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ABSTRACT Variational mode decomposition (VMD) is a practical signal decomposition approach, which
extracts the modes through bandwidth optimization in the frequency domain. In recent years, many efforts
have been made to attenuate the effect of prior parameters, which heavily trouble the traditional VMD.
However, as the core step, the bandwidth optimization algorithm including the initialization of center
frequencies in VMD is rarely discussed or improved in the existing work. In practical applications, the non-
convergence or unreasonable convergence of the bandwidth optimization can lead to the failure of VMD
in mode separation. Thus, in this paper, a new signal decomposition method termed adaptive bandwidth
Fourier decomposition (ABFD) is proposed to separate the narrowband components from a complicated
signal accurately. The proposed ABFD inherits the idea of implementing Fourier spectrum decomposition
through bandwidth optimization. In particular, three significant improvements are made in this work.
Firstly, in order to reduce the computation complexity, a novel bandwidth optimization algorithm termed
Fourier spectrum bandwidth optimization (FSBO) is proposed. Secondly, inspired by the empirical principle
proposed in the empirical wavelet transform (EWT), a novel variable initialization method based on spectral
energy distribution is introduced. Finally, under the guidance of narrowband characteristics, a method for
automatically detecting the appropriate mode number is developed. In order to evaluate the performance
of the proposed ABFD, simulation analysis and measured signal analysis are carried out in this paper. The
preliminary results indicate that the proposed ABFD can extract the single components more accurately than
EMD and VMD.

INDEX TERMS Signal processing, Fourier transform, signal analysis, signal decomposition,
adaptive bandwidth Fourier decomposition, empirical mode decomposition (EMD), variational mode
decomposition (VMD).

I. INTRODUCTION
There are a large number of unstable signals in nature, which
usually contain important information. The commonly used
Fourier transform (FT) is suitable for the analysis of linear
and stationary data, but it does not effectively reveal the
characteristics of time-varying signals [1]. Therefore, the pro-
cessing of unstable signals has always been the focus of
academic and engineering circles. The traditional methods
including short-time Fourier transform (STFT), Wigner-Ville
Distribution (WVD), and wavelet transform (WT), etc., are
widely used in processing single-component chirp signals
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while their performance is not satisfactory when dealing with
multi-component non-linear and non-stationary signals [2].
For instance, the STFT has a contradiction between time
domain resolution and frequency domain resolution. In the
multi-component signal analysis, the WVD is constrained
by the interference of cross terms. The results obtained by
WT depend on the manual selection of predefined wavelet
basis and decomposition layers, which limits the application
of wavelet transform.

In order to effectively mine and analyze the time-varying
characteristics hidden in the complicated signals, signal
decomposition technologies have been developed in recent
years. In 1998, Huang [3] proposed an adaptive signal decom-
position method for non-stationary signal analysis, namely
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empirical mode decomposition (EMD). The algorithm recur-
sively removes the average of the upper and lower envelope
to extract the high-frequency oscillation as the ‘‘mode’’ of
the signal [4]. Undoubtedly, the construction of the envelope
and the mean curve is a crucial step in EMD [5]. In recent
years, many improvements have been made in the construc-
tion of the average curve and some new adaptive methods
that maintain the global recursive sifting structure of EMD
have been proposed [6]. Although EMD and its improved
algorithms have achieved great success, they are all empirical,
which makes their solutions lack the support of mathematical
theory [7]. Besides, EMD is susceptible to modal aliasing
and endpoint effects when processing the measured noisy
signals [8]. In order to avoid the inherent defects of EMD,
Gilles proposed a new signal decomposition method in 2013,
namely the empirical wavelet transform (EWT) [9]. The
EWT is developed to construct the appropriate orthogonal
wavelet filter banks to separate the amplitude modulated-
frequency modulated (AM-FM) components with compact
Fourier spectrum. However, EWT is sensitive to the division
of the Fourier spectrum, and the calculation results are sus-
ceptible to noise interference [10].

Recently, a new signal decomposition method called
variational mode decomposition (VMD) is proposed by
Dragomiretskiy [11]. VMD assumes that each mode closely
surrounds a particular center frequency and transforms the
mode decomposition into a variational solution problem.
This method avoids the inherent defects of recursive decom-
position and reflects several advantages, including reli-
able mathematical support, anti-noise and suppression mode
aliasing [12]. Therefore, many successful applications of
VMD technology have been reported in the past few years.
For instance, Bi et al. took the fourth-order cumulant of
restructured signals from VMD as fault indexes to detect
multiple types of engine faults [13]. Wang et al. devel-
oped a weak degradation characteristic extraction method
based on VMD and Laplacian Eigenmaps (LE) to iden-
tify the degradation information of brushless direct current
(BLDC)motors [14]. Jiang et al. proposed a newVMD-based
coarse-to-fine decomposing strategy to obtain the optimal
mode and extract the weak repetitive transients of rotating
machines [15]. However, the decomposition results of VMD
depend on the reasonable predefinition of parameters, includ-
ing the mode number K , the balance parameter α, the update
parameter τ , and the convergence tolerance parameter ε [16].
Therefore, the selection of appropriate decomposition param-
eters has become a research focus in the application of VMD
method. For instance, to accurately extract the rolling bearing
fault features, Wei et al. used the envelope entropy as a
fitness function of the whale optimization algorithm (WOA)
to obtain the optimal parameters of the VMD method [17].
Li et al. proposed a variable dimension chaotic pigeon-
inspired optimization (VDCPIO) algorithm to search for
the optimal combination of key parameters of VMD [18].
To improve the online processing ability, the scale space
segmentation method was introduced in [19] to determine

the number K of the intrinsic mode functions (IMFs)
decomposed by VMD. Based on the characteristics of IMF,
Lian et al. proposed a method called Adaptive Variational
Mode Decomposition (AVMD) to determine the mode num-
ber automatically. This method judges the VMD’s decompo-
sition results in the guide of a series of indicators, including
permutation entropy, extreme value in the frequency domain,
kurtosis criterion, and energy loss coefficient, etc. [20]

