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ABSTRACT In practice, many autonomous vehicle developers put a tremendous amount of time and efforts
in tuning and calibrating the path tracking controllers in order to achieve robust tracking performance and
smooth steering actions over a wide range of vehicle speed and road curvature changes. This design process
becomes tiresome when the target vehicle changes frequently. In this study, a model-based Linear Quadratic
Gaussian (LQG) Control with adaptive Q-matrix is proposed to efficiently and systematically design the path
tracking controller for any given target vehicle while effectively handling the noise and error problems arise
from the localization and path planning algorithms. The regulator, in turn, is automatically designed, without
additional efforts for tuning at various speeds. The performance of the proposed algorithm is validated
based on KAIST autonomous vehicle. The experimental results show that the proposed LQG with adaptive
Q-matrix has tracking performance in both low (15kph) and high (45kph) speed driving conditions better
than those of other conventional tracking methods like the Stanley and Pure-pursuit methods.

INDEX TERMS Autonomous vehicle, intelligent vehicle, linear quadratic Gaussian (LQG) control, look-
ahead distance, path tracking.

I. INTRODUCTION
Due to the increasing demand for safe and convenient vehi-
cles, autonomous driving technology has been rapidly devel-
oped and some basic autonomous technologies, including the
advanced driver assistant system (ADAS) have been commer-
cialized and used by consumers [1], [2]. Autonomous driving
technology brings together various fields of technology, but
tracking a given path is not only the most basic function of
autonomous vehicles, but also the most important function.
As a tracking method in the early stage of development,
tracking global GPS waypoints that have already determined
is generally used. Based on this approach, path tracking con-
trollers have been developed and used to follow basic roads
or to complete a given mission.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianyong Yao.

However, because autonomous driving technology has
developed and become more sophisticated, it is necessary to
track desired paths as they change in real time according to
the surrounding situation. For example, lane change assist
(LCA) or evasive steering assist (ESA) generates avoidance
paths in real time according to changes in lane or surrounding
obstacles [3]–[5]. Unlike the simple tracking control prob-
lem, which follows an existing path, the advanced tracking
problem for autonomous vehicle should consider plant char-
acteristics including error and noise problems in the path
planning and localization stage. The controller used in an
actual autonomous vehicle should be designed to take into
account such plant problems.

In this way, the path tracking control has various consid-
erations such as the characteristics of the plant, the tracking
performance, and the ride comfort, and it is very difficult to
design and tune the controller satisfying this. In reality, many
autonomous vehicle developers put a tremendous amount of
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FIGURE 1. Control architecture for path tracking. (a) Conventional path
tracking control architecture, (b) Proposed path tracking control
architecture.

time and efforts in tuning and calibrating the path tracking
controllers in order to achieve robust tracking performance
and smooth steering actions over a wide range of vehicle
speed and road curvature changes. Therefore, it is necessary
to automatically design the controller that satisfying the target
performance based on analyzed vehicle system.

In the literature, various algorithms for tracking control
have been studied; the general tracking control architecture
is shown in Fig. 1(a). The game approach, fuzzy algorithm,
and neural-networks algorithm are used for tracking con-
trol [6]–[9]. The geometry based Stanley [10], [11] and Pure-
pursuit [12]–[14] control methods have been proposed as the
most popular algorithms; the output feedback control method
based on the look-ahead concept has also been proposed [15].
These control methods have limited local path information
that they can use because they are single input single out-
put (SISO) systems.When a desired path is vibrating, the con-
trol gain has to be lowered to solve this problem. As a result,
these controllers require a lot of tuning effort to reduce path
vibrations and to improve tracking performance.

In the case of path tracking systems, the dynamic behavior
and tracking characteristic change according to the vehicle
driving speed. In the Stanley method, the vehicle speed term
is included in the steering angle formula to compensate for
characteristic differences. In Pure-pursuit, the look-ahead dis-
tance increases in proportion to the speed, so that changes
in vehicle behavior characteristics can be complemented.
However, since the behavior characteristics of the vehicle

do not change in proportion to the speed, the problem can-
not be completely solved by this equation. So, for vehicle
implementation of this algorithm, the gain is tuned to an
appropriate value according to the speed range. In the output
feedback method, the look-ahead distance is appropriately
tuned according to the speed. This tuning method has dif-
ficulty finding a value that yields adequate performance.
In addition, tuning must be performed again if the vehicle or
the vehicle parameters change.

