [23]. All these exact algorithms are based
on Integer Programming or Mixed Integer Programming for-
mulations. Through empirical results, these exact algorithms
have shown to be relatively efficient on most instances from
benchmark data sets. Among the metaheuristic algorithms
are proposals based on Tabu Search [30], Variable Neigh-
borhood Search [30], [31], Scatter Search [21], GRASP [21],
Memetic Genetic Algorithms [32], Harmony Search [22],
and Bee Colony Optimization [33]. Although these methods
give no guarantee either the quality of the solutions they
find nor the execution time, all of them perform better than
the 2-approximated Sh, Gon, and HS algorithms on most
benchmark data sets reported in the literature. Because of this,
we also describe a fourth approximation algorithm, the CDS
algorithm [34], which despite having a sub-optimal approx-
imation factor of 3, significantly outperforms the known 2-
approximation algorithms over the de facto benchmark data
sets from the literature. To some extent, the CDS algorithm
achieve a balance between the advantages of the approx-
imation algorithms and the other algorithmic approaches,
because it runs in polynomial time, it guarantees that the
quality of the solution is not arbitrary, and the empirical
results show that the generated solutions are not only the-
oretically near optimal, but also competitive in practical
terms.

IIl. ANALYTICAL STUDY OF APPROXIMATION
ALGORITHMS FOR THE VERTEX K-CENTER PROBLEM

In the context of combinatorial optimization problems,
approximation algorithms exploit relevant structural prop-
erties of each particular problem in a natural and strict
way [41], sacrificing optimality in order to preserve a polyno-
mial execution time. The approximation algorithms described
in this paper exploit a common relevant structural property
of the vertex k-center problem, which is described through
the specification of the 2-approximated Sh algorithm (Sub-
section III-A). In a nutshell, to get 2-approximated solu-
tions it suffices to select centers sufficiently far apart. Sub-
sections III-B and III-C describe the 2-approximated Gon
and HS algorithms respectively. Subsection III-D describes
the 3-approximated CDS algorithm. We begin this section
by presenting Theorem 1, which shows that the best pos-
sible polynomial algorithm for the vertex k-center problem
delivers 2-approximated solutions [3], [17]-[19], [41]. The
proof consists in showing that the problem of computing
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FIGURE 3. Polynomial transformation from minimum dominating set to
vertex k-center problem. The original graph must be completed. The old
edges have cost 1, and new edges cost 2.

2-approximated solutions in polynomial time is as hard as
solving a well known NP-Hard problem, also in polynomial
time. For the proof of Theorem 1 we will use the NP-Hard
minimum dominating set problem [42]—-[44], where a dom-
inating set and a minimum dominating set are defined as
follows.

Definition 1: Given an input graph G = (V, E), a domi-
nating set is a subset D C V such that for every vertex v € V,
an edge (v, u) € E with either u or v in D exists. Figure 1
shows a dominating set.

Definition 2: A minimum dominating set is a set of min-
imum cardinality among all the dominating sets. Figure 2
shows a minimum dominating set.

Theorem 1: Under P # NP, it is not possible to solve
the vertex k-center problem with an approximation factor of
p <2

Proof: The proof is by a polynomial time reduction from
the NP-Hard minimum dominating set problem to the vertex
k-center problem. Given an input graph G = (V, E) for the
minimum dominating set problem, create a new input graph
G’ = (V, E’) for the vertex k-center problem. The new graph
G' is a complete graph, where (1, v) € E’ has a weight of 1
if (u,v) € E, and a weight of 2 if (u,v) ¢ E. Notice that
the edge costs in G’ satisfy the triangle inequality and that
this transformation takes polynomial time (Fig. 3). Assuming
that a (2 — €)-approximation algorithm for the vertex k-center
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FIGURE 4. The optimal solution C* for the vertex k-center problem with
k = 2 has size r(C*) = 1. Implying that the solution to the vertex k-center
problem is a dominating set for the original graph. Besides, this solution
is a dominating set of minimum size.
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FIGURE 5. The optimal solution C* for the vertex k-center problem with
k = 1 has size r(C*) = 2. Implying that the minimum dominating set for
the original graph must have cardinality greater than k = 1.

problem exists, it will always returns optimal solutions for
the graph G'. This is because the only possible values for the
optimal covering radius are either 1 or 2.

When this algorithm returns a solution of size 1 for a given
value of k, this solution defines a dominating set of size k in
the original graph G because all the vertices are at distance
1 from at least one of the centers (Fig. 4). Similarly, any
solution of size 2 does not define a dominating set in the
original graph because at least one vertex is not connected
to a center by an edge in the original graph (Fig. 5).

Now, the size of the minimum dominating set is unknown.
This issue can be removed by solving the vertex k-center
problem over G’ with every possible size of the minimum
dominating set, i.e., k = 1,2,...,n, where n = |V|.
Among all the dominating sets that are generated, the one
with minimum size is the minimum dominating set (Fig. 5).
Therefore, if a (2 — €)-approximation algorithm for the ver-
tex k-center problem exists, then the NP-Hard minimum
dominating set problem can be solved in polynomial time,
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implying that P = NP. The contrapositive of this assertion is
Theorem 1. U

Theorem 1 shows two things: there is a polynomial time
reduction from the minimum dominating set problem to the
vertex k-center problem, and solving the vertex k-center
problem with an approximation factor p < 2 is NP-Hard.
Besides these two points, Theorem 1 also gives an idea on
how to solve the vertex k-center problem with a reduction to
the minimum dominating set problem when the size of the
optimal solution for the vertex k-center problem is known
ahead of time (Lemma 2).

Definition 3: Given a graph G = (V, E), a pruned graph
(or bottleneck graph) G, = (V, E,) is a graph such that E,
consists of all the edges in E with cost less than or equal to r.

Lemma 2: Given an instance G = (V, E) for the vertex
k-center problem, and the size r* of its optimal solution C*.
The minimum dominating set for the pruned graph G, =
(V, E;+) have at most k vertices.

Proof: The proof is by contradiction. If the minimum
dominating set for the pruned graph G, = (V, E,«) have
more than k vertices, then for any set Cy of k vertices there
will always be a vertex e such that for all edges (e, u) € Ey»
neither e nor u are in Ci. If no edge (e,u) € E : e,u &
Cy is present in E,+ then its cost in E must be greater than
r*, implying that any set of k centers in the original graph G
define a solution with size greater than r*. Therefore, the size
r* of the optimal solution was not optimal. The contrapositive
of this assertion is Lemma 2. |

The relationship between the vertex k-center problem and
the minimum dominating set problem has been exploited
extensively in the past. Most exact algorithms for the ver-
tex k-center problem take advantage of this relationship,
which was first noticed by Minieka [45]. It is important to
remark that the authors of most of these exact algorithms
refer to the minimum dominating set problem as a set cover
problem [20], [45]. Since both problems (minimum set cover
and minimum dominating set) are mutually reducible in poly-
nomial time, there is no harm in calling them by the same
name. Yet, from a purist point of view and in order to avoid
confusion we refer to the minimum dominating set just by this
name. The main issue with the approach of reducing the ver-
tex k-center problem to the minimum dominating set is that
even if the size of the optimal solution is known ahead of time,
the resulting problem is still NP-Hard. Thus, under P # NP,
and on general instances, any exact algorithm for the vertex
k-center have exponential running time. Eq. 1 and Eq. 2 show
the Integer Programming formulation for the vertex k-center
problem as a minimum dominating set problem when the size
r* of the optimal solution C* for the vertex k-center problem
is known ahead of time [1], [20], [23].

n
minimize in
i=1
n
subject to Zaijx,» >1, Vje{l,2,...n} (1)
i=1
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L, ifdQ;,v) <r*

where a;; = .
0, otherwise
and x; € {0, 1}
r* =r(C% 2)

In the previous formulation, for every vertex v; there is a
binary variable x; (i € {1,2,...,|V|}). If the vertex v; is in
the minimum dominating set, then x; = 1; otherwise, x; = 0.
Thus, the objective function (Eq. 1) aims at minimizing the
sum of all x;. For every pair of vertices there is a variable a;;,
which equals 1 if the edge that connects them has cost less
than or equal to 7* (d(v;, vj) < r*); otherwise, it equals O
(Eq. 2). The whole matrix of a;; values represents the pruned
input graph, where all the vertices with weight greater than
r* are removed. There are n = |V| constraints (Eq. 1), one
for each vertex. In order to guarantee that each vertex is dom-
inated by at least one element of the minimum dominating
set, these constraints must be satisfied.

So, the vertex k-center problem can be reduced to a single
minimum dominating set problem, but only when the size
of the solution is known ahead of time. However, this issue
can be addressed by the fact that the solution size must be
equal to the weight of some edge in the input graph. Since
there are O(n”) edges, the vertex k-center problem is reduced
to solving O(n?) minimum dominating set problems, with
r* from Eq. 2 replaced by » = w(e), where ¢ € E. From
the set of obtained solutions, the optimal one for the vertex
k-center problem is the one with no more than k vertices that
has the minimum r. The number of minimum dominating set
problems to be solved can be reduced from 0(n2) to O(log n)
by performing a binary search over the ordered set of O(n?)
possible values of r. Algorithm 1 shows the basic reduction
from vertex k-center problem to the minimum dominating set
with binary search. This algorithm follows from Minieka’s
observations [45] and Daskin’s algorithm [35]. Most exact
algorithms for the vertex k-center problem are Integer or
Mixed Integer Programming formulations that are inspired
by this basic reduction. As instance, Daskin’s algorithm fol-
lows the same sketch, but instead of performing a binary
search it performs a bisection search, which consists in setting
high = w(ey) and low = w(e;) [35]. The algorithm of
Ilhan et al. [36] adds a feasibility phase, so that their Integer
Programming formulation is solved only if the minimum
dominating set of the pruned graph does not have more than
k centers. The algorithm of Al-Khedhairi and Salhi [38], and
Chen and Chen [39] works primarily on setting up tighter
upper and lower bounds, so that the vertex k-center problem
is reduced to less subproblems [38], [39].

Lemma 3: Algorithm 1 (BEA) returns the optimal solution
to the vertex k-center problem.