According to the literature review, many studies have
focused on optimizing the decomposition parameters to
reduce the impact of the prior parameters. However,
the improved VMD method still has some problems to be
solved when applied to the multi-component signals. Firstly,
in the improved VMD method, the parameter optimization
strategy defined for a particular application does not nec-
essarily apply to all scenarios. In addition, parameter opti-
mization is an iterative optimization process, which consumes
a large number of computing resources. Thus, the adapt-
ability of VMD needs to be further improved. Secondly,
the core step of VMD is the bandwidth optimization through
alternate direction method of multipliers (ADMM), which
is essentially an iterative calculation method. Considering
the influence of initialization on the convergence of iterative
calculation, the initial center frequencies can significantly
affect the decomposing efficiencies and analysis results [21].
However, this problem is rarely discussed or reported in the
available literature. Besides, although the VMD algorithm is
developed on the basis of strict mathematical theory, the final
decomposition results are not necessarily deterministic or
interpretable, because the convergence of iterative calculation
for bandwidth optimization cannot be guaranteed in the VMD
method. Undoubtedly, non-convergence or unreasonable con-
vergence can lead to the failure of signal separation and the
loss of valuable information, which will be demonstrated in
the simulation analysis of this paper. Therefore, the band-
width optimization algorithm including the variable initial-
ization strategy needs to be further investigated and improved.

Motivated by the merits and shortcomings of VMD, a new
signal decomposition method termed ABFD is proposed in
this paper to extract the narrowband components more accu-
rately. The proposed ABFD is developed to decompose the
signal into a series of narrowband sub-signals in the fre-
quency domain through bandwidth optimization. In order
to avoid the drawbacks of VMD mentioned above, some
improvements have been made to enhance the performance
of signal decomposition. Firstly, to reduce the computa-
tional complexity, a novel bandwidth optimization algorithm
termed Fourier spectrum bandwidth optimization (FSBO)
is proposed based on energy distribution in the frequency
domain. The analysis results demonstrate that compared with
VMD, the proposed FSBO algorithm improves the con-
vergence speed and stability of iterative calculation. Then,
considering the influence of initialization on the iterative
calculation, a novel variable initialization method based on
the spectral energy distribution is developed to better separate
the individual components from the mixed signal. After that,
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a method for automatically determining the mode number is
proposed on the basis of narrowband characteristics of mono-
component signals. Therefore, compared with VMD and its
improved algorithms, the proposed ABFD makes full use
of the features of spectral energy distribution to improve its
performance. To verify the validity of the proposed ABFD
method, three typical simulation signal analyses are intro-
duced in this paper, including decomposition capability anal-
ysis, non-stationary signal analysis, and noisy signal analysis.
Furthermore, two measured vibration signals are utilized to
evaluate the performance of ABFD in practical applications.
The preliminary results show that compared with EMD and
VMD, the proposed ABFD can better separate the narrow-
band components in different application scenarios.

The rest of this paper is organized as follows. In Section II,
the principle of ABFD is discussed in detail. After that,
the ABFD is employed to conduct the simulation signal
analysis in Section III. Meanwhile, the results are compared
to the ones obtained by EMD and VMD. Section IV mainly
analyzes the decomposition results of measured vibration sig-
nals. In section V, the computational efficiency is discussed.
Finally, some conclusions are drawn in Section VI.

II. ADAPTIVE BANDWIDTH FOURIER DECOMPOSITION
In this section, the principle of ABFD is described in detail.

Inspired by VMD, the goal of ABFD is to adaptively
decompose the original signal f (t) into a series of individual
sub-signals {Uk (ω)} in the frequency domain through band-
width optimization. According to the definition of mode in
VMD, the separated sub-signals are expected to have a com-
pact Fourier spectrum. Then, the sub-signals in the frequency
domain are converted into time-domain signals named band-
width mode function (BMF) through inverse Fourier trans-
form. As mentioned in Section I, the main improvements
of ABFD include three parts: 1) a novel bandwidth opti-
mization algorithm named FSBO; 2) an improved variable
initialization strategy; 3) automatic detection for the number
of BMFs. Therefore, the theoretical principles of ABFD will
be demonstrated from these three aspects.

A. FOURIER SPECTRUM BANDWIDTH OPTIMIZATION
To begin with, we assume that the mode number K is given.
In order to optimize the bandwidth of all modes, a practical
bandwidth estimation method is required. In the conven-
tional VMD algorithm, the bandwidth of a mode is evaluated
through the Gaussian smoothness of the demodulated sig-
nal, which leads to complex iterative calculations. Therefore,
a new bandwidth estimation method based on the energy
distribution in the frequency domain is introduced in this
paper [22].

