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ABSTRACT In order to realize fully flexible variable valve lift and improve the intake efficiency of the
engine, a new electromagnetic valve-train (EMVT)was designed to replace the traditional CAM in the engine
valve-train. However, as the durability of electromagnetic linear actuator (ELA) in the EMVT was lower
than that of CAM, and there might be some problems during a long running time. This paper presented an
improved online fault diagnosis method combining BPNeural Networks with Grey Relation Analysis (GRA)
to analyze current signals, which could realize the monitoring, diagnosis of electromagnetic linear actuator
faults and early warning so as to prevent unnecessary situations such as accidental cylinder stop of the engine.
The results showed that this method had a high fault diagnosis rate, high speed, reliability and practicability.

INDEX TERMS BP neural networks, electromagnetic linear actuator, fault diagnosis, grey relation analysis,
status monitoring.

I. INTRODUCTION
The development of engine valve-train has gone through
three stages: conventional CAM drive valve-train, variable
CAM drive valve-train and camless drive valve-train. In the
conventional CAM drive engine, the valve movement was
driven by the CAM mechanism, and the valve movement is
fixed relative to the crankshaft Angle. In the variable CAM
drive engine, the valve timing or lift was changed by Variable
Valve Timing technology, but the adjustment was still limited
by CAMprofile, and could onlymeet part of the working con-
ditions. In the camless drive valve-train, each valve could be
driven by a separate actuator, which completely got rid of the
constraint of CAM profile, and realized flexible adjustment
of valve timing, valve opening duration and valve lift [1].

There are three types of camless drive valve-train:
hydraulic, electro-mechanic, electromagnetic type [2], [3].
The performance of hydraulic actuator for the camless tech-
nology depends on the external temperature with the oil
viscosity. It is based on the application of oil under pressure
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and piezo-valve acting on the valve of engine valve. The
electro-mechanical actuators use a mechanical system using
springs and a brushless motor to act the valves, which is
difficult to integrate into vehicles due to lack of compactness.
The electromagnetic actuators convert electrical energy into
mechanical energy by electromagnetic induction principle.
It can realize fully flexible adjustment of valve timing, valve
lift and valve opening duration according to engine working
conditions, so as to realize the optimal performance of the
engine in each working condition and improve engine perfor-
mance [4]–[6]. Electromagnetic linear actuator (ELA) is one
of the electromagnetic actuators, which also known as ‘‘linear
motor’’. Unlike the traditional rotary motor, it can directly
convert electrical energy into mechanical energy of linear
motion, without any intermediate conversion device. Besides,
the electromagnetic linear actuator has advantages of simple
structure, fast response and high precision motion perfor-
mance. At home and abroad, new high-performance electro-
magnetic linear actuators are still under development [7], [8].
Our research group conducted an in-depth research on the
self-developed ELA, mainly optimized and improved the
structure, control algorithm of the actuator, and successfully
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applied it into the engine valve mechanism to replace the
traditional CAM device [9]–[11].

Since the camless electromagnetic drive valve-train was
a nonlinear system, its main difficulties lay in the motion
control accuracy and nonlinear compensation of electromag-
netic linear actuator. At present, researchers at home and
abroad are conducting in-depth research on it. Mercorelli [12]
designed a new type of electromagnetic linear motor driven
valve-train and proposed a sensorless control strategy based
on input current and voltage measurement to control the
actuator displacement, which was beneficial to reduce the
system structure. Dimitrova et al. [3] introduced the innova-
tive application of electromagnetic actuator in variable engine
valve-train. It proposed a control strategy both with nonlinear
feedforward actions and with a linear robust feedback con-
troller, which was able to reject all what cannot be predicted
and improved the robustness of the system and had better
dynamic performance.

In addition, the durability of electromagnetic linear actu-
ator in the electromagnetic driven valve-train was particu-
larly worthy of attention, and was often overlooked. This
was because the research of electromagnetic linear actuator
was usually carried out durability test under experimental
conditions, however, there was still a gap with the real
engine environment. Due to the complicated environment
inside the engine cylinder, the electromagnetic linear actuator
inevitably broke down after a long running time. Therefore,
it was particularly important to monitor the operating state of
the actuator, predict the fault ahead, diagnose the fault and
locate it, and we could reduce unnecessary losses caused by
the engine failure when the actuator had faults.

