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ABSTRACT A millimeter-wave (mm-Wave) multiple input multiple output (MIMO) antenna operating at
24 GHz (ISM band), suitable for wearable applications, is proposed in this paper. The proposed MIMO
antenna consists of two elements, designed with an edge-to-edge distance of 5.14 mm, backed by a 5x5 cell
electromagnetic bandgap (EBG) structure. The antenna is fabricated on a flexible Rogers 6002 material
(e, = 2.94, tans = 0.0012, thickness = 0.254 mm). The proposed antenna retains its performance when bent
along the x-axis and y-axis. The performance of the antenna in term of s-parameters and radiation properties
is studied in free space as well as on a human phantom. Good impedance matching of the antenna at the
resonating frequency (24 GHz) is observed when it is bent and when worn on the body. The introduction of
the EBG improves the gain by 1.9 dBi, reduces the backward radiation by 8 dB, reduces the power density
on the back towards the body from > 200 W/m? to < 10 W/m?2, and also enhances the 10 dB bandwidth
by 100 MHz. The antenna possesses a low envelope correlation coefficient (ECC) of 0.24, high diversity
gain (DG) of 9.7 dB, reasonable multiplexing efficiency of —0.684 dB and a good peak gain of 6 dBi at
24 GHz. The proposed antenna is suitable for wearable applications at mm-Wave range due to its simple

geometry and good performance in bending and on-body worn scenarios.

INDEX TERMS Wearable antenna, on-body antenna, mm-Wave antenna, MIMO, s-parameters.

I. INTRODUCTION
Nowadays, wearable networks are seen as the research topic

that is most often focused upon; it offers great potential for
improving the delivery and monitoring of healthcare systems,
sporting performance, navigation, and military usage [1].
Antennas are the key components in the design and suc-
cessful deployment of wearable networks. Worth noting in
this respect is that microstrip patch antennas (MPA) are of
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special interest: they are more suitable for wearing than
other types of antennas due to their peculiar characteristics
of lightness, flexibility and conformability when worn [2].
Two major properties: the conformability and level of the
specific absorption rate (SAR) of a wearable antenna may be
thoroughly checked before employing it in the service of any
network. However, at higher frequencies (greater than 6 GHz)
the electromagnetic (EM) waves do not penetrate deep into
the body and spread over the skin. Therefore, instead of SAR,
the ICNIRP, FCC, and IEEE have standardized the exposure
limits on the basis of spatial power density (PD = 10 W/m?).
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Designing and operating MPAs for on-body worn applica-
tions is a challenging task due to their backward radiation,
which harms human tissue [3]. Excess of EM radiations trav-
eling through tissues is converted into heat because of the
lossy nature of the tissues. This issue can dramatically dimin-
ish the efficiency of the wireless device as well as causes
a critical hazard to the wearer’s safety. Effective isolation
between the antenna and the human body is therefore highly
recommended. An electromagnetic bandgap (EBG) structure
is a standout amongst the best-known successful approaches
to keep wearers safe from the inconvenient impact of such
radiation by reduces the level of back-radiation from the
antenna and hence reducing the radiation absorbed by the
body [4]. The EBG is used to generate in-phase reflection and
to suppress the surface waves, which ameliorates the gain of
the antenna and reduces human exposure in terms of SAR [5].

Wearable antennas are designed on a flexible substrate
because there is a possibility of being crumpled or bent when
the person wearing them moves or changes his/her state.
Maintaining the good performance of the antennas through-
out their use is challenging and should be investigated. To
achieve flexibility and conformeability for wearable devices,
researchers have used conductive fabrics, liquid materials,
flexible elastomerous substrates like PDMS, and mesh like
structures of the cladding [6]—[8]. Because the human body is
not flat, so some part of the wearable devices including anten-
nas have to bend to aligned with the body shape. Additionally,
the daily life activities of the wearer causes the components
of the wearable devices to undergo crumpling and stretching.
However, techniques like using fabrics, elastorous substrates,
and meshed structures increase the complexity of integration
and soldering, and decrease the durability of the components.
The effects of bending on the performance of both conven-
tional and high impedance structure integrated patch anten-
nas are briefly discussed in [9]. Additionally, symmetrical
bending along the x-axis and y-axis is performed in [10] in
order to investigate the effects of bending on the antenna’s
performance. Also, an irregular crumpled wearable antenna
is studied in [11].