Proof: For a given value of r € {w(ey), w(ez), ...,
w(en)}, the minimum dominating set C of the pruned graph
G, has cardinality |C| < k or |C| > k. If |C| < k, then
the optimal solution C* of the vertex k-center problem on the
original graph G has size r* < r; thus, high is set to mid.
If |C| > k, then the minimum dominating set of every pruned
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Algorithm 1 A Basic Exact Algorithm for the Vertex
K-Center Problem (BEA)

Input: An undirected graph G = (V, E), an integer k,
and an ordered list of the m edge weights of G:
w(er), w(ez), ..., w(em) where w(e;) < w(eit1)

Output: A set of vertices C C V, |C| <k

1 high=m,

2 low=1;

3 while high — low > 1 do

4 mid = [(high + low)/2] ;
5 C = minimumDominatingSet (G, w(enid)) ;
6 if |C| < k then

7 ‘ high = mid ;

8 else

9 ‘ low = mid ,

10 end

11 end

12 return C ;

graph G+, with ¥’ < r, has more than k elements; thus, low
is set to mid. Therefore, at the last iteration, Algorithm 1 is
executed with a value w(e,;4) that equals r*. So, by Lemma 2
Algorithm 1 (BEA) returns an optimal solution. 0

A. Sh ALGORITHM

Independently introduced by Shmoys in 1995, and by Plesnik
in 1987, the Sh algorithm is an O(kn) 2-approximated algo-
rithm that reveals a relevant structural property of the vertex
k-center problem [19], [26]. This property is that the iterative
selection of centers from a set of vertices at an appropri-
ate distance, suffices to guarantee that every center from
the optimal solution is close to one of the selected centers;
therefore, all the vertices assigned to each center in the con-
structed solution are also close to one of the centers from the
optimal solution. This structural property is exploited by all
the approximation algorithms reviewed in this paper. How-
ever, unlike other approximation algorithms, the Sh algorithm
requires a guess r on the size of the optimal solution, which
represents a disadvantage. Fortunately, as will be explained
in Section III-B and III-C, the Gon and HS algorithms are
clever implementations of the Sh algorithm that eliminate this
disadvantage.

Algorithm 2 shows the pseudocode of the Sh’ algorithm,
which is equivalent to the original Sh algorithm. For conve-
nience in the argument, we will use the Sh’ algorithm instead
of the original Sh algorithm (the difference between Sh’ and
Sh is subtle and is explained at the last paragraph of this
section). The Sh’ algorithm receives as input a guess r on
the size (covering radius) of the optimal solution which is
denoted by C*. At the first step, the algorithm selects any
vertex v € V as initial center ¢i. At the next k — 1 iterations,
it selects as center ¢; any vertex at distance larger than 2r
from the already selected centers. Using Lemma 4, Theo-
rem 6 shows that the Sh’ algorithm returns a 2-approximated
solution when r = r*, where r* is the size r(C*) of the
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Algorithm 2 Sh’ Algorithm
Input: An undirected graph G = (V, E), an integer k,
a covering radius r
Output: A set of vertices C C V, |C| =k
1 ¢y =any vertexon V ;
2 C={ci};
3 fori=2tokdo
4 c; = Avertex v € V such thatd(v, C) > 2r;
5 if ¢; exists then
6
7
8

| ¢=cCuUlal;
else
‘ C=CUanyvertexveV;
9 end
10 end
11 return C ;

_
-
_
-

(a) The first center is selected at random (v2). At the next
iterations, any sufficiently far vertex (at distance greater than
2r* from the current partial solution) is selected.

solution has size 2r*. This is a tight example for the Sh’
algorithm.

FIGURE 6. Sh’ algorithm execution with k = 2. (a) The first center is
selected at random (v, ). At the next iterations, any sufficiently far vertex
(at distance greater than 2r* from the current partial solution) is selected.
(b) One of the sufficiently far vertices is vg. The resulting solution has size
2r*. This is a tight example for the Sh’ algorithm.

optimal solution C*. Fig. 6 shows a simple example of how
the Sh’ algorithm works.

Lemma 4: If r > r*, the Sh’ algorithm generates a solu-
tion C of size r(C) < 2r.

Proof: First, if during any of the k iterations of the Sh’
algorithm the selected center c; is at a distance less than or
equal to 2r, then all vertices are at a distance less than or
equal to 2r from the current solution and hence, the algorithm
returns a solution with covering radius r(C) < 2r. Now,
for the rest of the proof we will assume that during all the
iterations of the Sh’ algorithm the selected center c; is at a
distance larger than 2r from the current partial solution. The
overall description of the proof is as follows. We have to
show that the center c;, selected by the Sh’ algorithm during
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the i-th iteration, covers within a radius of 2r all the vertices
covered by its nearest vertex ¢ in the optimal solution C*.
Then, we show that the centers c;." considered during the k
iterations of the algorithm are different. Consequently, all the
k centers of the optimal solution have a center in the generated
solution that is responsible of covering their vertices within
a 2r radius. In this way, the Sh’ algorithm returns a solution
with covering radius r(C) < 2r.

By definition, the distance from every selected vertex c; to
its nearest center ¢; € C* is less than or equal to r*, which is
less than or equal to r.

d(ci,cf) <r*<r 3)

Therefore, every selected center ¢; covers within a 2r
radius the vertices covered by ¢} € C*.

YWweV:idv,ci)<r, d(c,v)<d(cc))+d(c,v)<2r

“

Now, we proceed by contradiction to show that all the
centers ¢ covered during the k iterations of the algorithm
are different. Suppose that the center ¢} was already covered
at an iteration j < i, i.e., that ¢} = c;‘. Therefore, the distance
from ¢; to ¢; is at most 2r.

d(ci, ¢j) < d(ci, ) +d(c;, ¢)) <2r ®)

However, by assumption we know that d(c;, ¢;) > 2r at
every iteration, contradicting Eq. 5. |

Corollary 5: If the Sh’ algorithm returns a solution C of
size r(C) > 2r, thenr < r*.

Proof: This is the contrapositive of Lemma 4. (|

Theorem 6: If r = r*, the Sh’ algorithm returns a

2-approximated solution.
Proof: By Lemmad4.If r > r*, the Sh’ algorithm returns

a solution C of size r(C) < 2r. Thus, if r = r*, C has size
of r(C) < 2r*. (|

As said at the beginning of this section, the algo-
rithm Sh’ (Algorithm 2) is equivalent to the original Sh
algorithm [19], [26]. On one hand, the original Sh algorithm
iterates until there are no more vertices at distance greater
than 2r from the solution. So, for a given value of r it may
returns a set of centers C with cardinality different from
k. On the other hand, Algorithm 2 iterates exactly k times,
and always returns a solution of cardinality k. Despite this
difference, Lemma 4, Corollary 5, and Theorem 6 holds for
the original Sh algorithm. By Lemma 4, if r > r*, k centers
are enough to cover all the vertices within a radius of 2r.
Thus, the original Sh algorithm does not need to iterate more
than k times in order to find a solution of size less than or
equal to 2r. Theorem 6 immediately follows. Corollary 5 also
holds, being a solution C “of size r(C) > 2r”’ (Sh’ algorithm)
equivalent to a solution C “of cardinality greater than k”
(original Sh algorithm), in the sense that both cases imply
that r < r*.
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Algorithm 3 Gon Algorithm
Input: An undirected graph G = (V, E), and an
integer k
Output: A set of vertices C C V, |C| =k
1 ¢y =any vertexon V ;
2 C={ci};
3 fori=2tokdo
4 ¢; = A vertex v € V such that distance(v, C) is
maximal ;
5 C =CU{ci};
6 end
7 return C ;

1) COMPLEXITY

The Sh’ algorithm consists of k iterations. At every iteration
the distance from every vertex v € V to the current solution
C is evaluated. This evaluation can be done in O(n) steps,
by comparing d(v, C \ {c;}) with d(v, ¢;), and keeping the
smallest value for every v € V. Thus, the overall complexity
of the Sh’ algorithm is O(kn).

2) TIGHT EXAMPLE

Figure 6 shows a tight example for the Sh’ algorithm. For
k = 2, the size of the optimal solution C* = {v,, vs} for this
instance is of 1 unit (Figure 4). Sh’ selects the first vertex at
random (c; = ;) (Figure 6a), and then selects a vertex at
distance larger than 2r = 2r* = 2. If there is a tie, any vertex
can be selected (co = vg). The size of this solution is of 2
units (Figure 6b).

B. GON ALGORITHM
Independently introduced by Gonzalez, and by Dyer
and Frieze in 1985, the Gon algorithm is an O(kn)
2-approximation algorithm that cleverly implements the Sh
algorithm by removing the need of guessing the size of the
optimal solution [3], [17].

By Lemma 4, if r > r*, the Sh algorithm returns a solution
C of size r(C) < 2r. This is achieved by the Sh algorithm by
adding a center at distance greater than 2r from the current
solution at every iteration. However, instead of using a guess
on r to find a sufficiently far vertex, the Gon algorithm just
adds the farthest vertex to the solution at every iteration. The
key idea is that if a non-empty set of vertices at distance
larger than 2r from a partial solution exists, it must includes
the farthest vertex. Therefore, Theorem 7 holds. Algorithm 3
shows the pseudocode of the Gon algorithm.

Theorem 7: The Gon algorithm returns 2-approximated
solutions.

1) COMPLEXITY

Just like the Sh’ algorithm, the Gon algorithm consists of k
iterations. At every iteration, the distance from every vertex
v € V to the current solution C is evaluated. This evaluation
can be done in O(n) steps, by comparing d(v, C \ {c;}) with
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d(v, c¢;), and keeping the smallest value for every v € V. Thus,
the overall complexity of the Gon algorithm is O(kn).

2) TIGHT EXAMPLE

Figure 6 shows a tight example for the Sh’ algorithm. This
same instance also works as tight example for the Gon algo-
rithm. For k = 2, the size of the optimal solution C* =
{v2, vs} for this instance is of 1 unit (Figure 4). Gon selects the
first vertex at random (c; = v;) (Figure 6a), and then selects
the farthest vertex (co = vg). The size of this solution is of 2
units (Figure 6b).

C. HS ALGORITHM

Introduced independently by Hochbaum and Shmoys
in 1985, and by Plesnik in 1987, the HS algorithm is an
O(n* log n) 2-approximated algorithm that, just like the Gon
algorithm, cleverly implements the Sh algorithm [18]. How-
ever, while the Gon algorithm removes the need of guessing
the value of r, the HS algorithm still needs such guess.
Actually, the inner cycle of the HS algorithm is equivalent to
the Sh algorithm, and receives different values of r through a
binary search over all the possible values of r until a value
r < r*, sufficiently large to create a solution of size 2r,
is found. Notice that the size of any solution must be equal
to the weight of some edge of the input graph. So, the HS
algorithm uses values from the set {w(e}), w(ez), ..., w(en)},
where m = |E|.

In their original paper, Hochbaum and Shmoys use the
relationship between the vertex k-center problem and the
dominating set problem on square graphs for its formal
characterization [18]. However, the formal characterization
can also be established in terms of the Sh algorithm, getting
an analysis more similar to the one presented by Plesnik [19].
Algorithm 4 shows the pseudocode of the HS’ algorithm and
Theorem 8 establishes its correctness. For convenience in
the argument, we will use the HS’ instead of the original
HS algorithm. Actually, the HS’ algorithm (Algorithm 4)
is equivalent to the original HS algorithm. This is because
while the inner cycle of the HS algorithm is the Sh algorithm,
the inner cycle of the HS’ algorithm is the Sh’ algorithm. And,
as stated in Subsection III-A, the Sh’ and Sh algorithms are
equivalent.