In the past, the method of monitoring faults in electrical
equipment relied heavily on the workers experience to judge
the health of the equipment based on the acoustic and thermal
aspects of the DC motor [13], [14]. In addition, the mainte-
nance of the motor equipment was planned and managed no
matter the motor equipment was faulty or not. Recently, there
were many scholars researching on the monitoring system
of motor, the main research contents were industrial equip-
ment operation status monitoring, fault diagnosis and early
warning. Its purpose was to reduce production costs, increase
efficiency and productivity, and achieve intelligent industrial
control, safety and emergency [15], [16].

In recent years, with the development of computer infor-
mation technology, artificial intelligence methods and signal
processing technologies, more andmore advanced algorithms
have been applied to the online fault diagnosis of DC motors.
There were many papers at home and abroad that had pre-
sented a variety ofmotor fault diagnosismethodsmainlywere
classified into three categories:

(1) Mathematical algorithms and models: The articles
often used advanced algorithms to establish diagnostic mod-
els, such as fuzzy reasoning, artificial neural networks,
Bayesian reasoning, Dempster-Shafer evidence theory, sup-
port vector machines, wavelet analysis, genetic algorithms,
etc [17]–[22].

(2) Fault diagnosis basis: The articles often chose armature
voltage, armature current, speed, torque, motor temperature
of DC motor as the fault diagnosis basis [23]–[26].

(3) Signal processing methods: The papers often used
methods, such as Fourier transform, wavelet transform,
parameter identification, etc. to process the acquired
signals [27]–[30].

The analysis and processing of the motor fault signal is
the key to solve the fault diagnosis problem. The core of the
method is to analyze the characteristics of parameter variation
of the motor. The research objects of the above references
were all rotating electric machines, and there was no research
literature on ELA and linear motor yet.

The contribution of this paper was the innovative use of
the self-developed electromagnetic linear actuator in engine
valve-train. The actuator was characterized by performant
and efficient magnetic circuit, direct driven by the current,
fast response time, lightweight moving parts, arbitrarily vari-
able motion displacement, high control accuracy robustness,
which were conducive to improving engine efficiency, reduc-
ing fuel consumption and reducing carbon dioxide emissions.
At the same time, this paper adopted the improved artificial
neural network method to monitor the motion state and pre-
dict fault in advance of electromagnetic linear actuator, and
made the recognition rate and training speed of the optimized
system greatly improved. This method was conducive to real-
time online monitoring and improving the defects of previous
fault diagnosis work. In addition, this method only needed
to analyze the current signal acquisition of actuators, do not
needed other sensor signals, which was benefit of simplifying
the system structure, reducing cost, improving reliability and
had a high practicability and application prospect. It could
provide powerful guarantee for the application of electromag-
netic drive valve-train, routine maintenance and detection of
the vehicles.

This article expanded from the following aspects:
(1) Analyzed faults of electromagnetic linear actuator.
(2) Proposed an improved algorithm of BP neural network

based on grey correlation optimization, and established a
systematic training model for fault monitoring and diagnosis
of electromagnetic linear actuator

(3) Performed test experiments and compared it with the
pre-optimization diagnosis method.

II. FAILURE ANALYSIS OF ELECTROMAGNETIC LINEAR
ACTUATOR IN ELECTROMAGNETIC VALVE-TRAIN
A. DESIGN OF ELECTROMAGNETIC LINEAR ACTUATOR
1) THE PRINCIPLE, DESIGN AND PARAMETERS OF
ELECTROMAGNETIC LINEAR ACTUATOR
The self-developed dynamic coil electromagnetic linear actu-
ator was adopted in the electromagnetic valve-train, as shown
in Fig.1. The actuator was mainly composed of internal mag-
netic choke, external magnetic choke, permanent magnet,
electromagnetic coil and skeleton. Since the electromagnetic
coil is subject to the axial electromagnetic force in the air
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FIGURE 1. Self-developed electromagnetic linear actuator structure.

gap magnetic field, the specific motion law of the valve can
be realized by controlling the magnitude and direction of the
driving current [8], [9].