The performance of wearable antennas is dramatically
degraded when operated on a uniform (flat smooth) or
non-uniform (curved and rough) human body. In fact, severe
multipath fading, due to reflections/scatterings around and
on the human body is experienced in on-body communi-
cation links, which can dramatically reduce the robustness
and reliability of communication [12]. To enhance the clarity
of communication under the influence of multipath fading,
it is highly recommended to use a diversity technique such
as multiple-input-multiple-output (MIMO) [13], [14]. A dual
polarized, two element MIMO antenna operating at WLAN
band is proposed in [15]. A wideband two element MIMO
antenna with reduced SAR value and good diversity perfor-
mance in a smart watch for wireless applications is inves-
tigated in [16]. A dual-port single element MIMO antenna
for an ISM band is reported in [17] for wearable applica-
tions. All the aforementioned studies of MIMO wearable
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studies are carried out at lower frequencies, moreover, they
did not provide the bending and crumpling effects analysis.
Additionally, they clearly missed the reduction of coupling
between the elements and human safety analysis, which is
very important in wearable cases.

Due to the increasing demand for 5G wearable [oTs,
designing millimeter-wave (mm-Wave) antennas have
attracted the interest of many researchers, but none of
them consider wearable scenarios for diversity application
(MIMO). Moreover, the higher frequency EM radiations are
more hazardous for health, there is an intend need to shield
the body from the excess exposure of these EM-waves. The
presented paper, however, proposes a two port, two element
MIMO antenna operating at mm-Wave (24 GHz) range for
wearable applications. The antenna is backed by EBG, which
reduce the back radiations from the antenna and reduce the
power densities (PD) on the body, additionally, increases the
gain of the antenna. The antenna has good performance in
on-body worn scenarios in term of conformability and spatial
power density. The main contribution of this paper may be
summarized as follows:

o To the best of our knowledge, this is the first ever paper
to focus on the design of the mm-Wave MIMO antenna
for wearable applications.

o Detailed analysis of the proposed antenna under deform-
ing conditions and also on the human body show accept-
able performance.

o The proposed antenna has good gain, efficiency, and low
spatial power density.

Il. ANTENNA DESIGN AND ANALYSIS

A. ANTENNA DESIGN

A rectangular shaped patch with flexible substrate and full
ground plane for 24 GHz has been suggested. A 50S2 trans-
mission line along with A/4 matching stub is used for feeding
the patch antenna. Rogers 6002 (e, = 2.94, tané = 0.0012,
thickness = 0.254 mm) is used as a substrate for the proposed
design. Initially, a rectangular patch antenna operating at
24 GHz was designed. In the second step, the same antenna
is used for designing a two element multiple-input multiple-
output (MIMO) antenna system (Fig. 1a). The two elements
are placed with an edge-to-edge distance of 5.14 mm.

B. ELECTROMAGNETIC BANDGAP (EBG) DESIGN

Antenna parameters such as gain, radiation efficiency and
operating bandwidth are greatly affected by surface waves
and near field coupling. One of the convenient ways to
suppress the surface waves and near field coupling is to
introduce a high impedance structure, such as the electromag-
netic bandgap (EBG) [4]. The EBG in the present study was
designed at 24 GHz to tackle the problem induced by near
field coupling and surface waves. A unit cell of the proposed
EBG is shown in Fig. 1c. The unit cell was analyzed for
its constitutive parameters [permittivity (¢) and permeabil-
ity (u)] using the technique discussed in [18]. The following
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FIGURE 1. (a) Top view of the multiple-input multiple-output (MIMO)
antenna, (b) top view of the MIMO antenna with 5x5 EBG, (c) top and
side veiw of EBG (a =5.4mm, b=0.9mm,c=d = 0.6 mm, R1 =R2 =
0.5 mm, and e = 3.4 mm), and (d) fabricated prototype.

FIGURE 3. Simulated transmission coefficient (S,;) of the 5x5 EBG array
for varying (a) ¢, and (b) R1.
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FIGURE 2. Extracted parameters of the EBG cell (a) complex permittivity,

and (b) complex permeability.

equations [Eqs. (1)-(4)] were used to extract the permittivity
and permeability.