B =

+∞∫
−∞

|Uk (ω)|2 (ω − ωk )2dω (1)

where B stands for the bandwidth estimation of sub-signal
Uk (ω) and ωk is its center frequency. Considering the

symmetry of the Fourier spectrum of the real signal, it is
defined that in the ABFD method, the frequency domain
signals such as F(ω) and Uk (ω) take the unilateral Fourier
spectrum. Furthermore, to reduce the computational com-
plexity, we define that the frequency domain signals {Uk (ω)}
have the same phase angle as F(ω):

Uk (ω) =
|Uk (ω)|
|F(ω)|

· F(ω), k = 1, 2, . . .K (2)

where F(ω) represents the Fourier spectrum of the
input signal f (t). Then, the resulting constrained problem
L0({Uk (ω)} , {ωk}) of bandwidth optimization is constructed
as follows:

L0({Uk (ω)}, {ωk})

= min
{uk },{ωk }

∑
K

+∞∫
−∞

|Uk (ω)(ω − ωk )|2 dω


s.t.

{∑
K
|Uk (ω)| = |F(ω)|

|Uk (ω)| ≥ 0
(3)

Constrained optimization problems can be solved in many
different ways. In this paper, in order to obtain the deter-
ministic analytical solution, the problem in Eq. (3) is
transformed into the unconstrained optimization problem
L1({Uk (ω)} , {ωk}) through the Lagrange multiplier method:

L1({Uk (ω)}, {ωk})

= min
{Uk (ω)},{ωk }


∑
K

+∞∫
−∞

|Uk (ω)(ω − ωk )|2 dω

+

+∞∫
−∞

λ(ω) · (|F(ω)| −
∑
K
|Uk (ω)|)dω

 (4)

where λ (ω) denotes the Lagrange multiplier. Then, Eq. (4) is
transformed into a more easily solved Eq. (5).

L1({Uk (ω)}, {ωk})

= min
{Uk (ω)},{ωk }


+∞∫
−∞

∑K |Uk (ω)|2 · (ω − ωk )2
+λ(ω) · (|F(ω)| −

∑
K
|Uk (ω)|)

 dω


(5)

At the saddle points of the quadratic optimization problem,
the objective function L1({Uk (ω)} , {ωk}) takes the minimum
value, that is, the bandwidth optimization problem can be
solved by finding the saddle points of Eq. (5). At sad-
dle points, the partial derivatives of L1({Uk (ω)} , {ωk}) to
|Uk (ω)|, λ(ω) and ωk are all equal to zero, as shown below:

∂L1
∂ |Uk (ω)|

= 2 |Uk (ω)| (ω − ωk )2 − λ(ω) = 0

k = 1, 2, . . .K (6)
∂L1
∂λ(ω)

= |F(ω)| −
∑
K

|Uk (ω)| = 0 (7)

∂L1
∂ωk
= 2

+∞∫
−∞

|Uk (ω)|2 (ω − ωk )dω = 0

k = 1, 2, . . .K (8)
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where L1 is the objective function in Eq. (5). It can be
observed that Eq. (6) and Eq. (7) are linear equations if ωk is
temporarily taken as a constant. Then, the analytical solutions
of |Uk (ω)| and λ(ω) can be easily obtained by solving Eq. (6)
and Eq. (7) simultaneously, as shown in Eq. (9) and Eq. (10).

|Uk (ω)| =


|F(ω)|

(ω − ωk)
2∑
K

1
(ω−ωk )

2

, ω /∈ {ωk}

0, ω = ωi,i6=k

|F(ω)| , ω = ωk

(9)

λ(ω) =


2 |F(ω)|∑
K

1
(ω−ωk )

2

, ω /∈ {ωk}

0, ω ∈ {ωk}

(10)

After that, submitting the Eq. (15) into Eq. (9) yields the
analytical solution of Uk (ω), expressed as:

Uk (ω) =


F(ω)

(ω − ωk)
2∑
K

1
(ω−ωk )

2

, ω /∈ {ωk}

0, ω = ωi,i6=k

F(ω), ω = ωk

(11)

As can be seen, the Eq. (11) is explicit, that is, in the case
where {ωk} is determined, Uk (ω) can be obtained directly.
Therefore, the complicated bandwidth optimization problem
is equivalent to searching the appropriate center frequen-
cies, which effectively reduces the computational complexity.
According to Eq. (8), the center frequency ωk is easily solved
as:

ωk =

+∞∫
−∞

ω |Uk (ω)|2 dω

+∞∫
−∞

|Uk (ω)|2 dω

(12)

It can be seen from Eq. (12) that the solution of ωk is
implicit and can be solved by the iterative calculation shown
in Eq. (13).

ωn+1k =

+∞∫
−∞

ω
∣∣Un

k (ω)
∣∣2 dω

+∞∫
−∞

∣∣Un
k (ω)

∣∣2 dω (13)

where ωn+1k is the update of ωnk ; U
n+1
k represents the

update of Un
k . After the iteration of Eq. (13) converges, the

final Un+1
k (ω) will be taken as the solution of bandwidth

optimization, that is, the Fourier spectrum of BMF.
For a better understanding, the complete bandwidth opti-

mization algorithm that decomposes the F (ω) to {Uk (ω)} is
summarized as follows.