A model-based controller such as kinematic or dynamic
vehicle model is proposed to overcome the drawbacks of
geometry or tuning-based algorithms. Model-based con-
trollers can reduce the effort required for tuning because
they are designed based on a model that has behavior sim-
ilar to that of the vehicle [16]. Also, it is possible to solve
the problem of characteristic change according to speed
change because the model reflects vehicle driving character-
istic changes.With these advantages, model-based controllers
have been extensively studied [17]–[29]. Brown et al., Ji et al.,
Guo et al., and Cui et al. proposed model predictive control
for path tracking [18]–[22]. Marino et al. and Zhao et al.
proposed a method to design a PID controller based on the
model [23], [24]. The design of the H-infinity controller was
proposed by Hu et al. and Hu et al. [25], [26]. Cole et al.,
Xu et al., and Jiang et al. used state feedback with dynamic
bicycle model [27]–[29]. In the case of the state feedback,
it was possible to reflect the dynamic behavior in the vehicle
model, but the tracking characteristics were not considered.
In addition, since these controllers use part of the local path
function, the tracking state information is limited. In previous
research, the overall model-based controller lacked verifica-
tion of the vehicle model before it was embedded in the vehi-
cle. In addition, model lacked consideration of error and noise
characteristics from the localization and path planning stage.

Therefore, the purpose of this study is design a full-state
Linear Quadratic Gaussian (LQG) controller based on a ver-
ified vehicle model, considering both dynamic and tracking
characteristics. Through this, the controller can be designed
automatically without tuning. Using the LQG controller, it is
possible to design an observer that reflects the error and noise
characteristics in localization and planning; it is also possible
to design a regulator considering the dynamic characteristics
of the vehicle. This regulator and observer can isolate and
solve the two problems that affect the system. In addition,
because this method is based on the dynamic model, it is
possible to quickly design a new controller with the same
performance by updating the model parameters, even if the
vehicle or the vehicle specifications change.

In the case of the LQG controller, however, the vehicle
behavior characteristics that depend on the vehicle speed
can be reflected through the dynamic model, but the track-
ing characteristic changes cannot be considered. The track-
ing characteristics change according to the speed and must
be expressed through changes of the Q-matrix, which is a
part of the cost function of the LQG controller. Changes
of the Q-matrix can change the damping of the tracking
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characteristic through the blending ratio of each vehicle state
(e.g. lateral offset, heading offset). The tracking characteris-
tics are theoretically analyzed and the appropriate look-ahead
distance (Q-matrix in LQG) is found through the vehicle
model. The adaptive Q-matrix ensures a similar tracking
characteristic for various vehicle speeds and allows complete
automation without need for tuning.

In this paper, a full-state LQG controller is designed to
consider noise and error problems in the localization and
planning stage, and to improve the ride quality. The adaptive
Q-matrix, based on the look-ahead concept, is applied and it
is found that this method can be used to design a controller
automatically, without tuning at various speeds. The main
contributions of this paper are: 1) To verify the vehicle model
to be used through System Identification (ID). The verified
model is used for theoretically analyze the driving charac-
teristics and design the model based controller. 2) To find
the tracking characteristics changes when the vehicle speed
and look-ahead distance change. The look-ahead concept is
introduced to design the Q-matrix of the LQG. Through this,
the controller that maintains tracking characteristics such as
damping (overshoot and time constant) can be designed even
if the vehicle speed changes. 3) In order to compensate for
the disadvantage of the center of gravity (CG) measurement
point in LQG, an adaptive measurement point according to
the vehicle speed is proposed. Finally, by comparison with
other tracking algorithms, the performance improvement is
confirmed.

The remainder of this paper is organized as follows: In
Section II, a control architecture and vehicle modeling for
controller design are proposed. System identification for
model verification is carried out in section III. In section IV,
an adaptive look-ahead distance is proposed. In section V, the
LQG controller is designed. In section VI, designed con-
troller performance evaluation is carried out with vehicle test.
Finally, Section VI provides concluding remarks.

II. ARCHITECTURE OF TRACKING CONTROL AND
VEHICLE MODELING
A. ARCHITECTURE OF TRACKING CONTROL
The proposed LQG controller architecture for path tracking
is shown in Fig. 1(b). After taking the path information from
the path planning stage, the correct vehicle state is estimated
through the Kalman observer. Then, the optimal steering
angle is calculated through the regulator. In order to improve
the performance of the Kalman observer and the regulator,
an accurate dynamic vehicle model is needed. Using an
accurate vehicle model, observer is designed according to
the sensor noise, and the regulator is designed using a cost
function with an adaptive Q-matrix. The adaptive Q-matrix is
designed according to the dynamic characteristics depending
on the vehicle speed. In this way, it is possible to solve the
error, noise, and vibration phenomena in the localization and
path planning stages of autonomous vehicle.