(1+811)* — 83,
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e=1 3)
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m=nxz 4)

where z is the normalized impedance, S1; is the reflection
coefficient, Sy is the transmission coefficient, 7 is the refrac-
tive index, k. is the wave number, d is the thickness of the
substrate, € is the effective permittivity and u is the effective
permeability. The extracted permittivity and permeability of
the EBG cell is illustrated in Fig. 2. We can see that per-
mittivity of EBG cell is near to zero in the band of interest,
while permeability is zero at 24 GHz. The permittivity or
permeability of material tends to zero means zero refractive
index [as obvious from Eqgs. (3)-(4)] [19].
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FIGURE 4. Simulated (with and without EBG) and measured (with EBG)
(a) s-parameters, (b) gain and efficiency, and (c) radiation pattern at
24 GHz.

A 5x35 cells array was evaluated before implementing it in
an antenna design. A 5 x5 EBG array was designed and a 502
transmission line was placed above it for the initial evaluation
of the EBG array. The reason for placing a 50€2 transmission
line was to observe the stopband performance of the EBG
array. To obtain optimal results, a number of simulations were
performed by varying the EBG parameters such as ¢ and R/.
Fig. 3 shows the effect of EBG’s varying parameters on the
stopband performance of the EBG array. Parameters ¢ and
RI impacted on the magnitude of the S>; of EBG array and
also shifted the stopband range. The optimized EBG structure
and its parameters are given in Fig. Ic. The EBG stopband
performance at 24 GHz was achieved by finely tuning the
EBG parameters.

C. EBG BACKED MIMO ANTENNA

For analyzing EBG backed antenna, a 5x5 unit cells were
placed below the 2 element MIMO antenna, as shown
in Fig. 1b. The simulated and measured reflection coefficient,
radiation pattern, gain and efficiency are given in Fig. 4. The
EBG structure act as a near-zero-index (NZI) metamaterial
structure and hence blocks the transmission of the magnetic
field in the near field region [20]. It increases the far-field
radiation directivity due to near-zero refractive index and
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FIGURE 5. Impact of number of EBG cells on (a) reflection coefficient of
the antenna, and (b) gain of the antenna.

Rx=30mm

&

ATSSE

O\

Ry=60mm

Ry=80mm & Ry=70mm =7

FIGURE 6. Structurally deformed proposed antenna with different values
of the curvature radius, ranging from Rx = 20 mm to 60 mm along the
x-axis and from Ry = 60 mm to 80 mm along the y-axis.

also enhance the gain due to in phase reflection. The gain
is further enhanced due to the cavity effect generated by the
gap between the antenna and EBG layer. The coupling of
the antennas is mainly due to surface waves or near-field
reactive coupling [21], [22]. The isolation can be enhanced
by reducing the surface waves or near-field reactive coupling.
EBG in this design reduce the near-field magnetic coupling
and hence reduce the mutual coupling of the antenna. The
efficiency of the antenna is enhanced due to the reduction of
near-field coupling. It can be observed from Fig. 4a that the
reflection coefficient at 24 GHz is —25 dB for conventional
antenna while it is —42 dB for the EBG backed antenna.
The 10-dB simulated bandwidth of the conventional antenna
is noted as 700 MHz, whereas the EBG backed antenna
had an 800 MHz bandwidth. EBG has also an impact on
the transmission coefficient (S>;) of the antenna. The S|
of the antenna went down from —31 dB to —37 dB. The
introduction of the EBG also affected the gain, efficiency
and backward radiation of the antenna. The antenna gain was
enhanced from 4.1 dBi to 6 dBi, as shown in Fig. 4b. Also,
the efficiency of the antenna improved from 76.7% to 80.5%.
The backward radiation in both principal planes was reduced
(11 dB in ¢ = 0° and 18 dB in ¢ = 90°) by employing EBG
with the antenna. The spatial power density was reduced by
significant level through the EBG array. The effect of number
of unit cells on the performance of the antenna is shown
in Fig. 5. The reflection coefficient and gain of the antenna
were studied for 4x4, 5x5, 6x6, and 7x7 EBG cells. The
reflection coefficient of the antenna was same for all cases.
The gain of the antenna was dependent on the number of
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TABLE 1. Comparison of the conventional and EBG backed antenna.

Par ters Conventional A EBG backed Ant
Resonant Frequency (GHz) 24 24
Bandwidth (MHz) 700 800
Mutual Coupling (dB) -31 -37
Gain (dBi) 4.1 6
Directivity (dBi) 3.35 7.45
Efficiency (%) 76.7 80.5
. -6 at ¢ = 0° plane -17 at ¢ = 0° plane
Backward Radiation (dB) -4 at ¢ = 90° plane -22 at ¢ = 90° plane
e Flgt  m=w= Rx= 60mm == = Rx=40mm Rx=30mm Rx=20mm
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FIGURE 7. Simulated (bended along x-axis) (a) reflection coefficient,
(b) gain and efficiency, and (c) radiation pattern at 24 GHz.