The parameter ε is the criterion for convergence judgment,
which tends to zero. In this paper, ε takes 0.001.

Algorithm 1 Fourier Spectrum Bandwidth Optimization
Input: F(ω), mode number K
Output: {Uk (ω)}
Begin
n← 0
{ωk} initialization
repeat
n← n + 1
for k = 1: K do

Un
k (ω) =


F(ω)(

ω − ωnk

)2∑
K

1
(ω−ωnk)

2

, ω /∈
{
ωnk
}

0, ω = ωni,i6=k

F(ω), ω = ωnk

(14)

ωn+1k =

+∞∫
−∞

ω
∣∣Un

k (ω)
∣∣2 dω

+∞∫
−∞

∣∣Un
k (ω)

∣∣2 dω (15)

end for
until convergence: max

∣∣∣(ωn+1k − ωnk

)∣∣∣ < ε

End

B. INITIALIZATION OF CENTER FREQUENCIES
From the previous analysis, the initialization of variables has
an important impact on the iterative calculation. In the VMD
method, it is recommended to initialize the center frequencies
in the unilateral Fourier spectrum uniformly. This initializa-
tion method ignores the characteristics of the Fourier spec-
trum and may lead to unreasonable convergence in practical
applications. Therefore, to improve the convergence speed
and accuracy, an improved variable initialization method is
proposed in this paper.

The goal of signal decomposition is to separate the narrow-
band AM-FM components from the mixed signal accurately.
In [9], an empirical principle is proposed in which the center
frequency point of the Fourier spectrum corresponding to
the desired narrowband AM-FM component is a significant
maximum point. Despite the lack of rigorous mathematical
foundations, the EWT algorithm is developed based on this
principle, and the successful applications of it validate its
effectiveness. Inspired by this, in the ABFD method, the cen-
ter frequencies are initialized at the position corresponding to
the largest K maximum points of the power spectrum |F(ω)|2

to better extract the individual components.
Further explanation of the effect of variable initialization

on the decomposition results will be demonstrated in con-
junction with the simulation analysis in Section III.

C. THE ABFD METHOD
In the ABFD method, the core step is the separation of
{Uk (ω)} in the frequency domain through the proposed
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FSBO algorithm. According to the principle of FSBO, the
decomposition results depend on the appropriate number K
of BMFs. If K is too small, a sub-signal may contain too
many mono-components. If K is too large, a narrowband
component may be split into two or more BMFs and several
redundant modes may be generated. Therefore, in order to
avoid under- decomposition, K is expected to be as large as
possible until the occurrence of over-decomposition. Moti-
vated by this, an automatic detection method for K is pro-
posed under the guidance of narrowband characteristics. The
details are as follows.
Step 1: Give the initial mode number K= 3.
Step 2: Initialize the center frequencies at the K maximum

points of the power spectrum |F(ω)|2.
Step 3: Decompose F(ω) into {Uk (ω)} by FSBO.
Step 4: Judge the excessive decomposition by Eq. (16).

If Eq. (16) is satisfied, it indicates that at least two center
frequencies are too close and a narrowband component has
been excessively decomposed into several BMFs. Then, let
K = K − 1 and end the loop; otherwise, execute Step 5.

min
(∣∣∣∣ ωi+1 − ωi

(ωi+1 + ωi)/2

∣∣∣∣) ≤ µ (16)

where ωi+1 and ωi are two adjacent center frequencies; µ is
a constant.
Step 5: Let K = K + 1 and go back to Step 2.
As can be seen, the number K is determined according

to the distribution of center frequencies. The constant µ in
Eq. (16) is the criterion for judging excessive decomposition.
In ABFD method, µ = 0.1, that is, excessive decomposition
occurs if the superposition of two adjacent BMFs still sat-
isfies the requirement of the narrowband characteristic [20].
Besides, K is predefined to be at least 2, which satisfies
the characteristics of the multi-component signals. As for
the single-component modulated signal, it can be judged
according to the extreme point distribution in the frequency
domain and the traditional methods can be competent for
it [23].

Here, the principles and major improvements of the ABFD
method have been elaborated. After F(ω) is decomposed into
{Uk (ω)}, the inverse Fourier transform is employed to convert
the {Uk (ω)} into time-domain BMFs. For a better under-
standing, the flowchart of the complete ABFD for multi-
component signal decomposition is presented in Fig. 1.

III. SIMULATION SIGNAL ANALYSIS
In this section, some typical simulation analyses are intro-
duced to evaluate the performance of the proposed ABFD,
including decomposition capability analysis, non-stationary
signal analysis, and noisy signal analysis. Meanwhile,
the results are compared with those of EMD and VMD to
confirm the superiority of the proposed method. In order
to reduce the influence of the prior parameters in tradi-
tional VMD, the predefined mode number K and balance
parameter α are optimized according to the method pro-
posed in the literature [24]. Besides, the uniform initialization

FIGURE 1. Flow chart of the proposed ABFD method.

method recommended in the literature [11] is adopted to
initialize the center frequencies in the VMD method.