In the electromagnetic linear actuator, the magnetic flux
must looped through the inner and external yokes. Therefore,
the inner and external yokes of actuator should be made
of higher magnetic permeability, less coercive force and
saturation magnetization material. We chose 08 steel after
comparison.

In the electromagnetic linear actuator, the permanent mag-
net adopted a high-performance permanent magnet material-
NdFeB, which had high residual magnetic flux density and
coercive force. The permanent magnets were arranged in an
array of eight magnetic tile splicing schemes. It was benefit
of enhancing the magnetic flux density in the air gap and
reducing the saturation of the yoke [31].

In the electromagnetic linear actuator, the coil was wound
on the specific shape framework with equal length opposite
direction and cascade. The coil framework was made of
epoxy resin material with high mechanical strength, non-
conductivity, good machinability and low density, which was
benefit of reducing the mass of the mover. The coil adopted
Polyimide enameled round copper wire with a line tempera-
ture index of 220 (QY-2/2000.100GB6109.6-1988).

Recently, the driving voltage was increased from the origi-
nal 24v to 42v tomeet the requirements for improving the sys-
tem response speed and overcoming the cylinder pressure for
the application in the electromagnetic drive valve-train. The
electromagnetic linear actuator has been optimized again.
The structure size and parameters of design were shown
in Table 1:

2) MATHEMATICAL MODEL OF ELECTROMAGNETIC
LINEAR ACTUATOR
ELA is a complex systems of machinery, circuit andmagnetic
circuit coupling each other. As shown in Fig. 2.

The differential equations for ELA are:
İ = −

R
L
I −

ke
L
v+

u
L

v̇ =
km
m
I −

c
m
v−

F0
m

Ṡ = v

(1)

TABLE 1. Size and parameters of electromagnetic linear actuator.

FIGURE 2. Subsystem coupling relationship in ELA.

In the formula: m – the quality of motion of electromag-
netic linear actuators, including the quality of the skeleton,
solenoid and connectors;
v – valve speed, v = Ṡ;
c – damping coefficient;
u – voltage;
I – the current of the coil;
R – coil resistance;
L – coil inductance;
ke = BlN – back EMF constant;
km = kbBδlN – actuator force constant;
F0 – External load.

3) IMPACT OF SYSTEM PARAMETER VARIATION
Through the above analysis of the mathematical model of
the electromagnetic linear actuator, the simulation model
of the whole system was built in Matlab/Simulink, and
the key parameters affecting the system performance were
discussed.

110618 VOLUME 7, 2019



T. Guo et al.: Fault Monitoring and Diagnosis of Actuators in EMVT Based on Neural Networks Optimization Algorithm

a: MOVING MASS
The moving mass was one of the important indicator of its
dynamic performance. It could be seen from the Fig. 3 that
the bigger the moving mass, the slower the system response.

FIGURE 3. The step response of displacement curve under different
moving masses.

b: RESISTANCE
When the driving voltage was constant, the variation of the
coil resistance directly affected the current change up to
affecting the response of system. It could be seen from the
Fig. 4 that the larger the coil resistance, the slower rising
speed of the coil current, the smaller the peak current and the
slower the system response.

FIGURE 4. The current curve under different resistance.

c: DIFFERENT DRIVING VOLTAGE
The magnitude of the driving voltage directly determined the
rising speed of the coil current up to affecting the response
of system. It could be seen from the Fig. 5 that the larger
driving voltage, the faster rising speed of the coil current,
the larger the driving electromagnetic force and the more
quick the system response.

FIGURE 5. The current curve under different driving voltage.