Theorem 8: The HS’ algorithm returns 2-approximated
solutions.

Proof: Lets recall how the Sh’ algorithm works. At each
i-th iteration the Sh’ algorithm selects as center ¢; a vertex
whose distance from the current solution is larger than 2r.
The inner cycle of the HS’ algorithm works in the same
way, selecting as center any vertex whose distance from the
current solution is larger than 2r, where r equals the cost of
some edge from the input graph. If the inner cycle of HS’ is
executed with every possible value of r (from w(ey) to w(ey,)),
at some point r equals r*, and therefore the HS’ algorithm
equals the Sh’> algorithm. However, this leads to an O(kn?)
algorithm. Fortunately, this complexity can be improved by
performing a binary search over the set of possible values of r.

VOLUME 7, 2019



J. Garcia-Diaz et al.: Approximation Algorithms for the Vertex K-Center Problem

IEEE Access

Algorithm 4 HS’ Algorithm
Input: An undirected graph G = (V, E), an integer k,
and a non-decreasing ordered list of edges’
costs w(er), w(ea), ..., w(en)
Output: A set of vertices C C V, |C| =k

1 low=1,;

2 high=m;

3C=0;

4 repeat

5 mid = [(high + low)/2] ;
6 r = w(emid) ;

7 c1 = any vertexin V ;

8 | C'={a};

9 fori =2to k do

10 ci=AvertexveV:dv,C) > 2r;
1 if ¢; exists then
||| 0=cUta);
13 else

14 ‘ C'=C’'Uany vertexve V ;
15 end

16 end

17 if »(C’) < 2r then

18 high = mid ;

19 c=C,

20 else

21 low = mid ;

22 end

23 until high = low + 1;

24 return C ;

By performing a binary search over the O(n”) possible
sizes of the optimal solution (from w(ej) to w(ey,)), the com-
plexity of the HS’ algorithm is reduced from O(kn’) to
O(knlog n), where the complexity of the inner cycle is O(kn),
and the complexity of the outer cycle is O(logn). At each
iteration of the outer cycle, the inner cycle is executed with a
specific value r = w(eiq), and a solution C’ is generated.
By Corollary 5, if C’ has size r(C’) > 2r, then r < r*;
if this is the case, low is set to mid; otherwise, high is set
to mid. So, every time high is set to mid implies that it is
possible to generate a solution C’ of size at most 2r, where
r = w(epign). Similarly, every time low is set to mid implies
that r* > w(ej,,). In other words, at every time, r* > w(ejoy),
and the inner cycle of HS’ is capable of producing a solution
of size at most 2w(ep;gp). This way, at the end of the algorithm
(when high = low+ 1, and mid is set to high), r = w(emiq) <
r* and the HS” algorithm is capable of generating a solution C
of size r(C) < 2r. Thus, the HS’ algorithm returns a solution
C with size r(C) < 2r < 2r*. O

1) COMPLEXITY

The HS’ algorithm consists of the execution of the Sh’
algorithm with different values of r. Since the values of r
are taken from a set of O(n?) values using binary search,
the overall complexity of HS’, as shown in Algorithm 4,
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is O(kn log n). However, since this algorithm requires as input
an O(n?) ordered set of edge costs, and since this ordering
can be performed in O(n® log n) steps, the overall complexity
of the HS’ algorithm is O(n* log n), as originally stated by
Hochbaum and Shmoys [18], [19].

2) TIGHT EXAMPLE

The example of Figure 6 shows a tight example for the Sh’
and Gon algorithms. This same instance also works as tight
example for the HS’ algorithm. For k = 2, the size of the
optimal solution C* = {v,, vs5} for this instance is of 1 unit
(Figure 4). Given the cost r € {1, 2, 3, 4, 5} of any edge from
the input complete graph, the HS’ algorithm selects the first
vertex at random (c; = vp). If some vertex at distance larger
than 2r exists, it is selected as a center (c» = vg) (Figure 6a);
otherwise, a center is selected at random (¢; = vg). The size
of this solution is of 2 units (Figure 6b).

D. CDS ALGORITHM

Presented by Garcia-Diaz et-al in 2017, the CDS algorithm is
an O(n*) 3-approximated algorithm for the vertex k-center
problem [34]. Despite having a sub-optimal performance,
it significantly outperforms the Gon and HS’ algorithms over
the de facto benchmark data sets from the literature. Some
heuristic variants that can be derived from CDS are the
CDSh and CDSh+ algorithms, which have a more practical
complexity of O(n? log n) and O(n> log n), respectively. Algo-
rithm 5 shows the Critical Dominating Set algorithm, which
is the fundamental piece of the CDS, CDSh and CDSh-+
algorithms. Notice that the CDS algorithm and the Critical
Dominating Set algorithm are not the same.

The Critical Dominating Set procedure takes advantage
of the fact that a minimum dominating set on the pruned
graph G,+ of the input graph G is actually a solution for
the vertex k-center problem (Lemma 2). However, the min-
imum dominating set problem is also an NP-Hard problem.
So, in order to preserve a polynomial execution time, this
relationship is exploited heuristically, giving no guarantee
of finding the minimum dominating set. Just like the Gon
and HS’ algorithms, the Critical Dominating Set algorithm
exploits the structural property revealed by the Sh’ algo-
rithm, but in a relaxed way. While the Gon and HS’ algo-
rithms select as center a vertex that guarantees the construc-
tion of a 2-approximated solution, the Critical Dominating
Set algorithm also tries to maximize the number of ver-
tices dominated by the newly selected center. This decision
hurts the approximation factor, but significantly improves the
algorithm’s performance compared to that of the Gon and
HS’ algorithms when tested on the de facto benchmark data
sets.

The Critical Dominating Set procedure consists of the fol-
lowing steps. First, the PrunedGraph subroutine constructs
the graph G, = (V, E,), where E, C E is the set of edges
with cost less than or equal to r (Definition 3). Secondly,
the GetlnitialScore subroutine evaluates the initial Score of
each vertex in G, which measures the fitness of every vertex
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Algorithm S Critical Dominating Set Procedure
(V, E), an integer k,

Input: An undirected graph G =
and a covering radius r
Output: A set of vertices C C V, |C| =k
1 // N(v) is the set of neighbors of v in G, ;

2C=0;

3 G, = PrunedGraph(G, r) ;

4 D=0,

5 foreachv € V do

6 ‘ Score|v] = GetlnitialScore(v, G,) ;

7 end

8 fori=1tok do

9 f = A vertex v € V such that distance(v, C) is
maximal ;

10 c; = A vertex v € N(f) Uf of maximum Score ;

1 S=WN()Uec)\D;

12 foreach v € S do

13 foreach u € N(v) do

14 ‘ Score[u] = Score[u] — 1

15 end

16 end

17 D=DUN(c)Uc;i;

18 C =CU{ci};

19 end
20 return C ;

to be selected as center. When evaluated for the first time, this
Score is just the degree of each vertex; in other words, it is
the number of vertices that are in the neighborhood of each
vertex. During every one of the next k iterations, the algo-
rithm selects the farthest vertex f; from the current solution
C. This selection is made at random in the first iteration,
because at this point C is the empty set. Then, a vertex c;
of maximum Score from N(f;) U f; is selected as part of the
solution. Finally, the Score of each vertex is updated. At any
time during the execution of the algorithm, the Score assigned
to each vertex v € V is equal to the number of vertices in
N (v) such that none of them is connected to some previously
selected center. More specifically, at any iteration i, Vv € V,
Score(v) = {u : u € Nv) Au ¢ N(C\ ¢j)}|. Lemma 9
establishes the correctness of the Critical Dominating Set
procedure.

Lemma 9: If r < r*, the Critical Dominating Set proce-
dure returns a 3-approximated solution.

Proof: First, if during any of the k iterations of the
Critical Dominating Set algorithm, the farthest vertex f; is
at a distance less than or equal to 3r*, then all vertices
are at a distance less than or equal to 37* from the current
solution and hence, the algorithm returns a solution with
covering radius r(C) < 3r*. Now, for the rest of the proof
we will assume that during all the iterations of the Crit-
ical Dominating Set procedure, the farthest vertex f; is at
a distance larger than 3r* from the current solution. The
overall description of the proof is as follows. We have to
show that the center c; selected by the Critical Dominating
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Set procedure during the i-th iteration covers within a radius
of 3r*, all the vertices covered by its nearest vertex cf in the
optimal solution C*, where c} is the closest center to f; (c
C*). Then, we show that the centers cf considered durlng
the k iterations of the algorithm are different. Consequently,
all the k centers of the optimal solution have a vertex in
the generated solution that is responsible of covering their
vertices within a 3r* radius. Therefore, the Critical Domi-
nating Set procedure returns a solution with covering radius
r(C) < 3r*.

First, we show that the center ¢; selected at iteration i, is at
a distance less than or equal to 2r* from the center cf e C*
which is the closest to ﬁ The distance d(f;, *) is less than
or equal to r* because ¢} is the closest center in the optimal
solution C* to f;, and the dlstance d(f;, c;) is less than or equal
to r* because ¢; € N(f;) Uf;. Therefore, by using the triangle
inequality we get

d(ci.c}) < d(fi, c) +d(fi, c}) < 2r* ©)

Using the triangle inequality again we see that any vertex
v at a distance less than or equal to r* from the center cf is at
a distance less than or equal to 3* from the center ¢; selected
by the algorithm.

YweV :d(, c}j) <r* d(c, v)fd(c}j, ci)+d(v, c};)§3r*

(N

Now, we proceed by contradiction to show that all the
centers c; covered during the k iterations of the algorithm
are dlfferent Suppose that the center Cﬁ was already covered
at an iteration j < i, i.e., that cj = c%. From Eq. 6 we
know that d(c;, c *) < 2r* and from the assumptlon that c
is the closest optlmal center to f; we have that d(f;, < ) <r*
Using the triangle inequality and the previous equations we
get

d(cj. fi) < d(cj, cp) +d(cp. fi) < 3r* ®)

However, by assumption we know that d(cj, f;) > 3r* at
every iteration, contradicting Eq. 8. ]

Algorithm 6 shows the pseudocode of the CDS algorithm,
which consists in executing the Critical Dominating Set algo-
rithm with every possible value of r, which are taken from the
set of edge costs. This way, at some point it will be executed
with the size of the optimal solution, and by Lemma 9 the
following theorem holds.

Theorem 10: The CDS algorithm returns 3-approximated
solutions.