A. THE DECOMPOSITION CAPABILITY ANALYSIS
The artificial signal fsig1 consisting of two pure harmonics fc1
and fc2 is under our consideration to study the decomposition
capability of the algorithm:

fsig1(t)= fc1+fc2=a1 cos(2πv1fst)+a2 cos(2πv2fst) (17)

where a1 and a2 are the amplitudes of the harmonics, fs repre-
sents the sampling frequency, v1 and v2 stand for the ratio of
harmonic frequency to the sampling frequency. Without loss
of generality, we take fs = 1 and 0 <v1, v2< 0.5 according to
the Shannon sampling theorem [25]. In order to quantitatively
measure the decomposition capability of different methods,
the relative error of the extracted high frequency harmonic is
defined as the evaluation indicator:

e = min
(
‖fc(t)− u1(t)‖2/‖fc(t)‖2, 1

)
(18)
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FIGURE 2. Comparisons of decomposition ability between EMD and
ABFD. The plot indicates the relative error, with values between 0 (white)
and 1(black). (a) Performance of EMD. (b) Performance of ABFD.

where e represents the relative error. fc(t) is the high fre-
quency harmonic in fsig1 and u1(t) represents the component
with the highest frequency in decomposition results. Relative
error equal to zero indicates the successful recovery of high-
frequency harmonic from fsig1 while 0 < e ≤ 1 suggests that
the used signal decomposition method cannot separate two
harmonics completely.

To begin with, the comparisons between EMD and ABFD
at different amplitude ratios a1 : a2 ∈ {0.25 : 1, 1 :
0.25, 1 : 1} are shown in Fig. 2, where the plot indicates the
relative error, with values between 0 (white) and 1(black).
The white areas represent the complete separation of the
high frequency harmonic while the grey and black areas
are not. It can be seen that EMD cannot separate the high-
frequency harmonic when the frequencies are close. As the
harmonic approaches the Nyquist frequency, the black area
increases, indicating that the decomposition capability of
EMD is further weakened. In contrast, ABFD shows superior
performance except that the frequencies of two harmonics are
almost identical.

It should be mentioned that VMD achieves good per-
formance at different amplitude ratios a1 : a2 ∈

{0.25 : 1, 1 : 0.25, 1 : 1} in [11]. Therefore, for further com-
parison, the decomposition capabilities of VMDandABFD at

FIGURE 3. Comparisons of decomposition ability between VMD and
ABFD. The black solid line is the relative error of ABFD while the blue
dotted line is the relative error of VMD.

different frequency ratios v1 : v2 ∈ {0.1 : 0.4, 0.3 : 0.4, 0.4 :
0.1, 0.4 : 0.3} are studied and presented in Fig. 3. From
Fig. 3(a) and Fig. 3(b), in which the low-frequency harmonic
is weaker than the high-frequency harmonic, the relative error
of ABFD is always close to zero, indicating the successful
recovery of the high-frequency harmonic through ABFD.
However, when the amplitude ratio is less than 0.15, the rel-
ative error of VMD is greater than ABFD at the frequency
ratio of 0.3 : 0.4, indicating that the signal decomposition
capability of VMD is weaker than ABFD in this case. From
Fig. 3(c) and Fig. 3(d), where the high-frequency harmonic
is smaller than the low frequency harmonic, the relative error
of ABFD is much smaller than VMD when the amplitude
ratio is less than 0.35. This indicates that the proposed ABFD
can better extract the weak component from the mixed signal
compared with VMD.

Overall, the results in Fig. 2 and Fig. 3 demonstrate that
ABFD outperforms EMD and VMD in decomposition capa-
bility. In the EMD method, the definition and judgment of
IMF result in the mixed signal being treated as a mode when
the harmonic components are similar. In the case of small
amplitude ratio, the failure of VMD indicates that its weak
component separation ability is insufficient. Since the mode
number of VMD is preset to the harmonic number, it is
inferred that the iterative calculation of VMD does not con-
verge to the global optimal solution, resulting in the failure of
weak component separation.

In order to further demonstrate the superiority of the
proposed FSBO and the improved initialization method,
the iterative process of the center frequencies in the case of
frequency ratio v1 : v2 = 0.4 : 0.1 and amplitude ratio
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TABLE 1. Iteration of center frequencies in the FSBO algorithm under
different initialization methods.

FIGURE 4. Iterative process of the center frequencies in the VMD method
under uniform initialization. The solid line is the iteration of
high-frequency mode and the dotted line represents the iteration of
low-frequency mode.

a1 : a2 = 0.1 : 1.0 is analyzed here. It should be noted that
for the sake of analysis, only the results with the determined
mode number are given. The iterative process of the FSBO
algorithm under different initialization methods is recorded
in Table 1. For comparison, the iteration of VMD is shown
in Fig. 4. As can be seen from Table 1, the improved initial-
ization method accurately locates the harmonic frequencies
and effectively reduces the number of iterations. Therefore,
the improvement of the initialization method can enhance
the signal separation capability of the proposed ABFD. From
Fig. 4, the iteration of VMD does not converge under uniform
initialization, that is, the iterative calculation is unstable in
this case. However, the FSBO algorithm converges to the
correct solution when the center frequencies are uniformly
initialized, as shown in Table 1. Thus, it can be inferred that
the bandwidth optimization algorithm of ABFD is superior to
VMD in terms of stability.