B. FAULT ANALYSIS OF ELECTROMAGNETIC LINEAR
ACTUATOR
We first analyzed the possible fault conditions of the ELA.

1) ACTUATOR SHORT CIRCUIT
As can be seen from the Fig.6, after running 300 hours,
the surface of the enameled wire between the coil and the
outer yoke became black. By optimizing the structure of
electromagnetic linear actuator, the air gap width was set to
6mm, the coil framework width was set to 1mm, the coil area
width was set to 4.5mm, and 0.25mm gap was left both sides.
The coil frame was symmetrically placed between the inner
magnetic yoke and permanent magnet. Theoretically, the coil
framework was not affected by the radial force in the moving
process and not appeared wear. There were two reasons for
wear by analyzing, on the one hand, due to small deviation
of the actual processing and assembly process; On the other
hand, due to the engine cylinder environment complex, and
the materials expanded by thermal and overheating. It was

FIGURE 6. The picture of actuator coil’s enameled wire abrasion after
running 300 hours.
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inferred that the coil electrically connected to the outer yoke
and external yoke after a long running time, and caused short
circuit. The main symptom was the current variation.

2) ACTUATOR DISCONNECTION
As can be seen from the Fig.7, after running 300 hours, it was
found that the outer wiring of the coil weared. It was inferred
that it might cause poor contact and disconnection at the line
joint after a long running time. This type of fault was mainly
caused by excessive load, material defects of the body and
the like. The main symptom was the significantly current
variation.

FIGURE 7. The picture of actuator coil wiring after running 300 hours.

3) SKELETON DEFORMATION
It could be seen from the Fig.8 that after running 300 hours,
the surface of the skeleton had worn marks and burrs. It could
be inferred that the coil skeleton might be deformed after a
long period of operation. The main reason was that in the
actuator design, the coil skeleton made of PTFE material
was subjected to thermal expansion and uneven force during
the movement, resulting in wear and deformation. The main

FIGURE 8. The picture of actuator skeleton after running 300 hours.

symptoms were the vibration and noise of motor becoming
bigger.

Through the above analysis, we could find out that when
the actuator failed, the parameters of actuator changed, so we
could monitor and diagnose faults by the actuator’s self-
parameters, but the monitoring data was large, and some
data was not easy to measure, so we should extract the fault
characteristic parameters from the easily measured and less
data. The main parameters of the actuator corresponding to
the three fault types were shown in Table 2.

TABLE 2. The type of actuator faults and the main corresponding
parameters.

C. EXTRACTING THE FAULT CHARACTERISTIC
PARAMETERS OF ACTUATOR
According to the dynamic differential equations (1) for
solving electromagnetic linear actuators and the above fault
analysis, we could find that the change of the parameters of
the actuator caused the change of the current signal. In addi-
tion, the current signal of the actuator was easily collected.
Therefore, we used the actuator current signal as the basis
of the analysis, and sought the characteristic parameters of
fault diagnosis system, and analyzed the relationship between
the characteristic parameters, the actuator parameters and the
actuator fault types.

1) THE STARTING CURRENT Im
When the actuator starts, its current curvewas an approximate
exponential curve. The maximum value of current Im is very
close to the value at time t = 0 :

im ≈ i(0) =
U
Ra

(2)

It could be seen from Eq. (2) that the resistance of the
actuator directly affected Im, this was good for determining
faults, so this paper put Im as the first characteristic parameter
for on-line monitoring and fault diagnosis of ELA.

2) THE DROP RATE OF STARTING CURRENT KI

Ki = −
im
Tm
= −

U · k2m
mR2a

(3)

The time constant of an electromagnetic linear actuator was
an important indicator of its dynamic performance, mainly
including the electrical time constant Te = La/Ra and
electromechanical time constant Tm = mRa/k2m. In gen-
eral, the electromechanical time constant was always much
larger than the electrical time constant. The drop rate of
starting current Ki depended on electrical time constant Tm.
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The larger Tm, the slower the current drops. The expression
also showed that the change of electromechanical time con-
stant could be affected by the mass of the mover m and the
resistance of the coil Ra.When some fault occurred, the above
three parameters would inevitably be changed, and these
changes would eventually reflected on the drop rate of start-
ing current. Therefore, this paper put the drop rate of starting
current Ki as the second characteristic parameter of on-line
monitoring and fault diagnosis of ELA.