The reference path information from the planning stage is
transferred with a three-order function based on the vehicle

FIGURE 2. Vehicle lateral dynamics model (Bicycle model).

body fixed coordinates, as shown as Eq. (1). The continuous
gradient trajectory is good for tracking due to holonomic
characteristics of vehicle. This three-order function method
is generally used with many path planning algorithms and
tracking devices (e.g. Mobileye).

f (x) = ax3 + bx2 + cx + d (1)

B. LATERAL DYNAMIC MODEL
The lateral dynamicmodel (bicycle model) is shown in Fig. 2.
Front and rear tire force equations are written as Eqs. (2)
and (3) respectively. Lateral force and moment equations are
written as Eqs. (4) and (5). Using Eqs. (2)-(5), the combined
vehicle lateral dynamicsmodels are shown in Eqs. (6) and (7).

Fyf = 2Caf
(
δ − θvf

)
= 2Caf αf (2)

Fyr = 2Car (−θvr ) = 2Carαr (3)

m
(
ÿ+ ψ̇Vx

)
= Fyf + Fyr (4)

Izψ̈ = lf Fyf − lrFyr (5)

ÿ =−
{
2Cαf +2Cαr

mVx

}
ẏ−
{
Vx+

2Cαf lf +2Cαr lr
mVx

}
ψ̇ (6)

ψ̈ = −

{
2Cαf lf − 2Cαr lr

IzVx

}
ẏ−

{
2Cαf l2f + 2Cαr l2r

IzVx

}
ψ̇

+
2Cαf lf
Iz

δ (7)

where Fyf and Fyr are the lateral force at the front tire and
rear tire, respectively, lf is the distance of the front axle from
vehicle CG, lr is the distance of the rear axle from vehicle
CG, L is the wheel base, δ is the steering angle, αf and αr are
the slip angle of the front and rear tires, R is the radius of the
road curve, 9 is the vehicle heading angle, β is the vehicle
slip angle, θVf and θVr are the velocity angle of the front and
rear tires, and Cαf and Cαr are the cornering stiffness values
of the front and rear tires.

C. PATH TRACKING MODEL
A path tracking model is designed based on the lateral
dynamic model using offsets of the desired path. The detailed
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FIGURE 3. Path tracking system model with look-ahead concept.

meaning of each parameter is shown in Fig. 3. The lateral
and heading offset rates are written as Eqs. (8) and (9),
respectively.

ėy = ẏ+ Vx(9 −9req) (8)

e9 = (9 −9req) (9)

The discrete path tracking system model is written as
Eq. (10), as shown at the bottom of the next page. The
discrete state space model is written as Eq. (11), as shown
at the bottom of the next page. Vector X =

[
ey ėy e9 ˙e9

]′
represents the state variables of the system, and vector u = [δ]
is the control inputs. where ey is the distance of the vehicle
CG from the desired path (lateral offset), ėy is the derivative
of lateral offset, e9 is the orientation error of the vehicle with
respect to the desired path, ˙e9 is the derivative of the heading
angle, 9req is the required yaw angle, dla is the look-ahead
distance, y is the lateral offset at look-ahead point, and u is
the control input.

In error dynamics systems, the lateral and heading offset
states correspond to ‘d’ and ‘c’ from reference path f (x),
as shown in Eq. (1). The lateral and heading offset rate states
correspond to ‘c’ and ‘2b’ from f (x). By using the third-order
local path equation, all states of the tracking model can be
determined. In this way, a full-state feedback for path tracking
control is enabled.

III. MODEL VALIDATION WITH SYSTEM
IDENTIFICATION
System identification is performed to confirm the vehicle
model and parameters used for the controller design. The
modeling accuracy will be confirmed by comparing the fre-
quency response obtained from the vehicle experiment with
that obtained from the vehicle model. The sine sweep method
is used for system identification. This method compares the
magnitude and phase of the sine wave input and output when
sine waves with various frequencies are into the system.
In practice, the steering wheel angle input is used. But, for
convenience of comparison with the vehicle model, the steer-
ing angle is calculated according to the steering gear ratio.

A. TEST VEHICLE AND MODEL PARAMTERS
The test vehicle for the experiment is an IONIQ Hybrid by
the Hyundai Motor Company. A photo of the test vehicle is

FIGURE 4. Test vehicle for experiment (KAIST Autonomous Vehicle).

TABLE 1. Test vehicle parameters.

shown in Fig. 4. The measured vehicle parameters for the
same model are shown in Table 1.