B. NON-STATIONARY SIGNAL ANALYSIS
The expression of the synthetic signal fsig2 is given in Eq. (19),
which consists of a chirp signal fc1 in the range of 20 to
35 Hz, an amplitude modulated harmonic fc2 and a segmented
harmonic fc3. The time sequences and Fourier spectrum of
fsig2 sampled at 1000 Hz are depicted in Fig. 5.

fsig2 = fc1 + fc2 + fc3
= chirp(0, 20, 1, 35)+ e−2t sin(24π t)

+

{
0, t ≤ 0.5
sin(10π t), t > 0.5

(19)

FIGURE 5. Synthetic signal fsig2. (a) Time-domain waveform. (b) Fourier
spectrum.

FIGURE 6. Decomposition results for fsig2 by ABFD. The black solid line is
the decomposition result of ABFD while the red dotted line is the
component of fsig2.

The ABFD, EMD and VMD methods are performed on
fsig2 and the decomposition results are illustrated in Fig. 6-8,
respectively. As can be seen from Fig. 6, the original com-
ponents are successfully recovered from the mixed signal
by ABFD, despite a slight distortion. The sudden change of
fc3 results in the mode mixing of EMD and a severe error in
fc3 extraction, as presented in Fig. 7. Then the error of IMF3
leads to the generation of several meaningless low-frequency
components. The decomposition results in Fig. 8 indicate that
fc2 and fc3 are mixed into one mode by VMD and a mean-
ingless high-frequency mode is generated. Table 2 shows
the iterative process of the FSBO algorithm. The iteration in
VMD is exhibited in Fig. 9. The results in Table 2 suggest that
the improved initialization method in ABFD can accurately
locate the target frequencies and improve the convergence of
the iterative calculation. From the iteration of VMD in Fig. 9,
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FIGURE 7. Decomposition results for fsig2 by EMD. The black solid line is
the decomposition result of EMD while the red dotted line is the
component of fsig2.

TABLE 2. Iteration of the center frequencies in the FSBO algorithm.

TABLE 3. Evaluation of the decomposition results for fsig2.

the center frequency of IMF1 converges to 6.4 Hz, which
is between the frequencies of fc2 and fc3. The unreasonable
convergence of IMF1 results in the mode mixing of VMD.
In addition, the center frequency of IMF3 does not converge
to a certain point, which indicates that the stability of the
iterative calculation in VMD is insufficient in this case.

In order to further evaluate the decomposition results,
the correlation coefficient ri between the original i-th compo-
nent and the corresponding decomposition result is recorded
in Table 3. In the case of mode mixing, the decomposed
component most relevant to the original one is selected to
computer ri. The results in Table 3 suggest that the proposed
ABFD method has significant advantages in dealing with
non-stationary multicomponent signals compared to EMD
and VMD.

FIGURE 8. Decomposition results for fsig2 by VMD. The black solid line is
the decomposition result of VMD while the red dotted line is the
component of fsig2.

FIGURE 9. Iterative process of the center frequencies in the VMD method.
The black dotted line is the iteration of IMF1. The blue solid line
represents the iteration of IMF2. The blue dotted line denotes the
iteration of IMF3.

C. NOISY SIGNAL ANALYSIS
The noisy three-harmonic fsig3 presented in Eq. (20) is
employed to verify the noise robustness of ABFD. The sam-
pling frequency of the simulated signal is 2000 Hz and the
time is 1.0 second.

fsig3(t) = fc1 + fc2 + fc3 + η
1
16

cos(576π t)

+
1
4
cos(48π t)+ cos(4π t)+ η (20)

where η ∼ N (0, σ ) denotes the Gaussian white noise with
a standard deviation of σ . Here, σ takes 0.1, which has a
significant influence on the weakest harmonic as depicted
in Fig. 10.

The decomposition results for fsig3 by ABFD are illustrated
in Fig. 11. From Fig. 11(a), the strong lowest frequency
harmonic is almost entirely recovered, and the medium fre-
quency component is also reconstructed at the acceptable
quality. However, the separation of the weak high-frequency
harmonic is not particularly desirable due to the effect
of noise. Table 4 shows the iterative process of the center
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FIGURE 10. Synthetic signal fsig3. (a) Time-domain waveform. (b) Fourier
spectrum.

TABLE 4. Iteration of the center frequencies in the FSBO algorithm.

frequencies. As can be seen, due to the influence of noise,
the final convergence result of BMF2 has a certain deviation
from the high frequency harmonic. Nevertheless, the cor-
responding peak of 288 Hz can be clearly detected in the
spectrum of BMF2, as shown in Fig. 11(b).
For comparison, EMD and VMD are performed on

the same data and the decomposition results are depicted
in Fig. 12 and Fig. 13, respectively. As shown in Fig. 12,
the high frequency harmonic is not well separated, and the
medium frequency component is decomposed into the fourth,
fifth and sixth modes, which can be interpreted as modal
aliasing in EMD. From Fig. 13, the low and intermediate
frequency harmonics are mixed into one mode in the decom-
position results of VMD, which indicates that VMD does
not always converge to the global optimal value in the case
of noise, as demonstrated in Fig. 14. The non-convergence
of center frequencies shown in Fig. 14 also reflects the
insufficient stability of iterative calculation in the VMD
method.

The correlation coefficients between the original harmon-
ics and the corresponding decomposition results are recorded
in Table 5. For further comparison, the average correlation
coefficients of the three harmonics at different noise intensi-
ties are also presented in Table 6. In light of the results above,
we can conclude that the decomposition results produced by
ABFD are more related to the original harmonics and ABFD
is superior to EMD and VMD in terms of noise robustness.