3) THE STEADY-STATE CURRENT Ia
The equations for steady-state operation of electromagnetic
linear actuator was as follows:{

U = Rai+ kev
kmi = cv+ F0

(4)

The current under steady-state operation of the actuator
was obtained by solving the above equations:

Ia =
cU + keF0
kmke + cRa

(5)

According to Eq. (5), steady-state current Ia mainly
depended on the external load F0, as well as the value of the
resistance of the actuator Ra, friction coefficient c. Therefore,
the paper put the steady-state current Ia as the third charac-
teristic parameter of online fault diagnosis of actuator.

Through the above analysis, all of the above three char-
acteristic parameters were closely related to the actuator
current. According to Eq. (2), (3) and (5), the intrinsic rela-
tionship between the main parameters of the actuator and the
three characteristic parameters could be obtained, as shown
in Table 3.

TABLE 3. Characteristic parameters corresponding to the main
parameters of actuator.

When the ELA had different faults, the type, direction
(large or small) and variation amplitude of the characteristic
parameters were different. By comparing the characteristic
parameters of the faulty state with the normal state, we could
comprehensively determine whether the actuator was faulty
and which type of fault it was.

In addition, in the Eq. (1), external disturbances such as
voltage changes and load changes might also cause changes
in the characteristic parameters. Therefore, separate analysis
was needed to distinguish them. Particularly, the load distur-
bance was random, difficult to predict and monitor, so this
paper considered the load disturbance as a special type of
fault.

III. SOFTWARE AND HARDWARE DESIGN OF
THE SYSTEM
A. HARDWARE DESIGN FOR THE LOWER COMPUTER
The lower computer hardware consisted of three parts: data
acquisition unit and data processing unit, including power
module, sensor and synchronous sampling circuit, micropro-
cessor DSP2812 module, etc. Its main function is to collect
and preprocess data such as current, voltage and displacement
of ELA.

The magnetic balance Hall current sensor TBC200LTHA
was used in this system. In order to improve the load capac-
ity of the circuit and filter out high frequency interference,
a voltage follower and a second order low pass filter circuit
were added at the output of the Hall current sensor.

B. SOFTWARE DESIGN FOR THE SYSTEM
The upper computer software is jointly developed by C# and
Matlab. The main function is to carry out online real-time
monitoring, analysis and data storage of the operating state
of ELA. The software interface includes the number of each
actuator, the valve position of the corresponding valve-train,
the running statusmonitoring, the trainingmodel of BP neural
network, the fault diagnosis and the SQL data storage. If a
fault occurs, the faulty actuator immediately displays and an
early warning signal is issued, as shown in Fig. 9.

FIGURE 9. Software design.

Among them, the extraction of characteristic parameter
and the neural network fault model of electromagnetic lin-
ear actuator are mainly realized by calling Matlab software
with C#.

IV. THE FAULT DIAGNOSIS SYSTEM OF ELA BASED ON
IMPROVED BP NEURAL NETWORK
Since simple structure and strong plasticity, BP neural net-
work is widely used in the fields of function fitting, parameter
identification and classification. The fault monitoring and
diagnosis of ELA is a classic parameter identification and
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classification problem. Therefore, the BP neural network is
chosen as the model basis for fault diagnosis in this paper.

The core idea of the BP neural network algorithm is to
transform the input and output problems of a set of samples
into a nonlinear optimal solution problem. Using the gradient
descent method to solve the weights of each layer, the errors
are gradually minimized. In the model of the BP neural net-
work, the number of neurons in the input layer and the output
layer of the neural network is determined, and the number
of neurons which determines the classification ability of the
network in the hidden layer is uncertain. Therefore, the cor-
rect selection of the number of neurons in the hidden layer is
crucial for improving the network recognition performance.

In the current research on the neural network, almost all the
neurons in the hidden layer were determined according to the
experimental and the empirical formula. Therefore, in order
to realize real-time optimization of BP neural network struc-
ture and improve the learning speed of model training, this
paper proposed Gray Relational Analysis method based on
the pre-learning of BP neural network to dynamically adjust
the number of neurons in the hidden layer [32]–[38].