B. SINE SIGNAL INPUT WITH VARIANCE FREQUENCY
To verify the vehicle response characteristics, a sine
wave with various frequencies is generated and into
the steering angle. Since the sampling time(ts) of the
MicroAutoBox R© used to control the vehicle is 0.02sec,
the Nyquist frequency that can be measured is 155rad/s.
The sine wave frequency that 0 to 155rad/s is generated
within 20seconds. The generated frequency is Eq. (12) and
the input frequency graph is described in Fig. 5(a). In order
to verify the nonlinearity of the vehicle model, the input angle
gain is changed to 0.26rad, 0.52rad, and 0.78rad, and the
experiment is repeated two times for each steering angle.
The steering angle input is written as Eq. (13) and described
in Fig. 5(b).

f =
t
2
× 2π (

t
8.1

) (12)

δ = angle ∗ sin (f ∗ t) (13)

C. SYSTEM RESPONSE
The time and frequency responses of the lateral offset are
shown in Fig. 6. Response data are acquired from experi-
ment with six iterations. The time response with variance of
steering gain and frequency is shown in Fig. 6(a). The conver-
sion of the results of time response to frequency response is
described in Fig. 6(b). The transfer function, which converts
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FIGURE 5. Sine signal input with variance frequency. (a) Input frequency
over time. (b) Generated sinewave steering input according to modulation
frequency.

the steering input to a lateral offset output, is estimated using
the Matlab System Identification Toolbox. The estimated
transfer function is written as Eq. (14) and shown in Fig. 6(b)
as a blue dotted line. Since the transfer function in the bicycle
model is quadratic, the system identification results are esti-
mated in the same order. A comparison of system identifica-
tion results and bicycle model results is shown in Fig. 6(c).
In the high frequency regions, it is found that the results did
not fit well, but the response was relatively accurate in the
main control frequency region (blue region, [1 rad/s 10 rad/s])
of the vehicle.

ey
δ
=
−14.48s3 + 6.452s2 − 14.59s+ 161.5

s4 + 8.419s3 + 15.17s2 + 22.68s+ 7.891
(14)

The time and frequency responses of the heading offset
are shown in Fig. 7. Response data are acquired from an
experiment with six iterations, the same process used to

acquire the lateral offset results. The time response according
to the variance of the steering gain and frequency is shown in
Fig. 7(a). The conversion of the results of the time response
to the frequency response is described in Fig. 7(b). The
transfer function, using which the steering input is converted
to lateral offset output, is estimated using the Matlab Sys-
tem Identification Toolbox. The estimated transfer function
is written as Eq. (15) and shown in Fig. 7(b) as a blue
dotted line. A comparison of system identification results
and bicycle model results is shown in Fig. 7(c). In the high
frequency regions, it is found that the results did not fit well,
but the response was relatively accurate in the main control
frequency region (blue region, [1 rad/s 10 rad/s]) of the
vehicle.

e9
δ
=
−2.191s3 + 16.48s2 + 39.57s+ 21.72

s4 + 16.78s3 + 23.74s2 + 34.47s+ 6.012
(15)

In this section, the bicycle model and vehicle parameters
to be used in the controller design are verified. The path
tracking model that was designed in section II and the vehicle
parameters in Table 1 will be used for adaptive look-ahead
design and LQG controller design.

IV. ADAPTIVE LOOK-AHEAD DESIGN
The look-ahead concept is a method commonly used in lane
keeping or path tracking systems. This concept can be used
to control the driving characteristics of a vehicle on the
basis of looking ahead, similar to how a person drives. The
shorter the look-ahead distance is, the better the tracking
performance will be; however, there will also be greater
vibration of the vehicle. The longer the look-ahead distance
is, the worse the tracking performance will be; there will
also be less vibration, allowing higher passenger comfort.
Because of these characteristics, the system has been tuned
to increase the look-ahead distance as the speed increases.
In state feedback, the look-ahead concept is expressed as
the summation ratio of the lateral offset to the heading
offset.

Xt = AXt−1 + But−1 + v

Yt = CXt + w (10)

A =



1 dt 0 0

0 1−
2dt
(
Cαf + Cαr

)
mVx

2dt
(
Cαf +Cαr

)
m

2dt
(
−Cαf lf +Cαr lr

)
mVx

0 0 1 dt

0
2dt
(
Cαf lf −Cαr lr

)
IzVx

2dt
(
Cαf lf −Cαr lr

)
Iz

1−
2dt
(
Cαf l2f −Cαr l

2
r

)
IzVx



B =


0
2dtCαf
m

0
2dtcαf lf

Iz

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (11)
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FIGURE 6. System response of lateral offset: (a) Time response,
(b) Frequency response with identified data, and (c) Bode diagram
with bicycle model and estimated transfer function.