1) COMPLEXITY

The CDS algorithm consists in executing the Critical Dom-
inating Set procedure with different values of r, which are
taken from a set of O(n?) values. The Critical Dominating
Set procedure consists of 3 stages. First, a pruned graph G,
is constructed by removing the edges with cost larger than
r from the input graph; this can be done in O(n?) steps.
Secondly, the degree of every vertex is evaluated; this can
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Algorithm 6 CDS Algorithm

Input: An undirected graph G = (V, E) and an
integer k
Output: A set of vertices C C V, |C| =k
C=0;
r(C)=o00;
m=|E|;
fori=1tomdo
C’ = CriticalDominatingSet (G, k, w(e;)) ;
if 7(C) < r(C) then
c=0C;
r(C)=r(C;
end
end
return C;

NIRRT R I S

—_
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be done in O(n?) steps. Thirdly, the following steps are exe-
cuted inside a cycle of k iterations. A vertex f; of maximal
distance is selected in O(n) steps. A vertex ¢; of maximum
Score is selected from N(f;) U f; in O(n) steps. The Score of
the neighbors of the vertices dominated for the first time is
reduced by 1 unit for each neighbor of c¢; that is connected
to them. This can be done in n; x n steps, where n; is the
number of neighbors of ¢; (including ¢;) minus the number of
vertices in D. Since D contains the neighbors of the previously
selected centers ¢j, j < i, by the last iteration (i = k)
ny +ny + - - - + nx = n. Therefore, the overall complexity of
the whole k iterations is O(n?). Thus, the overall complexity
of the CDS algorithm is O(n*).

2) TIGHT EXAMPLE

While the Sh’, Gon, and HS’ algorithms have a simple tight
example (Figure 6), the tight example for the CDS algorithm
was harder to find. Figure 7 shows the adjacency matrix of
a tight example G = (V,E) with k = 4 for the CDS
algorithm that certificates that its 3 approximation factor is
tight. The cost of the edges of G satisfies the triangle inequal-
ity. This can be confirmed by applying the Floyd-Warshall
algorithm [46], [47] over G, which returns the exact same
graph, implying that the shortest path between every pair
of vertices u and v is given by the edge (u,v) € E. The
optimal solution for this instance is C* = {v, vs, vg, vi1},
and the distance from the vertices to their nearest center is 1
(shadowed regions). Thus, the size of the optimal solution for
this instance is r(C*) = 1.

Since the Critical Dominating Set algorithm guarantees the
generation of 3-approximated solutions only when r < r*,
Table 1 shows the state of the algorithm at each iteration with
r = r* = 1, which is the smallest edge cost in the input
graph. Notice that if self-loops were considered, the CDS
algorithm would be executed at some point with a value
r = 0, and it would behave exactly as the Gon algorithm,
implying that the CDS algorithm is actually a 2-approximated
algorithm. However, according to our experiments, the real
mechanism that allows the CDS algorithm to outperform the
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H”l‘UZ"%‘1)4‘”5‘”6‘1}7‘1)8"”9‘“10‘”11"ULZ‘
VU1 0 1 2|3 415 6 6 | 6 6 6 6
V2 1 0 1 2|3 4 15 5 5 5 5
v3 2 1 0 1 2 314|414 4 4 4
Vg 3 2 1 0 1 213 3 3 3 3 3
V5 4 |3 2 1 0 1 2 3 4 2 3 4
Ve 5 4 3 2 1 0 1 2 3 1 2 3
v7 6 |5 413 2 1 0 1 2 2 3 4
Vg 6 | 5 413 3 2 1 0 1 3 4 5
Vg 6 | 5 4 |3 4 3 2 1 0 4 5 6
V10 6 |5 4 3 2 1 2 3 4 0 1 2
V11 6 | 5 4 3 3 2|3 415 1 0 1
V12 6 | 5 4 |3 4 3145 6 2 1 0

FIGURE 7. Adjacency matrix of a tight example G = (V, E) for the
3-approximated CDS algorithm. |V| =12, k =4,
OPT = C* ={v,,v5, Vg, V1 }, F(C*) = 1.

TABLE 1. State of the variables of the Critical Dominating Set procedure
at each iteration over the tight example from Fig. 7, where k = 4, and
r = 1. The final row shows the state at the end of the algorithm.

[ ] farthest vertices [ fi | N(fi)UJfi | maximum Score vertices | c¢; |
1 vV V4 {v3,vs,v5} {vs, v4,v5} vy
2 | {v1,v7,v8,v9,v10,v11,v12} | vz | {ve,vr,vs} {ve, v7,v8} V6
3 {v1,v9,v12} viz | {vi1,v12} {vi1,v12} vi2
4 {vi,v9} U1 {vi,v2} {vi,va} U1
5 {oa} - = - -

distance(v,C) \ Score
[[ v [ wvo [ ws | wa [ ws | we | wr | ws | w9 | wio | w1 | wi2
oo\ | oo\2 | o0\2 | o0\2 | o0\2 | o0\3 | oo\2 | oo\2 | oo\ | oo\2 | oo\2 | oo\l
S\ [ 2\ [ 1N [0\ | N [ 22 [ 3\2 | 3\2 | 3\ [ 3\2 | 32 | 3\
3\L | 2\0 | I\T | 0\0 | 1\0 | 0\0 | INT [ 2\ [ 3\ [ I\ | 21 [ 8\
3\T | 2\ [ I\T | 0\0 | 1\0 | 0\0 | I\T | 2\ [ 3\ [ 1\0 | 1\0 | 0\0
0\0 | 1\0 | 1\0 [ 0\ [ 1\ [0\ [ I\ [ 2\ 3\ | 1\0 | 1\0 | 0\0

RN IS

Li] c [ D [ S |
1 0 [1] {v3,va,v5}
2 {va} {v3,va,v5} {ve, v7,v10}
3 {va,v6} {v3,v4, 5, v6,07,010} {vi1,v12}
4 {v4,v6,v12} {v3,v4,v5,v6, V7, V10, V11, V12} {v1,v2}
5 | {va,ve,v12,01} | {v3,v4,vs5,v6,v7,v10, 011, V12,01, 02} —

Gon and HS’ algorithms relies on its ability for taking local
decisions that hurt its approximation guarantee. Therefore,
we prefer to consider the CDS algorithm as a theoretically
worst option — a 3-approximation algorithm — that tends to
yield a better practical performance. However, it is a good
idea to implement the CDS algorithm considering self-loops,
because it does not increase the complexity of the algorithm.
In fact, in the experiments presented in Section IV, we con-
sidered self-loops. It is important to point out that, even
though the CDS algorithm can generate a tight solution with
r = r* = 1, it may generate better solutions with the other
possible values of r, i.e. {0, 2, 3, 4,5, 6}. In order to check
how the algorithm performs in general, we implemented and
executed the algorithm with different seeds. This allowed
us to verify that in many times it returns tight solutions of
size 3r*.

Table 1 is divided into three parts. Each one of these parts
have one row for each one of the k iterations of the algorithm.
In this case, k = 4. The state of the variables of the algorithm
is shown in each row. Finally, there is an extra row that shows
the final state of the algorithm. Specifically, at iteration i = 1
all the vertices are at distance oo from the current solution
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Algorithm 7 CDSh Algorithm
Input: An undirected graph G = (V, E), an integer k,
and an ordered list of the weight of the m edges
of G: w(ey), w(ep), ..., w(e,,) where
w(e;) < wleitr1)
Output: A set of vertices C C V, |C| =k
high =m ;
low=1;
c=0,
r(C) =00;
while high—Ilow > 1 do
mid = [(high 4 low)/2] ;
C’ = CriticalDominatingSet(G, k, w(emid)) ;
if 7(C’) < r(C) then
c=C,
10 r(C)=r(C);
1 end
12 if r(C) < w(emig) then
13 | high =mid ;
14 else
15 | low = mid ;
16 end
17 end
18 return C;

o 0 N A N R W N =

C = (J, and their Score is equal to their degree in the input
pruned graph G,+, where only the edges with cost less than
or equal to r* = 1 are included. Thus, the set of farthest
vertices equals V. A vertex is selected at random from this
set (fi = v4). Then, the vertex ¢; of maximum Score in its
neighborhood ({v3, v4, vs}) is added to the current solution,
C = {v4}. Finally, the Score of every vertex is efficiently
updated by setting S = (N(v4) U v4) \ D, where initially
D = (. Finally D is set to D U S = {v3,v4,vs}. The
same process is repeated up to the last iteration. The final
state of the algorithm is depicted in line 5 of each table,
where it can be observed that the distance from vg to the
generated solution is exactly 3, and the generated solution is
C = {v1, v4, v6, V12}.

3) A MORE EFFICIENT HEURISTIC

The O(n*) complexity of the CDS algorithm becomes unprac-
tical as the input grows. Algorithm 7 shows the CDSh algo-
rithm, which has a more practical complexity of O(n* log n)
by performing a binary search over the set of feasible covering
radius. This binary search assumes that the solutions returned
by the Critical Dominating Set procedure are optimal, which
is not always true; otherwise it would solve the NP-Hard
minimum dominating set in polynomial time. So, the approxi-
mation guarantees of the CDS algorithm are not present in the
CDSh algorithm.

IV. EXPERIMENTAL PERFORMANCE EVALUATION
Table 2 shows the complexity of the approximation algo-
rithms described in this paper, where Gon+ is the Gon
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TABLE 2. Complexity and approximation factor (p) of some polynomial
algorithms for the vertex k-center problem.

Algorithm Complexity p
Gon O(kn) 2
HS O(n?logn) 2
CDSh O(n?logn) -
Gon+ O(kn?) 2
HS+ O(nlogn) 2
CDSh+ O(n?logn) -
CDS O(n*) 3

TABLE 3. Mean (n), standard deviation (o), and average execution time
reported by the tested algorithms over the pmed instances from OR-Lib.

40 pmed instances from OR-Lib

average time

Algorithm p o )
Gon 1.527 0.095 8E-4
HS 1.392 0.100 S8E-4
Gon+ 1.304 0.120 0.070
HS+ 1.258 0.110 0.625
CDSh 1.047 0.039 0.014
CDS 1.043 0.035 0.169
CDSh+ 1.017 0.025 9.169
BEA 1.000 0.000 1.791
1.6 - - Mean and standard deviation
Y— 15 - N
5
= \\
g 141
g \\\\
S 1.3 ~~
©
g 1.2 K
c 1.7 \
£
@ 1.11 s\
£ | s
1.0 + $+--—_o
Gon HS Gon+ HS+ CDSh CDS CDSh+ OPT
Algorithm

FIGURE 8. Mean and standard deviation reported by the tested
algorithms over the pmed instances from OR-Lib.

algorithm repeated n times with a different initial center.
The same idea applies to the HS+ and CDSh+ algorithms,
which are the HS and CDSh algorithms repeated n times with
a different initial center, respectively. All these algorithms
were tested over optimal and best known solutions of de
facto benchmark data sets from the literature. The optimal
solutions were computed by the BEA exact algorithm (Alg. 1)
using a commercial optimization software (Gurobi) with its
default tuning parameters [48]. Tables 3 to 7, and Figures 8
to 12 show the experimental average approximation factor,
experimental standard deviation, and average execution time
of each algorithm over each benchmark data set. Tables 8
to 12 show the solution size found by each algorithm over
each instance.
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In all the experiments, we did not consider the time
required for processing the input graph. In the case of the
HS, CDSh, and CDSh+ algorithms, we also did not con-
sider the time required for the ordering of the edge costs.
Because of this, the execution time of the HS and HS+
algorithms have a complexity of O(kn log n) and O(kn® log n),
respectively. All the polynomial time algorithms were imple-
mented in C. The C code implementations can be down-
loaded from https://github.com/jesgadiaz/k-center-in-C. The
script for the BEA exact algorithm was implemented in
Python and each minimum dominating set problem was
solved with Gurobi 8.1.0 [48]. All the implementations were
executed on an Asus laptop with an Intel Core i5 processor
of 2.3 GHz, and 24 Gb of RAM memory. At this point
it is important to remark that memory is a limitation for
any algorithm that requires to store the whole adjacency
matrix of the input graph at every moment. To address this
problem, only the relevant chunks of the adjacency matrix
can be stored [23]. However, in general there will always
be instances that require the whole adjacency matrix to be
stored. For this reason, the experiments where the whole
adjacency matrix is stored were limited to graphs with no
more than 4663 vertices. For larger instances we did not
store the adjacency matrix at all. Instead, we computed
the cost of the edges every time needed. This is explained
in more detail in the paragraph that corresponds to large
instances.