A. GRAY RELATIONAL ANALYSIS (GRA)
Based on the mathematical statistics method, the GRA
method finds the data (the amount of mapping) that reflects
the behavior characteristics and predicts the development
trend of the system through the GRA of the behavioral feature
data and related factor data. The GRA method is especially
suitable for small and irregular samples, which is very consis-
tent with the characteristics of actuator fault diagnosis. The
core idea of the GRA method is to judge the relationship
of the sequence according to the similarity of the geomet-
rical shapes between the sequence curves (grey correlation
degree). The closer the curves of the two sequences, the larger
correlation degree of the corresponding sequence.

B. FAULT DIAGNOSIS AND PREDICTION MODEL OF BP
NEURAL NETWORK BASED ON GRA OPTIMIZATION
In this paper, the gray relational degree is used to judge the
degree between the output of each hidden layer neuron and
the expected output, and the actual number of neurons are
calculated to optimize the structure of the BP neural network.
The main content is:

(1) Calculating the degree of relation between the output
of the k-th hidden layer neuron and the expected output
(reference sequence);

(2) Judging the magnitude of the effect of the k-th hidden
layer neuron on the output layer;

(3) Determining the size of the effect of the initial q hidden
layer neurons on the output layer.

For a given degree of association ε, ε ∈ (0, 1), if the output
of a neuron in the hidden layer is less than the expected
output, we think that the influence of the hidden layer’s node
on the output of the neural network is too small, and it is
deleted to achieve the purpose of optimizing the network
structure.

Optimizing the calculation parameters of the BP neural
network model based on Gray Relational Analysis is as
follows:

Given a training samples, t = 1, 2, · · · ,N , the number of
neurons in the input layer is n, and the number of neurons in
the output layer is m, j = 1, 2 · · · ,m. Only the number of
neurons in the hidden layer q is the amount to be determined,
k = 1, 2, · · · , q.

The expected output of the network is set to y =
(y1, y2, . . . ym)T , y ∈ R.Sequence yi = (yi(1), yi(2), . . . yi(N ))
is the expected output of the N samples corresponding to the
i-th output neuron.

Step 1: First, collect the object data Xi(t), t = 1, 2, · · · ,N .
Then, according to the actual object, the behavioral char-
acteristic sequence (reference sequence) responding system
behavior characteristics and the related factor sequence
(comparative sequence) affecting the system behavior are
determined

Reference sequence: X0 = (X0(1),X0(2), · · · ,X0(n));
Comparison sequence: Xi = (Xi(1),Xi(2), · · · ,Xi(n)).
Step 2: Taking the expected output of the neural network

as the reference sequence:

y =


y1
y2
...

ym

 =

y1(1) y1(2) · · · y1(N )
y2(1) y2(2) · · · y2(N )
...

...
...

...

ym(1) ym(2) · · · ym(N )

 (6)

Step 3: Taking the output sequence value of the k-th neuron
of the hidden layer as the test sequence:

hk = (hk (1), hk (2), · · · hk (N )) (7)

Step 4: Finding the difference sequence according to
Eq. (8) and calculating the maximum and minimum of the
difference value:

1i(t) = |x0(t)− xi(t)|

1max =
m

max
i=1

{
n

max
t=1
{|x0(t)− xi(t)|}

}
1min =

m
min
i=1

{
n

min
t=1
{|x0(t)− xi(t)|}

} (8)

Step 5: Calculating the correlation coefficient rki (t)
between the output of the k-th hidden layer’s node (compari-
son sequence) and the reference sequence according to Eq. (9)

rki(t) = r (xk(t), xi(t)) =
1min(k, i)+ ρ1max(k, i)
1ki(t)+ ρ1max(k, i)

(9)

In the formula, the resolution coefficient ρ = 0.5 ◦
Step 6: Calculating the correlation degree rki between the

output of the k-th hidden layer’s node (comparison sequence)
and the reference sequence according to Eq. (10):

rki = r(xk , xi) =
1
n

n∑
t=1

r(xk (t), xi(t)) (10)

Taking rk =
m

max
i=1
{rki} as the degree of correlation between

the k-th hidden layer’s node and the expected output of the
network.
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Step 7: Repeating steps from 1 to 6 to find the correlation
degree rk between all hidden layer’s nodes and the expected
output;

Step 8: Sort the gray correlation degree. Sort the result
in step 7 to get a gray correlation sequence. If the value of
correlation degree between the output of a hidden layer’s
node and the expected output is less than the pre-set value,
the corresponding hidden layer neurons can be deleted, and
the network structure will be optimized.