EBG cells. The gain of the antenna had direct relation with
the number of EBG cells. However, the gain improvement
was negligible by increasing the EBG cells beyond 5x 5. The
EBG cells which were located away from the antenna had
very less impact on the performance of the antenna [23] and
hence there is no significant change even if the EBG cells
were 7x7. A detailed discussion of spatial power density is
given in Section III-C. The performance of the antenna with
and without the EBG array is summarized in Table. 1.

1. ANTENNA ANALYSIS FOR WEARABLE APPLICATIONS
A. BENDING ANALYSIS

In body area networks (BAN), a wearable antenna is expected
to bend and crumple while it is in use. The performance of
the proposed antenna when bent in Rx (along the x-axis) and
Ry (along the y-axis) was investigated in order to ensure its
suitability for being worn. Fig. 6 shows the bending radii for
Rx and Ry bending. The antenna was investigated for four
different radii (20, 30, 40 and 60 (Unit = mm)) along the
x-axis (Rx) and three radii (60, 70 and 80 (Unit = mm)) along
the y-axis (Ry). A range of radii for bending (along the x-axis
and y-axis) was chosen because human arms and legs vary
in size. Fig. 7 and 8 shows the impact of different bending
radii on the reflection coefficient of the antenna. The antenna
performed well under different bending conditions in both
planes (x-axis and y-axis) as is evident from Fig. 7 and 8.
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TABLE 2. Comparison of antenna properties, bent along x-axis and along
y-axis.

Bending along x-axis

Rx (mm) Flat 60 40 30 20
Gain (dBi) 6 59 5.6 6 5.8
Efficiency 802% 7901% 774% 71.6% 742%

Bending along y-axis

Ry (mm) Flat 80 70 60
Gain (dBi) 6 5.5 5.47 5.36
Efficiency 802% 756% 726% 69.8%

The bending radii had very little impact on the resonant
frequency of the antenna. The resonant frequency shifted to
23.71 GHz from 24 GHz without changing the bandwidth,
for an extreme case when the antenna was bent to 20 mm
along the x-axis (Fig. 7a). A small impedance mismatch
and shift in frequency was observed when the antenna was
deformed along the y-axis. The resonant frequency shifted
to 23.65 GHz with a deformation radius of 60 mm along
the y-axis, as shown in Fig. 8a. The measured reflection
coefficient of the antenna in both bending condition (along
x-axis and y-axis) is illustrated in Fig. 10a-b. The gain and
efficiency of the antenna when bent are reported in Fig. 7b
and 8b. The radiation pattern of the antenna for both deforma-
tion scenarios (along the x-axis and along y-axis) is reported
in Fig. 7c and 8c. A summary of the antenna performance
when bent along the x-axis and y-axis is given in Table. 2.

B. HUMAN BODY LOADING

The antenna performance on the human body is reported in
this section. The antenna was tested on different parts of the
human body (chest, leg and arm) using a realistic human
model and the results were investigated. The EBG structure
was used in this antenna because this structure allows less
backward radiation. A excellent and stable reflection coef-
ficient besides the radiation characteristics was observed,
as illustrated in Fig. 9. The measured reflection coefficient
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FIGURE 10. (a) Measured reflection coefficient of the antenna along
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(c) antenna performance evaluation at chest, legs and arm, and

(d) measured reflection coefficient of the antenna on chest, legs and arm.

of the antenna in case of human body loading is shown
in Fig. 10d.