A. SYSTEM CHARACTERISTICS WITH VEHICLE SPEED
AND LOOK-AHEAD DISTANCE
The path tracking characteristics are analyzed based on the
bicycle and tracking model. The system input is the steering
angle (δ) and the system output is the lateral offset at the look-
ahead point (ey+dla·e9 ) as written as Eqs. (10) and (16). It is
possible to confirm the changes of the pole and zero while
sweeping the vehicle speed and look-ahead distance.

Y =


ey
ėy
e9
˙e9

 , C =


1 0 0 0
0 0 0 0
0 0 dla 0
0 0 0 0

 (16)

Figure 8(a) shows changes of pole and zero when the speed
changes and while the look-ahead distance is fixed at 20m.
The higher the speed, the closer the pole will move toward the
imaginary axis. In the case of zero, the zero moves along the
real axis when the speed gets faster. In the case of dominant
zero, which has the greatest influence on the system char-
acteristics, the real value decreases and the imaginary value
increases as the speed increases. This means that vibration
can occur when driving at a fast speed with short look-ahead
distance. Figure 8(b) shows changes in pole and zero when

FIGURE 7. System response of heading offset: (a) Time response,
(b) Frequency response with identified data, and (c) Bode diagram
with bicycle model and estimated transfer function.

the vehicle’s speed is fixed at 30 m/s and the look-ahead
distance is varied from 5 to 35. Changes of the look-ahead
distance did not affect the pole, and when the look-ahead
distance was large, it is confirmed that the zero is closer to
the imaginary axis along the real axis.

The dominant zero tends to move away from the imaginary
axis as the speed increases, and the dominant zero tends
to approach the imaginary axis as the look-ahead distance
becomes longer. This means that changing the look-ahead
distance depending on the vehicle speed can fix the position
of the dominant zero and keep the vehicle’s characteristics the
same even if the speed changes.

B. ADAPTIVE LOOK-AHEAD DESIGN
In Section IV A, the possibility of maintaining the track-
ing characteristics is confirmed for the designed look-ahead
distance. When an autonomous vehicle follows a desired
path, overshoot and vibration can have significant impacts
on ride quality. When an autonomous vehicle is overdamped,
it cannot converge quickly to the desired path. Therefore,
it is important to find a critical damping point that can con-
verge quickly on the path without overshoot or vibration.
Figure 9(a) shows the result for the zero location while
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FIGURE 8. Pole-Zero map for various speeds and look-ahead distances.
(a) Pole-Zero map for various vehicle speeds. (b) Pole-Zero map for
various look-ahead distances.

sweeping the look-ahead distance from 1m to 35m at high
speed (40m/s). This tracking system with speed of 40m/s is
critically damped at−2.2rad/s, when the look-ahead distance
is 20.4m.

The zero location is determined for various look-ahead
distances and speeds. The results of the system characteristics
are illustrated in Fig. 9(b). From these results, the look-ahead
distance can be set to fix the path tracking characteristics of
the vehicle at each speed. The look-ahead distance to fix the
zero location at −2.2rad/s at each speed is shown in Table 2.
The results, fitted with a quadratic equation according to the
velocity, are written as Eq. (17).

dla = 0.016× V 2
x + 0.21× Vx − 0.32 (17)

The map of the tracking system Pole-Zero, with Eq. (17),
which used the adaptive look-ahead distance, is provided
in Fig. 10. The dominant zero is maintained at −2.2rad/s
even if the vehicle speed changes. Therefore, using the pro-
posed look-ahead distance, it is possible to control the vehi-
cle with the same characteristics, even if the vehicle speed
changes.

FIGURE 9. Pole-Zero map with sweeping look-ahead distance.
(a) Pole-Zero map with look-ahead distance for distances of 0 to 40m at
40m/s speed. (b) Pole-Zero map with look-ahead distances of 0 to 40m at
each speed.

FIGURE 10. Pole-zero map with adaptive look-ahead distance.

V. LQG CONTROLLER DESIGN FOR PATH TRACKING
The full-state LQG controller is used for path tracking con-
trol. Since the local path equation has all states information
of the tracking model, full-state controller can be designed.
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TABLE 2. Desired look-ahead distance.

The LQG controller is a model-based controller that can
be applied without manual tuning even if the vehicle plant
changes. The regulator and observer design can solve the
tracking problem and localization noise problem separately.
Proposed LQG control architecture is shown in Fig. 1. In the
previous section, section III, the bicycle model is confirmed
to have characteristics similar to those of the actual vehicle
in the region of interest. Therefore, the controller is designed
based on the designed bicycle model and parameters.

A. REGULATOR DESIGN
When the linear control system is written as in Eq. (10),
the LQR control input (KLQR) can be expressed as Eq. (18).

ut−1 = −KLQRXt−1 (18)

The quadratic cost function to be minimized is described
in Eq. (19). It is possible to determine the appropriate cost by
setting the ratio of state and control gain through the ratio of
Q to R. In this problem, the designed look-ahead distance is
used as the ratio of the lateral offset (ey) and heading offset
(e9 ) to Q. The designed values of Q and R are given in
Eq. (20).