Step 9: Repeat steps from 1 to 8 until the value is not
less than the preset. The number of hidden layer’s nodes is
optimal, and the BP neural network structure is optimized.

The flow chart of the improved BP neural network algo-
rithms based on GRA is shown in Figure 10.

FIGURE 10. Flow chart of the improved BP neural network algorithm.

C. INITIAL SYSTEM PARAMETER SETTING
In the improved BP neural network fault diagnosis model,
the structure of neural network was determined three layers
according to the empirical formula, input nodes was set to 4,
hidden layer tentative nodes was set to 12, output nodes was
set to 5, the activation function of hidden layer chose loga-
rithmic sigmoid function; the preset value of the correlation

degree between the output of the hidden layer node and the
expected output was set to ε = 0.5.The number groups of
each fault samples was set to24. The input data needed to
be normalized, and the number of hidden layer nodes was
determined by Gray Relational Analysis.

The main training parameters of neural network algorithm
were as follows:

.trainparam.max_fail = 5; % Max Confirmation Failures

.trainparam.goal= 0.001;% training targetminimum error

.trainParam.epochs = 200; % training times

.trainParam.lr = 0.05; % learning rate

.trainParam.min_grad =1e-6; % minimum performance
gradient

The rest of the parameters used the default values of
Matlab.

In addition, the actual neural output of network should
deviate from the ideal output, so we respectively set the
threshold for the judgment fault diagnosis to 0.2 and
0.8.When the output is equal or greater than 0.8, it is deter-
mined that the actuator has a corresponding fault, when the
output is equal or less than 0.2, it is determined that the
actuator has no fault; when the output is between 0.2 and
0.8, it is determined that the fault diagnosis fails. Although
it cannot determine what kind of fault had occurred, it still
has reference significance.

V. ANALYSIS OF EXPERIMENT RESULTS
In order to verify the actual effect of the monitoring and diag-
nosis systemwhichwas designed in this paper, a experimental
bench was built, as shown in Figure 11. It mainly included
upper computer, DSP controller, current sensor, displacement
sensor, ELA, drive circuit and other components.

FIGURE 11. The monitoring and diagnosis experimental system of ELA
under no-load situation.

A. RELIABILITY TEST OF ELECTROMAGNETIC
LINEAR ACTUATOR
1) REPETITIVE EXPERIMENT
Electromagnetic linear actuator was easily affected by the
external factors, so it was necessary to research the reliability
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of the actuator. The experimental result of Electromagnetic
linear actuator repeat test displacement curve was shown in
the Fig12, and parameters of the experiment were as fol-
lows: setting the response time 3 ms, setting the maximal
displacement 8 mm, setting cycle time 60 ms cycle, running
1000 times perminute, sampling 200 times. The experimental
results validated that the actuator motion control had high
precision, good repeatability, and the error in the allowed
range.

FIGURE 12. Repetitive experiment of electromagnetic linear actuator.

2) CONTINUOUS OPERATION RELIABILITY TEST
After continuously running 300 hours, the actuator was dis-
assembled as shown in Figure 13, and the displacement error
of the actuator was shown in Figure 14:

FIGURE 13. The disassembly picture of ELA after running 300 hours.

In the figure, the horizontal axis was time, and the vertical
axis was the displacement error of the actuator. A set of data
was taken every 12 hours, and there were 24 groups of data.
The statistical data was drawn a line graph byMatlab. Judging
from the figure, the actuator displacement offset was very
small after running 300 hours, so the result verified that the
performance of the actuator was excellent.

FIGURE 14. The displacement error of actuator during 300-hour running.

B. CHARACTERISTIC PARAMETER ANALYSIS OF
ACTUATOR FAILURE
1) NORMAL OPERATION WITHOUT FAULT
Experimental current of electromagnetic linear actuator
under normal operation were shown in FIG.15, and calcula-
tion results of the corresponding three characteristic parame-
ters (mean value) were shown in Table 4.