Table 3 and Figure 8 show the mean and standard deviation
of the experimental approximation factors obtained by the
tested algorithms when executed over the pmed instances
from OR-Lib [49]. This set consists of 40 instances with
100 to 900 vertices, and values of k from 5 to 200. For
this specific set of instances, the edge costs are very often
repeated. So, the number of edge costs goes down from O(n?)
to just a few values. For this reason, the computationally
more expensive algorithms CDS, CDSh+, and BEA had
an acceptable average execution time. However, if the edge
costs are not often repeated, the execution time of these
algorithms increases a lot, which is the case with the other
sets of instances. As expected, the Gon, HS, Gon+, and HS+
algorithms are among the most efficient, with an average
execution time of 8E-4, 8E-4, 0.070, and 0.625 seconds,
respectively. The CDS algorithm had an average execution
time of 0.169 seconds. The CDSh and CDSh+ algorithms
had an average execution time of 0.014 and 9.169 sec-
onds, respectively. The reason why CDSh+ had a worst
average execution time than CDS is that the set of edge
costs is reduced from 0(n2) to just a few values. So, while
CDS consists of the Critical Dominating Set repeated a
few times, the CDSh+ algorithm consists of the Critical
Dominating Set repeated more than n times. With respect
to the quality of the generated solutions, the HS+ algo-
rithm had the best performance among the 2-approximated
algorithms, with an experimental average approximation fac-
tor of 1.258. From all the tested polynomial time algo-
rithms, the CDSh+ algorithm had the best performance,

VOLUME 7, 2019

TABLE 4. Mean (1), standard deviation (0’), and average execution time
reported by the tested algorithms over 40 small instances from TSPLib.

40 small instances from TSPLib

average time

Algorithm p o )
Gon 1.401 0.112 4E-4
HS 1.351 0.115 6E-4
HS+ 1.256 0.090 0.269
Gon+ 1.223 0.068 0.014
CDSh 1.117 0.054 0.013
CDS 1.046 0.038 283.774
CDSh+ 1.040 0.037 6.573
BEA 1.000 0.000 1.085
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FIGURE 9. Mean and standard deviation reported by the tested
algorithms over 40 small instances from TSPLib.

with an experimental average approximation factor of 1.017.
Besides, the BEA basic exact algorithm shows a good per-
formance, generating all the exact solutions in an average
execution time of 1.791 seconds. Table 8 shows the detailed
results obtained by the tested algorithms over the pmed
instances.

Table 4 and Figure 9 show the mean and standard devi-
ation of the experimental approximation factors obtained
by the approximation algorithms when executed over a set
of small-size instances from TSPLib [50]. This set consists
of 40 instances with 200 to 657 vertices, and values of
k from 5 to 40. As expected, the Gon, HS, Gon+, and
HS+ algorithms are among the most efficient, with an aver-
age execution time of 4E-4, 6E-4, 0.014, and 0.269 sec-
onds, respectively. The CDS algorithm had a total execution
time of 283.774 seconds, which shows how inefficient this
algorithm can be, and why its heuristic versions are more
practical options. The CDSh and CDSh+ algorithms had
a total execution time of 0.013 and 6.573 seconds, respec-
tively. With respect to the quality of the generated solutions,
the Gon+ algorithm had the best performance among the
2-approximated algorithms, with an experimental average
approximation factor of 1.223. From all the tested polynomial
time algorithms, the CDSh+ algorithm had the best perfor-
mance, with an experimental average approximation factor
of 1.040. Besides, the BEA basic exact algorithm shows a
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TABLE 5. Mean (1), standard deviation (0’), and average execution time
reported by the tested algorithms over the u1060, u1817 and
mu1979 instances from TSPLib.

ul060, ul817 and mu1979 instances from
TSPLib

average time

Algorithm o )

HS 1.423 0.070 0.034
HS+ 1.364 0.069 60.160
Gon 1.337 0.056 0.001
Gon+ 1.233 0.043 2.634
CDSh 1.159 0.052 0.314
CDSh+ 1.100 0.045 613.999
BEA 1.000 0.000 1060.118
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FIGURE 10. Mean and standard deviation reported by the approximation
algorithms over the u1060, u1817 and mu1979 instances from TSPLib.

good performance, generating all the exact solutions in an
average execution time of 1.085 seconds. Table 9 shows the
detailed results obtained by the tested algorithms over the
small-size TSPLib instances.

Table 5 and Figure 10 show the mean and standard devi-
ation of the experimental approximation factors obtained
by the approximation algorithms when executed over a set
of medium-size instances from TSPLib [50]. This set con-
sists of 3 instances with 1060 to 1979 vertices, and val-
ues of k from 10 to 150. As in the previous experiments,
the Gon, HS, Gon+, and HS+ algorithms are among the
most efficient, with an average execution time of 0.001,
0.034, 2.634, and 60.160 seconds, respectively. The CDS
algorithm was not executed over this set of intances because
it becomes very inefficient with instances of this size. The
CDSh and CDSh+ algorithms had a total execution time
of 0.314 and 613.999 seconds, respectively. With respect to
the quality of the generated solutions, the Gon+ algorithm
had the best performance among the 2-approximated algo-
rithms, with an experimental average approximation factor
of 1.233. From all the tested polynomial time algorithms,
the CDSh+ algorithm had the best performance, with an
experimental average approximation factor of 1.100. Finally,
the BEA exact algorithm had the worst execution time per-
formance, generating all the exact solutions in an average
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TABLE 6. Mean (1), standard deviation (0’), and average execution time
reported by the tested algorithms over the pcb3038, nu3495 and
ca4663 instances from TSPLib.

pcb3038, nu3496 and ca4663 instances
from TSPLib

average time

Algorithm p o )

HS 1.374 0.058 0.127
Gon 1.329 0.062 0.006
HS+ 1.318 0.061 458.953
Gon+ 1.221 0.029 19.172
CDSh 1.170 0.039 2.013
BEA 1.000 0.000 >60000
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FIGURE 11. Mean and standard deviation reported by the approximation
algorithms over the pcb3038, nu3496 and ca4663 instances from TSPLib.

TABLE 7. Mean (u), standard deviation (0'), and average execution time
reported by the tested algorithms over the sw24978, bm33708 and
ch71009 instances from TSPLib.

sw24978, bm33708 and ch71009
instances from TSPLib

average time

Algorithm p o )

HS 1.355 0.071 0.584
Gon 1.262 0.072 0.019
CDSh 1.193 0.051 689.723
Gon+ 1.158 0.046 914.406

execution time of 1060.118 seconds. Table 10 shows the
detailed results obtained by the tested algorithms over the
medium-size TSPLib instances.

Table 6 and Figure 11 show the mean and standard devia-
tion of the experimental approximation factors obtained by
the approximation algorithms when executed over a set of
more difficult medium-size instances from TSPLib [50]. This
set consists of 3 instances with 3038 to 4663 vertices, and
values of k from 10 to 150. From these instances only the opti-
mal solutions from nu3496 and ca4663 could be computed by
the exact algorithm BEA. From pcb3038, only the optimal
solutions with k € {10, 20, 30} were computed. For values of
k from 40 to 150, the solutions are much more difficult to find.
Namely, the BEA algorithm had to run a couple of weeks just
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TABLE 9. Results obtained by each tested algorithm over some small
instances from TSPLib. The best found solutions are highlighted, and the
optimal solutions are underlined.

solution size
k OPT Gon HS Gon+  HS+ CDS CDSh  CDSh+ |

kroA200 200 5 911.41 |1227.91 1247.46 1108.84 1005.56 911.41 1066.82 911.41
10 598.81 |789.51 826.00 71029 71331 599.47 65049 599.47
20 389.30 |533.02 45458 466.00 45292 414.01 431.61 413.05
40 25825 |336.36 316.07 305.63 308.84 267.55 280.58 261.19

gr202 202 5 1938 [2693 2096 2096 2096 1938 2096 19.38
10 9.33 1498 1208 11.17 11.08 10.02 10.64 10.02
20 5.56 6.91 6.65 6.44 6.61 5.66 6.08 5.66
40 2.97 3.98 3.70 3.53 3.70 3.15 3.30 3.15

pr226 226 5 3720.555629.38 4591.84 4601.08 4850.00 3720.55 4103.65 3720.55
10 2326.47|3224.90 3324.15 3070.01 2761.34 2439.77 2750.45 2439.77
20 1365.65(1952.56 2000.00 1703.85 1900.65 1365.65 1500.00 1365.65

instance n

1.0 [ 40 650.00 |850.00 96046 707.10 850.00 672.68 700.00 670.82
T T y T T P64 264 5 1610.12]2802.23 1947.43 1802.77 1802.77 1610.12 1610.12 1610.12

HS Gon CDSh Gon+ OPT 10 850.00 | 1350.92 1350.92 1217.57 1274.75 884.59 884.59 884.59
Algorithm 20 51478 |73824 76157 707.10 71589 53851 53851 538.51

FIGURE 12. Mean and standard deviation reported by the approximation
algorithms over the sw24978, bm33708 and ch71009 instances from
TSPLib.

TABLE 8. Results obtained by each tested algorithm over the pmed
instances from OR-Lib. The best found solutions are highlighted, and the
optimal solutions are underlined.