C. SPATIAL POWER DENSITY (PD) ANALYSIS

A microstrip patch antenna radiates most of its power in the
bore direction and only small portion of radiated power is
leaked from the back. This leaked radiated power is absorbed
by the body when the antenna is operated in the vicinity of the
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human body. EM waves are hazardous to human health if cer-
tain limits of exposure are exceeded. To ensure public safety,
these limits are set by electromagnetic field (EMF) regulating
authorities: the International Commission on Non-ionizing
Radiation Protection (ICNIRP), IEEE, and the Federal Com-
munication Commission (FCC). Currently, the EMF expo-
sure level for lower frequencies below 3 GHz, 6 GHz
and 10 GHz is assessed by the specific absorption rate
(SAR, W/kg) under IEEE, FCC, and ICNIRP regulations,
respectively [24], [25]. However, at higher frequencies the
wavelength becomes shorter and the penetration of the EM
waves into the human body is negligibly shallow. Most of
the EM waves concentrate and spread over the skin; hence,
the SAR is no longer effectively applicable for the evaluation
of public safety [26], [27]. As shown in Table. 3, the ICNIRP,
FCC, and IEEE have standardized the exposure limits on the
basis of spatial power density (PD = 10 W/m?) at above
10 GHz, 6 GHz and 3 GHz, respectively. To ensure pub-
lic safety, we analyzed our antenna when it was worn on
the body. First, we mounted the antenna on the chest of a
real duke model and then analysed it with EBG, as shown
in Fig. 9a. The spatial power densities (PD) were numerically
calculated for both conditions (without and with EBG) at an
input power of 1 W, as depicted in Fig. 11. The peak PDs
were 1800 W/m? without EBG and 2428.3 W/m? with EBG.
Fig. 11a and 11b show the spatial distribution of PD without
and with EBG. From Figs. 11c and 11d, it is evident that
to operate the proposed antenna within safety limits at an
input power of 1 W, the antenna should be placed 15 mm and
1.9 mm away from the human body for without and with EBG
case, respectively. However, in practical the radiated power
of the transmitter also has certain restriction, because the
Maximum Effective Isotropic Radiated Power (EIRP) is in
the mW range, which is far smaller than 1W. If the proposed
antenna is backed with EBG and input power is in the mW
range, it is safe even when placed just over the skin.
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TABLE 3. Public safety restrictions for electromagnetic exposure.

Transition Power density | Localized SAR limit below
Freq. (GHz) limit (W/m?) transition Freq. (W/kg)
FCC 6 10 1.6 (Averaged over 1g)
IEEE 10 10
ICNIRP 3 10 2 (Averaged over 10g)

IV. MIMO PERFORMANCE

In this section, the MIMO performance of the proposed
antenna is studied. The proposed MIMO antenna has two
elements placed at a distance of 5.14 mm from each other. The
performance of the MIMO antenna is investigated in terms of
reflection coefficient, isolation, Envelope Correlation Coef-
ficient (ECC), Diversity Gain (DG), Multiplexing efficiency
(nMux) and peak gain (PG).

A. REFLECTION COEFFICIENT AND ISOLATION

The simulated and measured reflection and transmission
coefficients of the proposed mm-Wave antenna with and
without EBG structure are plotted in Fig. 4. It is quite obvi-
ous from the figure that the simulated and measured results
accord well. The proposed antenna operates at 24 GHz with
10-dB BW of 800 MHz. It can be seen that the impedance
matching is enhanced by adding an EBG structure to the
antenna. In designing a MIMO antenna system, it is always
desirable to check the mutual coupling between the MIMO
elements. Fig. 4a shows the simulated and measured S>;
results for the proposed MIMO antenna. It is clear from the
figure that the mutual coupling between the MIMO elements
is significantly lower: the S»; is below —37 dB at 24 GHz.
Such lower transmission coefficients confirm that the MIMO
elements are significantly isolated from the adjacent ele-
ments, which confirms the suitability of the proposed wear-
able mm-Wave MIMO system for use in WBAN applications.

B. ENVELOPE CORRELATION COEFFICIENT (ECC)
Computation of the envelope correlation coefficient (ECC)
for any MIMO system is important for determining how dif-
ferent the individual elements of the MIMO system are from
each other in terms of the antenna’s individual properties. The
ECC value should be equal to zero for an uncorrelated MIMO
antenna system; however, MIMO antenna systems with an
ECC value of less than 0.5 are considered acceptable. The
far-field radiation pattern [Equation. (5)] is used for calculat-
ing the ECC for the given MIMO antenna system [28].