FIGURE 15. Experimental current of electromagnetic linear actuator
under normal operation.

TABLE 4. The characteristic parameters of the actuator under normal
operation.

2) SETTING THE FAULT AND IDENTIFYING THE
CHARACTERISTIC PARAMETERS
When the ELA failed, some of its self-parameters were
changed up to variations of the characteristic parameters.
The faults were set during the experiment, and the test results
were shown in Table 5, 6 and 7.
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TABLE 5. The characteristic parameters variation of the actuator under
short circuit state.

TABLE 6. The characteristic parameters variation of the actuator under
poor contact state.

TABLE 7. The characteristic parameters variation of the actuator under
mechanical fault state.

From the above data, it could be concluded that when
the actuator had different faults, the apparent changes of the
3 characteristic parameters were compared with the normal
operation in the range and the direction, so the result had high
recognition degree. Therefore, it was verified that the method
could achieve the purpose of fault diagnosis.

3) INTERFERENCE ANALYSIS
According to the analysis of the equation (1), it could be seen
that the voltage disturbance and the load disturbance could
affect the operating state of the actuator, and also change
the characteristic parameter data of the real-time monitoring,
which made the diagnosis of the neural network fault. There-
fore, voltage disturbances and load disturbances needed to be
analyzed separately. Now, 20% the voltage change and 10N
load disturbance were respectively applied to the actuator,
and the variation of the characteristic parameters analyzed
was shown in Table 8 and 9.

TABLE 8. The characteristic parameters variation of the actuator
under 20% voltage change.

TABLE 9. The characteristic parameters variation of the actuator
under10N load disturbance.

C. COMPARATIVE ANALYSIS OF FAULT DIAGNOSIS
SYSTEMS BEFORE AND AFTER OPTIMIZATION
The experiment results contrasting pre-optimization and opti-
mized BP neural network fault diagnosis system for each type
of faults were shown in Table 10.

TABLE 10. Comparison of fault diagnosis results before and after
optimization.

Through the above comparison results, the following con-
clusions could be drawn as follows:

(1) The accuracy of fault diagnosis of the optimized BP
neural network algorithm based on GRA had a great improve-
ment compared with the non-optimization method, and the
average recognition accuracy reached 91.67%.

(2) The classification ability of the optimized BP neural
network algorithm based on GRA was improved compared
with the non-optimization method. Therefore, it was verified
that the online fault diagnosis method of actuator proposed in
this paper was feasible and reasonable. The operation state of
actuator could be monitored real-time.

(3) The number of trainings of the optimized BP neural
network algorithm based on GRA was significantly reduced
compared with the non-optimization. It was indicated that
this method improved the training speed, taking less time and
having higher real-time performance.

D. MONITORING AND DIAGNOSIS DISPLAY OF THE
OPERATION STATUS IN THE ENGINE VALVE-TRAIN
The on-line monitoring and diagnosis results of the operating
state of the ELA realized by the upper computer software
was shown in Figure 16. Themonitoring and diagnosis results
showed that in a certain cycle, the steady-state current values
of the two actuators of No.1 EMVT were 24.6A and 24.5A.
The valve opening stroke was 6mm and no fault occurred.

It could be proved that it was feasible to monitor the
status, predict and diagnose the fault of the ELA by the
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FIGURE 16. ELA and valve operating condition monitoring results.

FIGURE 17. The new engine valve-train based on ELA(EMVT).

above method, and we applied it into the new engine
valve-train, as shown in Fig17.

VI. SUMMARY
This paper mainly presented a real-time monitoring and
fault diagnosis system of electromagnetic linear actuator
based on machine learning method, which realized real-time
monitoring health status, fault diagnosis and early warning
during operation, and overcame many defects in the previ-
ous diagnosis methods. The system had the advantages of
intelligence, informatization, low cost, real-time performance
and reliability. The results showed that the fault diagnosis
system had high accuracy, and the actuator fault could be
pre-judged, analyzed and alerted early, which provided a
powerful guarantee for the later application of the engine
electromagnetic valve-train.
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