40 316.22 |400.00 500.00 360.55 424.26 350.00 350.00 335.41
pr299 299 5 1336.27(2055.29 1858.17 1700.18 1613.42 1382.93 1456.23 1364.73
10 888.83 | 1188.64 1097.92 1033.46 1070.04 901.38 95524 915.76
20 559.01 |806.22 80439 691.46 731.55 602.07 651.92 607.30
40 35531 |480.23 527.37 436.60 477.62 400.00 425.73 400.00
lin318 318 5 1101.33]1653.88 1412.95 1371.83 1351.76 1104.42 1225.55 1101.33
10 74321 |1111.11 1141.32 906.53 922.00 755.17 800.56 755.17
20 496.45 |645.60 61893 59562 60570 528.44 537.33 501.81
40 31591 [394.00 440.81 388.49 414.73 330.05 341.23 326.79
pr439 439 5 3196.58|4445.01 3926.98 3610.57 3883.05 3222.18 3250.00 3222.18
10 1971.83 |2537.34 2631.53 2432.33 2452.04 1971.83 2081.46 1971.83
20 1185.59|1869.82 1667.70 1530.52 1654.72 1211.66 1375.00 1200.00
40 671.75 ]936.08 980.43 850.00 950.00 725.00 766.89 707.99

solution size
instance n k OPT | Gon HS Gon+ HS+ CDS CDSh CDSh+\

pmedl 100 5 127 |191 167 155 143 127 133 127
pmed2 100 10 98 |149 118 117 118 102 102 102
pmed3 100 10 93 |142 141 125 117 96 102 96
pmedd 100 20 74 |112 100 92 94 79 79 79
pmed5 100 33 48 |75 61 62 53 48 48 48
pmed6 200 5 84 |118 104 98 96 86 8/ 84
pmed7 200 10 64 |96 89 85 8 66 63 64
pmed$ 200 20 55 |78 75 71 68 57 61 57
pmed9 200 40 37 |53 50 49 48 37 38 37
pmedl0 200 67 20 (29 28 29 28 20 20 20
pmedil 300 5 59 |91 72 68 68 60 60 59
pmedl2 300 10 51 |84 72 66 61 52 53 52
pmedl3 300 30 36 |59 52 49 46 37 37 37
pmedl4 300 60 26 |39 36 36 34 26 26 26
pmedl5 300 100 18 |25 24 23 22 18 18 18
pmedl6 400 5 47 |66 56 52 52 41 41 47
pmedl7 400 10 39 |59 56 50 47 39 40 39
pmedl8 400 40 28 |42 41 39 37 30 30 29
pmedl9 400 80 18 |29 24 27 24 19 20 19
pmed20 400 133 13 |19 18 17 18 14 14 14
pmed2l 500 5 40 |60 51 46 45 40 40 40
pmed22 500 10 38 |61 49 47 46 39 39 39
pmed23 500 50 22 |34 32 32 30 23 23 23
pmed24 500 100 15 (23 22 21 20 15 16 15
pmed25 500 167 11 |15 16 15 14 11 12 11
pmed26 600 5 38 |59 50 43 43 39 39 38
pmed27 600 10 32 |54 38 38 37 32 32 3
pmed28 600 60 18 |28 26 25 26 19 19 18
pmed29 600 120 13 |20 18 18 18 13 14 13
pmed30 600 200 9 |14 12 13 12 10 10 9
pmed3l 700 5 30 |50 38 36 34 30 30 30
pmed32 700 10 29 |42 38 37 35 30 30 29
pmed33 700 70 15 |25 22 23 22 16 16 16
pmed34 700 140 11 |17 16 16 16 11 11 11
pmed35 800 5 30 |38 37 34 34 30 30 30
pmed36 800 10 27 |39 37 34 33 28 28 28
pmed37 800 80 15 |25 22 23 22 16 16 16
pmed38 900 5 29 |47 37 31 31 29 29 29
pmed39 900 10 23 (39 30 28 27 24 24 23
pmed40 900 90 13 |21 18 19 18 14 14 14

to get an upper bound on the optimal solution size. To get best
known solutions for these instances, we runned the TS1, TS2,
VNS, IM-10, IM-100 and RI local search algorithms from the
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pcb442 442 5 1024.74 | 1386.54 1336.00 1252.99 1272.79 1063.01 1140.17 1077.03
10 670.82 |982.87 940.69 894.42 822.80 707.10 781.02 707.10
20 447.21 |623.61 599.08 565.68 570.08 500.00 500.00 500.00
40 316.22 [400.00 42426 372.02 41231 344.81 360.55 325.72
d493 493 5 75290 [1173.23 968.75 931.56 852.10 78326 88270 755.92
10 458.30 |639.18 608.08 580.47 572.06 489.60 544.94 489.60
20 312.74 |42451 397.46 36793 37524 336.15 359.32 33744
40 206.01 |259.43 25593 243.03 273.09 217.01 229.39 215.90
d657 657 5 880.90 |1352.08 1214.30 1110.72 1086.09 890.17 1124.09 880.90
10 574.74 |769.27 786.05 725.72 717.85 601.74 624.56 609.86
20 37470 |508.85 546.35 464.27 458.66 426.23 449.81 42391
40 249.51 |333.35 36434 309.58 346.42 27835 295.20 278.35

literature during a combined total time of 986,000 seconds
using different seeds [30], [S1]. As in the previous experi-
ments, the Gon, HS, Gon+-, and HS+ algorithms are among
the most efficient, with an average execution time of 0.006,
0.127, 19.172, and 458.953 seconds, respectively. The CDS
and CDSh+ algorithms were not executed over this set of
intances because they become very inefficient with instances
of this size. The CDSh algorithm had an average execution
time of 2.013 seconds. With respect to the quality of the gen-
erated solutions, the HS+ algorithm had the best performance
among the 2-approximated algorithms, with an experimental
average approximation factor of 1.318. From all the tested
polynomial time algorithms, the CDSh+ algorithm had the
best performance, with an experimental average approxima-
tion factor of 1.170. Finally, the BEA exact algorithm had the
worst execution time performance, generating exact solutions
and upper bounds in an average execution time greater than
60,000 seconds. Table 11 shows the detailed results obtained
by the tested algorithms over the more difficult medium-size
TSPLib instances.

Table 7 and Figure 12 show the mean and standard devia-
tion of the experimental approximation factors obtained by
the approximation algorithms when executed over a set of
large-size instances from TSPLib [50]. This set consists of
three instances with 24,978 to 71,009 vertices, and values of
k from 25 to 100. The optimal solutions of these instances
are unknown. Thus, we used the best known solutions found
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TABLE 10. Results obtained by each tested algorithm over the u1060,
u1817, and mu1979 instances from TSPLib. The best found solutions are
highlighted, and the optimal solutions are underlined.

solution size
instance n k OPT Gon HS Gon+  HS+ CDSh  CDSh+ \

ul060 1060 10 2273.08 | 3274.69 3335.97 3046.01 2864.33 2860.83 2475.60
20 1580.79|2192.22 2139.81 1886.27 1963.47 1780.21 1698.71
30 1207.77|1639.88 1700.79 1511.28 1604.41 1522.45 1299.08
40 1020.56 | 1388.80 1359.94 1251.99 1299.41 1217.51 1139.49
50 904.92 |1166.66 1237.85 1070.32 1273.94 1050.75 1000.70
60 781.16 |1076.50 1151.99 985.41 1100.90 943.74 906.22
70 710.74 |999.84 100430 900.72 943.14 854.93 790.13
80 652.16 [906.22 961.42 806.57 921.36 75226 721.37
90 607.86 |806.56 886.61 751.13 874.99 720.92 671.17
100 570.00 |720.92 828.09 706.62 791.08 652.43 632.88
110 538.83 |671.17 76436 65147 761.22 607.86 583.32
120 51027 |651.74 71059 632.12 699.52 58291 565.71
130 499.65 |632.86 696.84 58291 670.52 552.70 538.22
140 45246 |600.50 671.17 56577 667.56 514.59 500.19
150 447.00 |570.01 699.52 538.83 632.12 500.19 495.01

ul817 1817 10 45790 |632.68 61433 54831 57838 505.78 475.54
20 309.01 |478.05 437.00 359.20 381.00 393.90 338.89
30 24098 |323.77 34920 29622 330.20 296.21 283.98
40 209.44 |281.98 297.57 25527 28735 254.00 236.22
50 18490 |255.24 273.54 228.61 25399 21849 209.43
60 162.63 |227.18 228.61 20476 218.49 203.20 193.42
70 148.10 |203.20 215.89 18490 203.20 183.16 179.59
80 136.77 |184.92 19837 163.32 193.84 16559 152.41
90 129.50 |170.39 190.41 160.65 179.59 152.39 148.09
100 126,99 |160.64 170.39 15238 162.65 143.66 136.77
110 109.24 |148.12 170.28 148.09 160.64 130.74 129.50
120 107.76 |148.09 160.64 136.77 152.38 127.00 126.99
130 104.72 |136.79 148.10 129.50 148.09 119.78 113.59
140 101.60 |129.52 148.09 127.01 136.79 107.77 107.76
150 91.60 |127.01 136.79 12699 129.50 107.76 107.75

mul979 1979 10 1160.69 | 1606.55 1327.48 1364.01 1327.48 1237.49 1160.69
20 750.52 |1013.93 970.82 903.84 94897 806.67 768.29
30 552.01 |741.09 769.01 683.94 721.84 638.55 598.33
40 44845 |600.92 637.65 559.89 600.92 539.80 467.85
50 380.89 |511.26 56025 471.61 539.80 430.71 400.34
60 337.06 |429.29 440.01 402.61 44845 37453 371.08
70 305.60 |393.65 43121 363.73 401.38 336.66 320.20
80 26559 |364.00 372.67 331.32 36690 301.85 284.80
90 238.16 |320.59 34844 30031 343.59 26745 25797
100 220.32 |295.25 320.15 268.84 320.15 241.53 235.08
110 203.44 |258.73 301.84 243.16 290.28 225.75 218.82
120 188.56 |238.62 271.31 226.06 263.52 212.13 203.44
130 173.69 |221.30 247.16 21041 242.04 200.70 186.33
140 160.88 |210.29 233.93 200.70 227.76 186.33 179.50
150 152.02 |197.22 21252 189.20 212.52 17147 164.56

by an hybrid VNS algorithm from the literature [31]. For
this set of instances we only tested the Gon, Gon+, HS,
and CDSh algorithms. The CDS, HS+, CDSh+, and BEA
algorithms were not executed over this set of intances because
they become very inefficient with instances of this size.
Besides, since the adjacency matrix for these instances is
very large, we did not stored such matrix. Instead, we com-
puted every edge cost every time needed by the algorithm.
Because of this, we did not executed a binary search over
the set of edge costs for the HS and CDSh algorithms.
Instead, we executed a bisection search between 0 and the
most expensive edge cost. As in the previous experiments,
the Gon and HS algorithms are among the most efficient,
with an average execution time of 0.019 and 0.584, respec-
tively. The CDSh and Gon+ algorithms had an average
execution time of 689.723 and 914.406 seconds, respec-
tively. With respect to the quality of the generated solutions,
the Gon+ algorithm had the best performance among all
the algorithms, with an experimental average approxima-
tion factor of 1.158. Table 12 shows the detailed results
obtained by the tested algorithms over the large-size TSPLib
instances.
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TABLE 11. Results obtained by each tested algorithm over the pcb3038,
nu3496, and ca4663 instances from TSPLib. The best found solutions are
highlighted, optimal solutions are underlined, and best known solutions
have an asterisk at the end.