FIGURE 11. Decomposition results for fsig3 by ABFD. (a) Time-domain
waveforms of BMFs. The black solid line is the decomposition result of
ABFD while the red dotted line is the component of fsig3. (b) Spectra
of BMFs.

TABLE 5. Evaluation of the decomposition results for fsig3.

In order to avoid the influence of randomness caused by
Gaussian white noise, we performed the same experiments
several times, and there is no essential difference in the
results.

IV. MEASURED SIGNAL ANALYSIS
In this section, the effectiveness of the proposed ABFD
method in practical applications is further verified by using

109784 VOLUME 7, 2019



M. Deng et al.: ABFD Method for Multi-Component Signal Processing

FIGURE 12. Decomposition results for fsig3 by EMD. The black solid line
is the decomposition result while the red dotted line is the component
of fsig3.

FIGURE 13. Decomposition results for fsig3 by VMD. The black solid line
is the decomposition result while the red dotted line is the component
of fsig3.

two measured vibration signals. Among them, one is the
vibration signal fsig4 of the wind turbine tower, and the other
is the early fault signal fsig5 of the rolling bearing. Then, for
comparison, the measured signals are processed using EMD
and VMD.

FIGURE 14. Iterative process of the center frequencies in the VMD
method. The black solid line is the iteration of IMF1. The black dotted line
represents the iteration of IMF2. The blue solid line denotes the iteration
of IMF3. The blue dotted line is the iteration of IMF4.

FIGURE 15. Measured vibration signal fsig4 of the wind turbine tower.
(a) Time-domain waveform. (b) Fourier spectrum.

TABLE 6. Average correlation coefficients at different noise intensities.

A. TIME-FREQUENCY ANALYSIS
The vibration of the wind turbine tower is mainly induced
by random wind, which makes the measured signal complex
and unstable. Signal decomposition can reveal the trend of
different frequency components over time, so it is a critical
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TABLE 7. First four natural frequencies of the wind turbine tower.

FIGURE 16. Time-frequency representation for fsig4 by ABFD.

FIGURE 17. Time-frequency representation for fsig4 by EMD.

step in the study of dynamic characteristics and condition
monitoring of wind turbine towers.

According to the literature [26], the vibration of the wind
turbine tower is a combination of different natural modes,
and its natural frequency is constant. The measured first four
natural frequencies of the wind turbine tower provided by
the manufacturer are shown in Table 7. To collect the vibra-
tion signals, the accelerometer is mounted on the top of the
wind turbine tower. The waveform and the Fourier spectrum
of the vibration signal fsig4 sampled at 50 Hz are depicted
in Fig. 15(a) and Fig. 15(b), respectively. As can be seen from
Fig. 15(b), the measured vibration signal is mainly composed
of the first three modes, and the fourth and higher modes can
hardly be detected. Therefore, the time-frequency analysis of
fsig4 mainly focuses on the first three modes. The first mode
centered at 0.15 Hz can be observed clearly in the Fourier
spectrum, while the second mode centered at 0.83 Hz and

FIGURE 18. Time-frequency representation for fsig4 by VMD.

FIGURE 19. Measured rolling bearing vibration signal fsig5.
(a) Time-domain waveform. (b) Fourier spectrum.

the third mode centered at 1.37 Hz are very weak. Thus, it is
difficult to separate the high-order modes from the vibration
signal completely.

In order to reveal the time-varying characteristics of the
vibration signal clearly, the ABFD is performed on fsig4, and
the Hilbert transform is employed to demodulate the decom-
position results to obtain the time-frequency representation.
As shown in Fig. 16, the first mode is extracted completely
and has a clear time-frequency representation. The separa-
tion of the second and third order modes is also acceptable
although the instantaneous frequencies have a certain devia-
tion from the natural frequencies due to the influence of noise
and random interference.

Subsequently, EMD and VMD are used to process the
vibration signal fsig4, and the obtained time-frequency rep-
resentations are shown in Fig. 17 and Fig. 18, respec-
tively. From Fig. 17, it is difficult to recognize the different
modes due to the severe mode mixing problem in EMD.
In the time-frequency representation obtained by VMD,
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FIGURE 20. Decomposition results for fsig5 by ABFD. (a) Time-domain waveforms of BMFs. (b) Spectra of BMFs.

the first mode can be observed clearly. However, as shown
in Fig. 18, the second and third modes are mixed into one
IMF, which indicates that the VMD method has insuffi-
cient separation capability for weak components, as demon-
strated in section III. Thus, from the analysis above, it is
concluded that the proposed ABFD is more suitable for
extracting the time-frequency characteristics of the measured
signal.

B. WEAK FEATURE EXTRACTION ANALYSIS
The rolling bearing vibration signal fsig5 provided by the
Institute of Design Science and Basic Component at Xi’an
Jiaotong University is used to evaluate the performance of
ABFD in extracting the weak features of the actual sig-
nal. When a local fault occurs in the rolling bearing, the

characteristic signals will be modulated by the defect fre-
quency, which can be computed according to the structure and
operation parameters [27]. However, when the fault is at an
early stage, the weak characteristic signals carrying the fault-
related features are easily submerged in the ambient noise,
making it difficult to be extracted by traditional methods.