_ i 0. 6) x (¥,6. $)) dQP
[fon (M6, $)2d2 [[, ((Mj(6, $))|? d2

where ]\7Ii(9,¢>) describe tbe 3D radiation pattern when
antenna i is excited and M;(0, ¢) describe the 3D radia-
tion pattern when antenna j is excited. The solid angle in
Equation (5) is represented as 2. ECC value varies from
0.19 to 0.24 over the operational band, while an ECC value
of 0.24 is observed at the resonant frequency (24 GHz)
when the antenna is laid flat. The ECC of the antenna when
bent (along the x-axis and y-axis) is evaluated and reported

ECC

)
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FIGURE 12. MIMO parameters in Rx bending and human body loading
conditions (a) ECC and diversity gain, and (b) peak gain and multiplexing
efficiency.

in Fig. 12a and 12b. ECC values of 0.21, 0.19, 0.18, and
0.18 were observed for the antenna bent along the x-axis
at radii of 60, 40, 30 and 20 mm, respectively, at 24 GHz
(Fig. 12a). ECC values of 0.2, 0.24, and 0.23 were observed
for the antenna bent along the y-axis at radii of 80, 70 and
60 mm, respectively (Fig. 13a). It can be concluded from
these two figures that the antenna’s ECC remains in an accept-
able range even when bent. The ECC of the antenna was
0.25-0.3, when the antenna was placed on the body.

C. DIVERSITY GAIN (DG)

Another important parameter for any MIMO antenna system
is diversity gain. It shows how much the transmitted power is
reduced using any diversity scheme. Diversity gain (DG) for
any MIMO antenna system can be calculated by means of the
following relation [28].

DG = 10y/1 — (ECC)? ©6)

Fig. 12a shows the antenna diversity gain for an antenna
bent along the x-axis. A 9.7 dB diversity gain was noted
at 24 GHz for the unbent antenna. Diversity gains of 9.77,
9.81, 9.83 and 9.83 dB were noted for the antenna bent at 60,
40, 30 and 20 mm, respectively at 24 GHz along the x-axis
(Fig. 12a). Diversity gains of 9.79, 9.70, and 9.73 dB were
noted for the antenna bent at 80, 70, and 60 mm, respectively
at 24 GHz along the y-axis (Fig. 13a). The diversity gain of
the antenna in the on-body worn scenario is almost 9.7 dB.
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FIGURE 13. MIMO parameters in Ry bending and human body loading
conditions (a) ECC and diversity gain, and (b) peak gain and multiplexing
efficiency.

D. MULTIPLEXING EFFICIENCY
The multiplexing efficiency for the proposed MIMO antenna
was calculated using the following relation [29], [30].

M =/ (1= |pH)mim2 N

where n1, 172 and p represent the efficiency of element 1,
the efficiency of element 2 and the complex envelope cor-
relation coefficient between the two elements (p &~ |[ECC|?),
respectively. An unbent antenna has a multiplexing efficiency
(W) of —0.684 dB at 24 GHz. 1y, for an antenna bent
along the x-axis and y-axis is given in Fig. 12b and 13b,
respectively. The value of 1,4, at 24 GHz remains in reason-
able range for all the scenarios in which the antenna is bent.

The npg,, of the antenna in the on-body worn scenario is near
to —0.85 dB.

E. PEAK GAIN

The peak gain of the proposed MIMO antenna for different
bending radii against frequency is given in Fig. 12b and 13b.
A peak gain of 6 dBi was observed for the flat antenna. A peak
gain of 5.9, 5.6, 6 and 5.8 dBi was observed at 24 GHz for
the bending radii (along the x-axis) of 60, 40, 30 and 20 mm
respectively. A peak gain of 5.5, 5.47, and 5.36 dBi was
observed at 24 GHz for the bending radii (along the y-axis)
of 80, 70 and 60 mm respectively.
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V. CONCLUSION

This paper presents a high performance MIMO antenna at
mm-Wave range (24 GHz) for wearable applications. The
proposed MIMO antenna consists of two elements, designed
at edge-to-edge distance of 5.14 mm backed by a 5x5 cells
electromagnetic bandgap (EBG) structure. Good impedance
matching at the resonating frequency (24 GHz) is observed
for the antenna in bending and on-body worn scenario. The
introduction of the EBG improves the gain by 1.9 dBi,
reduces the backward radiation by 8 dB, reduces the power
density and enhances the 10-dB bandwidth by 100 MHz.
The antenna possesses a low envelope correlation coeffi-
cient (ECC) of 0.24, high diversity gain (DG) of 9.7 dB,
reasonable multiplexing efficiency of —0.684 dB and a good
peak gain of 6 dBi at 24 GHz. The proposed antenna is
suitable for wearing applications at the mm-Wave range,
thanks to its simple geometry and good capacity to operate
when bent and worn on the body.
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