solution size
instance n k OPT Gon HS Gon+ HS+ CDSh \

pcb3038 3038 10 728.54 1101.18  970.18  890.99  891.98  806.98
20 493.03 |731.60 69297 59475  608.88  582.60
30 39349 54227  529.07 50231  536.15  508.83
40 336.42*% |464.48  483.00 426.00 451.11 41191
50 298.20% |406.28  421.75  366.00 394.03  364.11
60 280.79* |363.74 36585  327.39 35851  343.11
70 256.70*% |324.22 35851  309.07 340.01  306.91
80 239.20% |306.16  338.24  292.15 31424  280.14
90 226.22% |291.24  309.00 27338  295.19  257.80
100 206.63* |273.00  300.60  258.62  283.38  243.50
110 206.49* |262.61  268.92 24486  264.00 233.34
120 197.67* |24691  271.02  233.63 25848  221.60
130 191.94* |233.63 25599  221.82 249.23  212.04
140 181.39* |224.08 24847  209.74 24473  205.00
150 164.77* |218.19  234.82 202.82 232.00 196.65

nu3496 3496 10 756.63 1124.10 102536 970.82  926.16  901.38
20 519.08 |691.41 70336  638.79 64847  566.66
30 396.16 |531.76  544.15 49357 49553  480.73
40 32744 |432.68 457.16  416.66  440.14  403.45
50 287.71 39756 37454  356.68 36590  343.59
60 25873 |350.39 34359  327.44 33993  306.41
70 24037 |320.15  320.15 29533 30046  275.88
80 22236 |300.46 28530 268.73  274.87  254.40
90 203.44 28333 26352 25221 25495  238.62
100 19436 |254.95 24777 23154 247776  222.36
110 179.50 |238.62 23570 22235 23392 21343
120 169.96 |224.22 22235 208.83 21922  200.68
130 161.09 |206.62  208.82  200.68  206.15  184.08
140 153.65 |201.37  200.69  190.02  200.00 177.17
150 149.07 |186.34  190.02  180.27 186.34  169.96

ca4663 4663 10 10498.80 | 15121.02 15016.03 12874.86 14250.63 12184.71
20 7023.86 |9508.62 10398.78 8475.86 8455.11 8414.57
30 5360.78 |7456.44 8021.23 6668.44 7347.40 6548.38
40 460570 |6134.82 6485.64 5572.07 6209.95 5367.60
50 3955.06 |5274.49 5716.69 487524 5500.73 4663.15
60 3650.00 |4686.53 4890.49 4286.57 4665.76 4084.69
70 3223.29 |4159.89 4544.26 3883.90 454426 3850.90
80 2908.70 |3883.90 411292 357277 413991 3499.91
90 265256 |3594.59 3774.84 321735 3774.84 3154.40
100 2543.89 |3247.64 3668.26 2995.64 3478.50 2874.45
110 2336.78 |2981.42 335526 2827.49 315827 2672.18
120 218891 |2820.99 3063.44 2673.99 3032.64 2569.58
130 2056.76 |2711.49 298142 2557.46 2981.42 2414.76
140 1976.81 |2557.39 2796.67 2466.05 2707.39 2290.68
150 1894.14 |2466.05 2670.46 2289.65 2643.64 2107.26

TABLE 12. Results obtained by each tested algorithm over the sw24978,
bm33708, and ch71009 instances from TSPLib. The best found solutions
are highlighted.

solution size

instance n k BKS Gon HS Gon+ CDSh |

sw24708 24708 25 1329.37|1618.03 1834.54 1550.35 1634.69
50 925.71 |1240.18 1226.55 1088.45 1099.11
75 759.02 |926.16 957.13 862.32 885.84
100 685.77 |798.08 869.54 741.89 752.95

bm33708 33708 25 1183.80|1540.65 1687.86 1414.40 1490.70

50 823.27 |1071.34 1190.82 951.31 981.21
75 68394 |819.38 94545 766.84 808.46
75 593.48 |693.21 74535 649.14 680.58

ch71009 71009 25 4428.72|6295.54 6519.04 5608.06 5805.86
50 3107.56|4039.83 4019.30 3641.98 3649.21
75 2554.32|3162.71 3583.91 2985.82 3015.24
100 2168.97 | 2777.36 2928.88 2524.63 2601.59

V. CONCLUSIONS

Under the assumption that P # NP, and since solving
the problem of computing (2 — €)-approximation solutions
for the vertex k-center selection problem belongs to the
NP-Hard class, the 2-approximated Sh, Gon and HS algo-
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rithms are examples of best possible polynomial algorithms
for the vertex k-center problem. The analysis presented
in Section III revealed that these three algorithms achieve
their approximation bound by taking advantage of the same
structural property of the k-center problem, namely, that in
order to get the approximation guarantees, it suffices with
selecting centers that are sufficiently far away from each
other.

Unfortunately, even though these algorithms have the best
possible worst-case performance, they tend to perform poorly
on practice. This is mainly because they take conserva-
tive decisions in order to keep their approximation guaran-
tees. For this reason, in this paper we also considered the
3-approximated CDS algorithm which consistently outper-
forms the Gon and HS algorithms over the de facto bench-
mark data sets from the literature.

In Section III, we showed that it is easy to prove the
correctness of the Gon and HS algorithms, by showing that
they are actually clever implementations of the Sh algorithm.
While the Sh algorithm requires the optimal solution size
ahead of time, the Gon algorithm cleverly eliminates such
requirement by always selecting the farthest vertex. For its
part, the HS algorithm performs a binary search over the set of
possible values of r until it finds an r value less than or equal
to r* such that it allows its inner cycle to create a solution
of size 2r. Similarly, the proof of correctness for the CDS
algorithm (Lemma 9) has a very similar structure to that of the
proof of correctness for the Sh algorithm (Lemma 4) because
it also takes advantage of the same structural property. This
way, it is easy to observe how all these algorithms rely on
the same structural properties of the vertex k-center problem.
To some extent, the Gon and HS algorithms are equivalent,
and the CDS algorithm can be considered as a deterministic
perturbation of the Gon algorithm. Besides, we present a
novel tight example for the CDS algorithm, which com-
pletes the demonstration that this algorithm is actually a
3-approximated one.

The experimental analysis confirmed the theoretical results
by showing that the algorithms that become more unprac-
tical as the input grows are the CDS, HS+4, and CDSh+
algorithms. Besides, the same experiments show that the
Gon, HS, CDSh, and Gon+ algorithms are able to generate
good solutions very efficiently. Among the 2-approximation
algorithms, the Gon+ and HS+ algorithms present the best
performance. Despite its sub-optimal approximation factor,
the CDS algorithm and its heuristic versions CDSh and
CDSh+ had the best empirical performance. Among all
the tested polynomial time algorithms, the one that keeps
a better balance between execution time (efficiency) and
quality of the generated solution (efficacy) is the CDSh algo-
rithm, generating solutions with an average approximation
factor (average execution time) of 1.047 (in 0.014 seconds),
1.117 (in 0.013 seconds), 1.159 (in 0.314 seconds), 1.170
(in 2.013 seconds), and 1.193 (in 689.723 seconds) over the
pmed instances from OR-Lib, and the small, medium, and
large instances from TSP-Lib, respectively. It is important to
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remark that, even though CDSh outperforms Gon+ on most
instances, Gon+ had the best performance when tested over
the large instances from TSPLib, with an approximation fac-
tor (average execution time) of 1.158 (in 914.406 seconds).

The BEA exact algorithm, which naturally follows from
the basic reduction from the vertex k-center problem to the
minimum dominating set problem, had a good performance
on most instances of up to 4663 vertices. This is remark-
able since it shows that one of the simplest IP formula-
tions for the vertex k-center problem can be competitive
with the other formulations from the literature by using a
commercial optimization software with its default tuning
parameters (Gurobi) [48]. However, there are some patho-
logical instances, such as pcb3038, where BEA presents an
extremely poor performance, with an average execution time
of the order of weeks just to get an upper bound on the
optimal solution size. Of course, due to its nature, and under
the assumption that P # NP, any exact algorithm for the
NP-Hard vertex k-center problem will run in exponential
time.

Finally, as a byproduct of our experimental analysis,
we corroborate most exact solutions reported in the literature
and we also present novel best known solutions for a few extra
instances, such as pcb3038 with values of k from 50 to 150.

REFERENCES

[1] R. Z. Farahani and M. Hekmatfar, Eds., Facility Location: Concepts,
Models, Algorithms and Case Studies. Heidelberg, Germany: Springer,
2009.

[2] S. L. Hakimi, “Optimum locations of switching centers and the absolute
centers and medians of a graph,” Oper. Res., vol. 12, no. 3, pp. 450-459,
Jun. 1964.

[3] M. E. Dyer and A. M. Frieze, “A simple heuristic for the p-centre prob-
lem,” Oper. Res. Lett., vol. 3, no. 6, pp. 285-288, 1985.

[4] J.Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, R. Krauthgamer,
and J. Naor, ““Asymmetric k-center is log* n-hard to approximate,” in Proc.
36th Annu. ACM Symp. Theory Comput. (STOC), Chicago, IL, USA, 2004,
pp. 538-551.

[5] S. Vishwanathan, “An O(log*n) approximation algorithm for the asym-

metric p-center problem,” in Proc. 7th Annu. ACM-SIAM Symp. Discrete

Algorithms (SODA), Atlanta, GA, USA, 1996, pp. 1-5.

S. Khuller and Y. J. Sussmann, “The capacitated k-center problem,” SIAM

J. Discrete Math., vol. 13, no. 3, pp. 403418, 2000.

[7] D. Chakrabarty, R. Krishnaswamy, and A. Kumar, “The heterogeneous

capacitated k-center problem,” in Proc. Int. Conf. Integer Program. Com-

binat. Optim. Cham, Switzerland: Springer, 2017, pp. 123-135.

P. Brass, C. Knauer, H.-S. Na, C.-S. Shin, and A. Vigneron, “The aligned

k-center problem,” Int. J. Comput. Geometry Appl., vol. 21, no. 2,

pp. 157-178, 2011.

[9] J.Konemann, Y.Li, O. Parekh, and A. Sinha, ““An approximation algorithm
for the edge-dilation k-center problem,” Oper. Res. Lett., vol. 32, no. 5,
pp. 491495, 2004.

[10] S. Khuller, R. Pless, and Y. J. Sussmann, “Fault tolerant k-center prob-
lems,” Theor. Comput. Sci., vol. 242, nos. 1-2, pp. 237-245, 2000.