The used vibration signal was generated by a rolling bear-
ing with incipient outer race fault. The rotating frequency
is 35 Hz, and the corresponding defect frequency is 108 Hz.
For more details on the experiment and test rig, we refer
to [28]. The waveform and spectrum of fsig5 with a sampling
frequency of 25600 Hz and a sampling time of 1.0 second are
drawn in Fig. 19. As can be seen, the characteristic signals
have been completed contaminated by noise and no fault-
related features can be observed.
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FIGURE 21. Envelope spectra obtained by ABFD.

FIGURE 22. Decomposition results for fsig5 by EMD. (a) Fourier spectra. (b) Envelope spectra.

To begin with, the proposed ABFD method is applied to
separate the characteristic signals from the original data. The
waveforms and the Fourier spectra of decomposition results
yielded by ABFD are illustrated in Fig. 20(a) and Fig. 20(b),
respectively. Correspondingly, the envelope spectra are

presented in Fig. 21. As can be seen from Fig. 21, the defect
frequency of 108 Hz can be demodulated from BMF6
and BMF8, indicating that the fault information is car-
ried by the characteristic signals centered at 4229 Hz
and 6682 Hz.
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FIGURE 23. Decomposition results for fsig5 by VMD. (a) Fourier spectra. (b) Envelope spectra.

Subsequently, EMD and VMD are used to extract the
fault-related features hidden in original data. The Fourier
spectra and the corresponding envelope spectra produced by
EMD are drawn in Fig. 22(a) and Fig. 22(b), respectively.
Due to the limited space, only the results of the first six
IMFs containing the main feature information are presented.
By observing Fig. 22(a), it can be found that the characteristic
signal centered at 4229 Hz is mainly decomposed into IMF2
by EMD and the defect frequency of 108 Hz can be detected
in its envelope spectrum. However, the component centered at
6682 Hz which also carries fault-related information is mixed
into IMF1 and the defect frequency cannot be observed in its
envelope spectrum due to the severe mode aliasing. From the
analysis results of VMD shown in Fig. 23, the characteris-
tic signal centered at 4229 Hz is well separated. However,
the one centered at 6682 Hz is mixed into IMF3. Due to
the interference of other components in IMF3, the defect
frequency is not apparent in its envelope spectrum.

Therefore, based on the above comparison, it is concluded
that ABFD can better separate the weak characteristic signals
from noisy data compared with EMD and VMD.

V. COMPUTATIONAL EFFICIENCY ANALYSIS
According to the above analysis results, the capability of
the proposed ABFD for multi-component signal processing
is verified. Furthermore, to reflect the computational effi-
ciency of the algorithms, the CPU running time was tested

TABLE 8. Comparisons of computational efficiency using CPU time
(second).

on an Intel i7-3770 3.4 GHz CPU with 16.00 GB RAM and
MATLAB (R2018a) was used to run the code. In addition,
the results of FSBO with predefined mode number are also
listed. It is worth noting that the results of VMD are measured
under predetermined parameters. Considering that the length
of fsig1 is too short to reflect the difference between the
methods, only the results of fsig2, fsig3, fsig4 and fsig5 are
compared. From the results recorded in Table 8, the CPU
running time of ABFD is significantly shorter than that of
VMD due to the improvement of bandwidth optimization
and variable initialization methods. Compared with EMD,
the computational efficiency of the proposed ABFD needs
to be further improved. The comparison between the ABFD
method and the FSBO algorithm suggests that the detection
process for the appropriate mode number leads to excess
work, which will be further improved in our future work.
Generally speaking, from the perspective of CPU running
time, we can infer that the computational efficiency of ABFD
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is satisfactory compared with VMD, although it is inferior
to EMD.

VI. CONCLUSION AND DISCUSSION
In this paper, a new signal decomposition method named
ABFD is proposed for multi-component signal processing.
The ABFD method inherits the idea of implementing the
Fourier spectrum decomposition through bandwidth opti-
mization. In order to separate the single components more
accurately, the ABFD method makes full use of the char-
acteristics of spectral energy distribution. To evaluate the
performance of the proposed ABFD, three typical artificial
signals are introduced in this paper. The results indicate that
the proposed ABFD outperforms EMD and VMD in decom-
position capability and noise robustness, and is more suitable
for non-stationary signal analysis. After that, the proposed
ABFD is compared with EMD and VMD by analyzing two
measured vibration signals. The analysis results show that the
proposed ABFD can better extract the characteristic informa-
tion from the measured signal. Finally, the comparisons of
CPU running time suggest that the proposed ABFD is satis-
factory in computational efficiency. The major contributions
and conclusions of this paper are summarized as follows:

1) The proposed ABFD is developed based on the
bandwidth optimization. In order to reduce the computa-
tional complexity, a novel bandwidth optimization algorithm
termed FSBO is proposed in this paper. The analysis results
show that compared with VMD, the iterative calculation of
FSBO converges faster and is more stable.

2) We also notice the effect of variable initialization on the
convergence of the iterative calculation. Inspired by the EWT
method, a novel variable initialization method based on the
spectral energy distribution is proposed to better separate the
narrowband AM-FM components.

3) Under the guidance of narrowband characteristics,
a method for automatically determining the appropriate mode
number is proposed. The excellent performance of ABFD
verifies its effectiveness. However, this approach increases
the computational effort, which will be further improved in
our future work.
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