J =
∑∞

t=0
XTt QXt + u

T
t Rut (19)

Q =


1 0 dla 0
0 1 0 0
dla 0 d2la 0
0 0 0 1

R = 1 (20)

The error covariance (Pt+1) is calculated using the Discrete
Algebraic Riccati Equation (DARE), Eq. (21); the regulator
gain (KLQR) is calculated using the error covariance (Pt+1) in
Eq. (22).

Pt+1 = Q+ATPtA−ATPtB
(
BTPtB+R

)−1
BTPtA (21)

KLQR =
(
BTPtB+ R

)−1
BTPtA (22)

B. KALMAN OBSERVER DESIGN
The linear system with noise is described by Eq. (23). Y is
the vector of the measured outputs available for feedback.
In this problem, the measured outputs are the lateral and
heading offset and the differentiated value of the lateral and
heading offset. The vectors Y and C are described in Eq. (24).

Two noises affect the system: additive white Gaussian system
noise v and white Gaussian measurement noise w.

Xt = AXt−1 + But−1 + v

Yt = CXt + w (23)

Y =


ey
ėy
e9
˙e9

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (24)

State(X̂t ) and output(Ŷt ) as estimated by an observer are
described in Eq. (25). The observer estimates state X using
the past step measurements and inputs. The matrix L is the
Kalman observer gain.

X̂t = AX̂t−1 + But−1 + L(Yt − Ŷt )

Ŷt = CX̂t−1 (25)

The Kalman observer gain L is calculated using Eq. (26),
and the noise information W and V to obtain the Kalman
observer gain are described in Eq. (27). The values of W
and V are tuned to meet the characteristics of this system
(localization and path generation).

L = 6tCT
(
C6tCT

+W
)−1

(26)

W =


25 0 0 0
0 36 0 0
0 0 0.3 0
0 0 0 36

 , V =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (27)

Error covariance (6t ) for Kalman observer gain is deter-
mined by the following DARE equation, as described in
Eq. (28) and Eq. (29).

6t+1 = A6tAT+V−A6tCT
(
C6tCT

+W
)−1

C6tAT (28)

6t = E[
(
xt − x̂t

) (
xt − x̂t

)T ] (29)

C. ADAPTIVE MEASURMENT POINT
In the previous section IV. B, the damping characteristic
changed according to the look-ahead distance concept. This
concept is applied to the LQG in the form of a Q-matrix.
However, it has an effect similar to obtaining the forward
information by using the ratio of the lateral and heading offset
at the CG point of the current vehicle, rather than looking
ahead [30]. For large curvature roads, this method provides
limited information compared to the Stanley, Pure-pursuit,
and Look-ahead tracking models, which measure offset at the
front position. This drawback becomes worse as the curvature
becomes larger and the vehicle speed faster. As the driving
speed increases and steady state error occurs, it is necessary
to improve the performance by moving the position of the
measurement forward. The adaptive measurement point is
described in Fig. 11; the equation is Eq. (30)

Pm (Vx) =


0 (Vx < 4[m/s])
1
8
Vx −

1
2

(4 ≤ Vx < 12[m/s])

1 (12 ≤ Vx[m/s])

(30)
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FIGURE 11. Adaptive measurement point concept.

VI. PERFORMANCE EVALUATION WITH
VEHICLE EXPERIMENT
The designed controller is embedded in the autonomous test
vehicle for performance evaluation. The designed path track-
ing system is tested under various test conditions and various
vehicle speeds. Finally, the designed controller (LQG with
adaptive Q-matrix (LQG)/LQG with adaptive Q-matrix +
adaptive measurement point (LQG with AM)) is compared
with other generally-used controllers (Stanley and Pure-
pursuit).

A. VEHICLE SETTINGS
The architecture of the autonomous test vehicle is shown
in Fig. 12. The desired path is given as GPS waypoints,
and the position of the current vehicle is acquired through
DGPS RTK. The local path (vehicle fixed coordinates) is
generated based on the vehicle position and desired path. The
designed controller is embedded in MicroAutoBox R© and
calculated steering angle command is sent to vehicle motor
driven power steering (MDPS) module. Details of the model
and specifications of DGPS RTK and MicroAutoBox R© are
provided in Table 3.

TABLE 3. Autonomous test vehicle system specifications.