[11] S. Chechik and D. Peleg, “The fault-tolerant capacitated k-center prob-
lem,” Theor. Comput. Sci., vol. 566, pp. 12-25, Feb. 2015.

[12] S. Chaudhuri, N. Garg, and R. Ravi, ““The p-neighbor k-center problem,”
Inf. Process. Lett., vol. 65, no. 3, pp. 131-134, 1998.

[13] A. Lim, B. Rodrigues, F. Wang, and Z. Xu, “k-center problems with
minimum coverage,” Theor. Comput. Sci., vol. 332, nos. 1-3, pp. 1-17,
2005.

[14] Y. Xu, J. Peng, and Y. Xu, “The mixed center location problem,” in Com-
binatorial Optimization and Applications (Lecture Notes in Computer
Science), vol. 10043. Cham, Switzerland: Springer, 2016.

[6

—

[8

—

109243



IEEE Access

J. Garcia-Diaz et al.: Approximation Algorithms for the Vertex K-Center Problem

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. D. Lépez-Sanchez, J. Sanchez-Oro, and A. G. Hernandez-Diaz,
“GRASP and VNS for solving the p-next center problem,” Comput. Oper.
Res., vol. 104, pp. 295-303, Apr. 2019.

O. Kariv and S. L. Hakimi, “An algorithmic approach to network loca-
tion problems. I: The p-centers,” SIAM J. Appl. Math., vol. 37, no. 3,
pp. 513-538, 1979.

T. F. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,” Theor. Comput. Sci., vol. 38, pp. 293-306, 1985.

D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for
the k-center problem,” Math. Oper. Res., vol. 10, no. 2, pp. 180-184,
1985.

J. Plesnik, ““A heuristic for the p-center problems in graphs,” Discrete Appl.
Math., vol. 17, no. 3, pp. 263-268, 1987.

M. S. Daskin, Network and Discrete Location: Models, Algorithms, and
Applications. Hoboken, NJ, USA: Wiley, 2011.

J. A. Pacheco and S. Casado, ““Solving two location models with few facil-
ities by using a hybrid heuristic: A real health resources case,” Comput.
Oper. Res., vol. 32, no. 12, pp. 3075-3091, 2005.

A. Kaveh and H. Nasr, “Solving the conditional and unconditional p-
center problem with modified harmony search: A real case study,” Scientia
Iranica, vol. 18, no. 4, pp. 867-877, 2011.

C. Contardo, M. Iori, and R. Kramer, “A scalable exact algorithm for
the vertex p-center problem,” Comput. Oper. Res., vol. 103, pp. 211-220,
Mar. 2019.

D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems.
Boston, MA, USA: PWS, 1997.

W.-L. Hsu and G. L. Nemhauser, “Easy and hard bottleneck loca-
tion problems,” Discrete Appl. Math., vol. 1, no. 3, pp. 209-215,
1979.

D. B. Shmoys, “Computing near-optimal solutions to combinato-
rial optimization problems,” in Combinatorial Optimization (Discrete
Mathematics and Theoretical Computer Science). AMS Publications,
1995, pp. 355-397.

R. Rana and D. Garg, “The analytical study of k-center problem solv-
ing techniques,” Int. J. Inf. Technol. Knowl. Manage., vol. 1, no. 2,
pp. 527-535, 2008.

B. Robic and J. Miheli¢, “Solving the k-center problem efficiently with
a dominating set algorithm,” J. Comput. Inf. Technol., vol. 13, no. 3,
pp. 225-234, 2005.

J. G. Diaz, R. M. Mendez, R. M. Mendez, and R. Quintero, “A structure-
driven randomized algorithm for the K -center problem,” IEEE Latin Amer.
Trans., vol. 13, no. 3, pp. 746-752, Mar. 2015.

N. Mladenovic, M. Labbé, and P. Hansen, ““Solving the p-center problem
with tabu search and variable neighborhood search,”” Netw., Int. J., vol. 42,
no. 1, pp. 48-64, 2003.

C. A. Irawan, S. Salhi, and Z. Drezner, “Hybrid meta-heuristics with VNS
and exact methods: Application to large unconditional and conditional
vertex p-centre problems,” J. Heuristics, vol. 22, no. 4, pp. 507-537, 2016.
'W. Pullan, “A memetic genetic algorithm for the vertex p-center problem,”
Evol. Comput., vol. 16, no. 3, pp. 417-436, 2008.

T. Davidovi¢, D. Ramljak, M. §elmic’, and D. Teodorovic, “Bee colony
optimization for the p-center problem,” Comput. Oper. Res., vol. 38, no. 10,
pp. 1367-1376, 2011.

J. Garcia-Diaz, J. Sanchez-Hernandez, R. Menchaca-Mendez, and
R. Menchaca-Mendez, “When a worse approximation factor gives better
performance: A 3-approximation algorithm for the vertex k-center prob-
lem,” J. Heuristics, vol. 23, no. 5, pp. 349-366, 2017.

M. S. Daskin, “A new approach to solving the vertex p-center problem
to optimality: Algorithm and computational results,” Commun. Oper. Res.
Soc. Jpn., vol. 45, no. 9, pp. 428-436, 2000.

T. Ilhan, F. A. Ozsoy, and M. C. Pinar, “An efficient exact algorithm for the
vertex p-center problem and computational experiments for different set
covering subproblems,” Dept. Ind. Eng., Bilkent Univ., Ankara, Turkey,
Tech. Rep., 2002.

S. Elloumi, M. Labbé, and Y. Pochet, A new formulation and resolution
method for the p-center problem,” INFORMS J. Comput., vol. 16, no. 1,
pp. 84-94, 2004.

A. Al-Khedhairi and S. Salhi, “Enhancements to two exact algorithms for
solving the vertex P-center problem,” J. Math. Model. Algorithms, vol. 4,
no. 2, pp. 129-147, 2005.

D. Chen and R. Chen, “New relaxation-based algorithms for the optimal
solution of the continuous and discrete p-center problems,” Comput. Oper.
Res., vol. 36, no. 5, pp. 1646-1655, 2009.

109244

(40]

(41]

(42]

(43]

[44]

(45]
[46]
[47]
(48]
(49]

(50]

[51]

H. Calik and B. C. Tansel, ““Double bound method for solving the p-center
location problem,” Comput. Oper. Res., vol. 40, no. 12, pp. 2991-2999,
2013.

V. V. Vazirani, Approximation Algorithms. Berlin, Germany: Springer-
Verlag, 2003.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman,
1990.

F. Grandoni, “A note on the complexity of minimum dominating set,”
J. Discrete Algorithms, vol. 4, no. 2, pp. 209-214, 2006.

N. Fan and J.-P. Watson, “Solving the connected dominating set problem
and power dominating set problem by integer programming,” in Proc. Int.
Conf. Combinat. Optim. Appl. (COCOA), in Lecture Notes in Computer
Science, vol. 7402. Berlin, Germany: Springer, 2012, pp. 371-383.

E. Minieka, “The m-center problem,” SIAM Rev., vol. 12, no. 1,
pp. 138-139, 1970.

R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6,
p. 345, Jun. 1962.

S. Warshall, “A theorem on Boolean matrices,” J. ACM, vol. 9, no. 1,
pp. 11-12, 1962.

Gurobi Optimizer Reference Manual, Gurobi Optim., Houston, TX, USA,
2018.

J. E. Beasley, ““OR-library: Distributing test problems by electronic mail,”
J. Oper. Res. Soc., vol. 41, no. 11, pp. 1069-1072, Nov. 1990.

G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA
J. Comput., vol. 3, no. 4, pp. 376-384, 1991.

J. G. Diaz, R. M. Mendez, J. S. Hernandez, and R. M. Mendez, ““Local
search algorithms for the vertex k-center problem,” IEEE Latin America
Trans., vol. 16, no. 6, pp. 1765-1771, Jun. 2018.

JESUS GARCIA-DIAZ received the B.S. degree in
communications and electronic engineering from
the Escuela Superior de Ingenieria Mecdnica y
Eléctrica (ESIME), CDMX, Mexico, in 2009, and
the M.S. and Ph.D. degrees in computer science
from the Instituto Politécnico Nacional, CDMX,
in 2013 and 2017, respectively. He is currently
a CONACYT Research Fellow with the Insti-
tuto Nacional de Astrofisica, Optica y Electrénica
(INAOE), Puebla, Mexico.

ROLANDO MENCHACA-MENDEZ received the
B.S. degree in electronic engineering from the
Universidad Auténoma Metropolitana, CDMX,
Mexico, in 1997, the M.S. degree from the
Instituto Politécnico Nacional, CDMX, Mexico,
in 1999, and the Ph.D. degree in computer engi-
neering from the University of California at Santa
Cruz, in 2009. He is currently a Professor with
the Centro de Investigacion en Computacién del
Instituto Politécnico Nacional (CIC-IPN), CDMX.

RICARDO MENCHACA-MENDEZ received the
B.S. degree in computer science from the Escuela
Superior de Cémputo (ESCOM), CDMX, Mexico,
in 2001, the M.S. degree from the Insituto
Politécnico Nacional, CDMX, in 2005, and the
Ph.D. degree in computer science from the Univer-
sity of California at Santa Cruz, in 2013. He is cur-
rently a Professor with the Centro de Investigacion
en Computacion del Instituto Politécnico Nacional
(CIC-IPN), CDMX.

VOLUME 7, 2019



J. Garcia-Diaz et al.: Approximation Algorithms for the Vertex K-Center Problem

IEEE Access

SAUL POMARES HERNANDEZ received the
Ph.D. degree in computer science and telecom-
munications from the Institute National Polytech-
nique de Toulouse, France. Since 1998, he has
been researching in the field of distributed
systems and partial order algorithms. He is cur-
rently the Dean of academic affairs with the Insti-
tuto Nacional de Astrofisica, Optica y Electrénica
(INAOE), Puebla, Mexico. He is also an Honorary
Researcher (Chercheur Affili€) with the Labora-
tory for Analysis and Architecture of Systems, CNRS, Toulouse, France.

JULIO CESAR PEREZ-SANSALVADOR received
the B.S. degree in Computer Science from the
Benemérita Universidad Auténoma de Puebla,
Mexico, in 2005, the M.S. degree in computer
science from the Instituto Nacional de Astrofisica,
Optica y Electrénica, Puebla, in 2007, and the
Ph.D. degree in applied mathematics from Manch-
ester University, U.K., in 2016. He is currently
a CONACYT Research Fellow with the Insti-
tuto Nacional de Astrofisica, Optica y Electrénica
(INAOE), Puebla, Mexico.

VOLUME 7, 2019

NOUREDDINE LAKOUARI received the B.S.
degree in physics and the M.S. and Ph.D. degrees
in computational physics from the Mohammed V
University of Rabat, Morocco, in 2009, 2011, and
2015, respectively. He is currently a CONACYT
Research Fellow with the Instituto Nacional
de Astrofisica, ()ptica y Electrénica (INAOE),
Puebla, Mexico.

109245