B. DRIVING SCENARIOS FOR EXPERIMENT
The performance of the proposed controller is evaluated
based on two scenarios. The first scenario is a double lane
change (DLC) maneuver test, as shown in Fig. 13. The DLC
is an ISO3880 evaluation criterion that is generally used to
evaluate vehicle dynamics performance, like the electro sta-
bility program (ESP). Therefore, the DLC is a very severe test
scenario for path tracking. The second scenario is a constant
round test scenario, as shown in Fig. 14. This scenario starts

FIGURE 12. Test vehicle control architecture.

with a straight path; vehicle then enters a constant curvature,
enters a reverse curvature, and then exits to a straight path
again. This test scenario can evaluate the tracking perfor-
mance of steady state error for severe curvature and severe
curvature changes. The test is conducted under two vehicle
speed conditions of 15kph and 45kph, with all controllers.

C. EXPERIMENT RESULTS
The results of each experiment are compared according to
the lateral offset, heading offset, and steering angle. The
results show how the tracking performance changes accord-
ing to each set of experimental conditions and how much the
designed part improves the performance. LQG with AM and
LQG are compared to determine the effect of measurement
position change on the tracking performance. Through com-
parison with the popular Stanley and Pure-pursuit methods,
the performance difference between the model-based auto-
matically designed controller and the tuning-based controller
is determined. The Stanley and Pure-pursuit controllers were
tuned a lot to achieve maximum controller performance.
Detailed modeling of the Stanley and Pure-pursuit models is
provided in the APPENDIX.

1) DOUBLE LANE CHANGE (DLC) TEST SCENARIO
The DLC scenario test results at 15kph are shown in Fig. 15.
Because of the low-speed driving situation, all four con-
trollers exhibit good performance, within 10cm lateral offset.
LQGwith AM and LQG show the same performance because
the adaptive measurement point at 15kph is 0.

The DLC scenario test results at 45kph are shown in
Fig. 16. As the speed increases, the performance of each
controller varies depending on the controller characteristics.
Since the DLC scenario is a very severe one of driving at
45kph, the lateral offset increases to 0.5m-1.0m.
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FIGURE 13. Double Lane Change Scenario for Performance Evaluation.

FIGURE 14. Constant round scenario for performance evaluation.

In the Stanley model, as the speed increases, kstanley does
not fully respond to the change in speed, and the steering
wheel trembles during tracking. The tracking performance is
slightly lower than that of the LQG controller. In the case
of the Pure-pursuit model, as the vehicle speed increases,
the look-ahead distance becomes longer proportional to the
speed. A long look-ahead distance leads to smooth driving
without vibrations, but the tracking performance is poor.
Also, when the vehicle leaves the desired path, the long look-
ahead distance makes the time of recovery to the path longer.
In the case of the LQG, the performance does not deteriorate
with the change of the tracking and the vehicle model with
proper speed. In the case of LQG with AM, the lateral offset
is within 0.4m, the best performance among the controllers.

To quantitatively evaluate the performance of the con-
troller, the peak lateral offset, the peak heading offset, and the
peak steering speed are compared. The comparison results at
each speed condition are shown in Fig. 17. As can be seen
in the previous analysis, each controller has good and simi-
lar performance at low speed. All controllers controlled the
lateral offset to within 0.1m. In the 45kph driving condition,
the performance varies depending on the characteristics of the
controllers.

In the case of the Pure-pursuit model, the peak lateral
offset performance drops close to 1m and the peak steering
speed is very low. For proper use of Pure-pursuit, rather than
simply increasing the look-ahead distance in proportion to
speed, look-ahead distance tuning is required for each speed
section. In the case of the Stanley model, the peak lateral
offset is 0.5m, which is similar to LQG. However, as the

FIGURE 15. Tracking performance experiment results with designed LQG
with forward measurement, LQG, Stanley, and Pure pursuit controllers for
DLC test scenario (15kph). (a) Global driving path. (b) Lateral offset,
(c) Heading offset, (d) Steering wheel angle.

speed increases, there is a slight difference in performance
from the LQG. Therefore, it is predicted that the lateral
offset performance of the Stanley model will deteriorate if the
vehicle speed increases further. For LQGwith AM, the steady
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FIGURE 16. Tracking performance experiment results with designed LQG
with forward measurement, LQG, Stanley, and Pure-pursuit controllers for
DLC test scenario (45kph). (a) Global driving path. (b) Lateral offset,
(c) Heading offset, (d) Steering wheel angle.

FIGURE 17. Comparison of experiment results (Peak lateral offset, Peak
heading offset, Peak steering speed) for DLC test scenario.

state error is reduced by using an adaptivemeasurement point.
The peak lateral offset is within 0.3m, which shows that the
tracking performance of this model is better than that of the
conventional LQG.

FIGURE 18. Tracking performance experiment results with designed LQG
with forward measurement, LQG, Stanley, and Pure-pursuit controllers for
constant round test scenario (15kph). (a) Global driving path. (b) Lateral
offset, (c) Heading offset, (d) Steering wheel angle.

2) CONSTANT ROUND TEST SCENARIO
The constant round scenario test results at 15kph are shown
in Fig. 18. As with the previous DLC experiment results, all
controllers show good performance at low speed. The LQG
based controllers show heading offset performance better
than those of the Stanley and Pure-pursuit methods.

The constant round scenario test results at 45kph are shown
in Fig. 19. There is no problem, with all of the controllers
simply following the desired path. In the case of the Stanley
model, as the speed increases, the lateral offset performance
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FIGURE 19. Tracking performance experiment results with designed LQG
with forward measurement, LQG, Stanley, and Pure-pursuit controllers for
constant round test scenario (45kph). (a) Global driving path. (b) Lateral
offset, (c) Heading offset, (d) Steering wheel angle.

becomes lower than that of LQG. The Pure-pursuit model
showed a large lateral offset, as in the DLC test scenario,
and showed a large overshoot with varying curvature. In the
case of LQG with AM, the steady state error decreased.
This model showed the best performance for the whole
driving path.

Quantitative comparison and evaluation results for con-
troller performance are shown in Fig. 20. It can be seen that
all controllers have results similar to those in the DLC test
scenario. However, as the speed increases in the constant

FIGURE 20. Comparison of experiment results (Peak lateral offset, Peak
heading offset, Peak steering speed) for constant round test scenario.

round test scenario, the performance starts to vary among
controllers. In 15kph results, the peak lateral offset of LQG
with AM is lower than 0.3m. On the other hand, in 45kph
results, the peak lateral offset values of the Stanley and Pure-
pursuit models are larger than 0.6m and 0.9m, respectively.
These differences may seem small, but these values are
important in determining whether to cross a side lane or not.

The overall tracking characteristics of the controller are
similar. It is confirmed that the performance is determined
according to the characteristics of each controller irrespec-
tive of the test scenario. It is verified that the designed
and proposed LQG with AM shows high tracking perfor-
mance, in addition to full automation according to the vehicle
driving speed.

Experimental results show that the performance of LQG
using the adaptive Q-matrix is better than those of the other
controllers, even if the vehicle speed changes. Also, it was
possible to improve the LQG performance by including an
adaptive measurement point.

VII. CONCLUSION
An autonomous vehicle tracking controller is designed based
on a verified vehicle bicycle model. The designed full-state
feedback LQG controller solves the localization and path
planning stage problems of error and noise, which occur in
actual autonomous vehicle driving.

The design of the observer improved the vibration phe-
nomenon, which could mitigate anxiety and improve the
ride comfort of passengers. The two main ideas proposed
here played a major role in improving the tracking perfor-
mance of the controller. The Adaptive Q-matrix showed crit-
ical damped tracking performance with no overshoot for all
tested vehicle speeds. Use of an adaptive measurement point
reduces steady state error at high speed and large curvature
driving conditions. Finally, the automatically designed con-
troller showed performance better than those of the Stanley
and Pure-pursuit controllers in terms of tracking performance
(e.g. lateral offset, heading offset) and passenger comfort,
as verified by actual vehicle experiment.

Through this research, autonomous vehicle safety is
enhanced via tracking performance improvement, and
reduced efforts in tuning for design controller. As future
works, it is interesting to consider performance evaluation
with other disturbances, e.g., lateral force and moment dis-
turbances and model uncertainties.
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APPENDIX
A. STANLEY TRACKING MODEL
The Stanley control method was first used for the Stanley
vehicle in the DARPA Grand Challenge [30]. Steering angle
is calculated based on the geometry by measuring the lateral
offset at the front wheel (ef ). The calculated steering angle is
written as Eq. (31).

δstanley = e9 + tan−1(
kstanley · ef

vx
) (31)

where kstanley is the proportional gain for the Stanley con-
troller. In this study, kstanley= 0.83 is used in this study.

B. PURE-PURSUIT TRACKING MODEL
The Pure-pursuit tracking model is first discussed in [31].
Several vehicles used this strategy at the DARPA
Grand/Urban Challenge [30], [32]. The steering angle is
calculated based on the look-ahead distance angle(α), which
is followed by a circle to the point where the look-ahead
distance(dla) meets the desired path. The calculated steering
angle is written as Eq. (32).

δpp = tan−1
(
2L · sin (α)

dla

)
= tan−1(

2L · sin(α)
kpp · vx

) (32)

where kpp is the proportional gain for the pure-pursuit con-
troller. In this study, kpp= 0.08 is used in this study.
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