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ABSTRACT This study aims to increase the control’s dimensions of the electroencephalography
(EEG)-based brain-computer interface (BCI) systems by distinguishing between the motor imagery (MI)
tasks associated with fine body-parts of the same hand, such as the wrist and fingers. This in turn can
enable individuals who are suffering from transradial amputations to better control prosthetic hands and to
perform various dexterous hand tasks. In particular, we present a novel three-stage framework for decoding
MI tasks of the same hand. The three stages of the proposed framework are the input, feature extraction,
and classification stages. At the input stage, we employ a quadratic time-frequency distribution (QTFD) to
analyze the EEG signals in the joint time-frequency domain. The use of a QTFD enables to transform the
EEG signals into a set of two-dimensional (2D) time-frequency images (TFIs) that describe the distribution
of the energy encapsulated within the EEG signals in terms of the time, frequency, and electrode position.
At the feature extraction stage, we design a new convolutional neural network (CNN) architecture that can
automatically analyze and extract salient features from the TFIs created at the input stage. Finally, the features
obtained at the feature extraction stage are passed to the classification stage to assign each input TFI to one
of the eleven MI tasks that are considered in the current study. The performance of our proposed framework
is evaluated using EEG signals that were acquired from eighteen able-bodied subjects and four transradial
amputated subjects while performing elevenMI tasks within the same hand. The average classification accu-
racies obtained for the able-bodied and transradial amputated subjects are 73.7% and 72.8%, respectively.
Moreover, our proposed framework yields 14.5% and 11.2% improvements over the results obtained for the
able-bodied and transradial amputated subjects, respectively, using conventional QTFD-based handcrafted
features and a multi-class support vector machine classifier. The results demonstrate the efficacy of the
proposed framework to decode the MI tasks associated with the same hand for able-bodied and transradial
amputated subjects.

INDEX TERMS Convolutional neural networks (CNN), deep learning, electroencephalography (EEG),
motor imagery, time-frequency distribution.

I. INTRODUCTION
Transradial amputations can profoundly reduce the quality of
life of affected individuals [1]. This can be attributed to the
fact that individuals who are suffering from transradial ampu-
tations are incapable of performing various dexterous hand
movements that are necessary for many essential activities of
daily living. Recently, many remarkable advances have been

The associate editor coordinating the review of this article and approving
it for publication was Lei Ding.

witnessed in developing dexterous upper limb robotic pros-
thetics, such as robotic prosthetic hands [2], [3]. These pros-
theses have the potential to enable individuals with transradial
amputations to restore a significant part of their missing
limbs [4]. In this regard, brain-computer interfaces (BCI) sys-
tems, which analyze brain activity and translate it into control
commands, have been designed and employed to increase the
control dimensions of the existing upper limb prostheses [5].

Among the different techniques used to record brain activ-
ities, the electroencephalography (EEG) technique has been
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widely employed in designing BCI systems [5]–[7]. This can
be attributed to the noninvasive nature of the EEG technique,
high portability, low cost, and high temporal resolution of the
recorded brain activities [5]. Different types of EEG signals
have been utilized in EEG-based BCI systems, such as the
steady-state visual evoked potentials, P300 evoked potentials,
and motor imagery (MI). In this work, we focus on analyzing
brain activities related toMI tasks in order to generate control
commands for prosthetic hands. In particular, a MI task is the
process of imagining to perform a specific task without actu-
ally performing it [8], [9]. Such a process involves the acti-
vation of different regions in the brain, including the primary
motor cortex , dorsal and ventral pre-motor cortices, primary
and secondary sensory areas, and pre-frontal areas [9], [10].
Therefore, developing EEG-basedBCI systems that can accu-
rately distinguish between different MI tasks is crucial to
enhance the control of neural-based prosthetic hands, which
in turn can improve the quality of life for individuals who are
suffering from transradial amputations.

Literature reveals that the majority of the existing MI stud-
ies have focused on developing EEG-based BCI systems that
can distinguish between the MI tasks related to five different
large body-parts [6], [11]–[17], namely the left hand, right
hand, left foot, right foot, and tongue. Despite the promising
results obtained for distinguishing between the MI tasks of
the aforementioned large body-parts, the limited number of
control signals produced by these EEG-based BCI systems,
which corresponds to the number of MI tasks supported
by these systems, can significantly reduce the potential of
utilizing such systems to control dextrous prosthetic hands
that require a higher number of control signals.

Towards increasing the control’s dimensions of the EEG-
based BCI systems, few researchers have recently investi-
gated the possibility of decoding the MI tasks related to
fine body-parts, such as the MI tasks associated with fingers
of the same hand [7], [18], the MI tasks associated with
the wrist within the same hand [19], [20], and grasp-related
MI tasks that are performed by the same hand [7], [21].
Distinguishing between the EEG signals associated with the
MI tasks that are performed by the fine body-parts of the
same hand, such as the wrist and fingers, is considered
more challenging than distinguishing between the EEG sig-
nals associated with the MI tasks performed by different
large body-parts, such as the left hand, right hand, feet, and
tongue [7], [19], [22], [23]. This can be attributed to several
factors, including: (1) The MI tasks related to fine body-
parts of the same hand, such as wrist and fingers, activate
relatively close and small regions of the primary motor cortex
within the same hemisphere of the brain [19], [22], [24].
(2) The limited spatial resolution and the low signal-to-
noise ratio (SNR) of the EEG signals degrade the capabil-
ity of capturing the brain activities generated in response
to the MI tasks performed by the wrist and fingers within
the same hand [22], [23]. (3) EEG signals are nonstation-
ary signals with time-varying spectral characteristics. This
implies that analyzing the EEG signals in the time-domain or

the frequency-domain is considered inadequate [7]. In fact,
the nonstationarity nature of the EEG signals imposes the
need to represent the EEG signals in a joint time-frequency
domain that can better describe the variations in the spec-
tral characteristics of the EEG signals with respect to the
time [25].

The aforementioned factors stipulate the necessity of
employing robust feature extraction and classification tech-
niques to develop EEG-based BCI systems that can accu-
rately distinguish between the MI tasks performed by fine
body-parts of the same hand. Over the past two decades,
researchers have utilized various signal processing tech-
niques to extract features from the EEG signals, such as
the common spatial patterns (CSP) [26], [27] and Wavelet
transform [28]. The obtained handcrafted features were clas-
sified into different MI tasks using different classification
methods, such as the support vector machines (SVM) [29]
classifier. Despite the promising results obtained based on
using handcrafted features that are extracted from various
signal processing techniques, the process of manually design
new features that characterize the most relevant information
of the EEG signals is considered challenging [30]. This is
due to the difficulty of selecting the most optimal features
from a large number of time-domain, frequency-domain, and
time-frequency domain features that can be computed based
on using different signal processing techniques [30].

Recently, deep learning (DL) methods have achieved
promising performance improvements in the fields of image
classification and computer vision [31], [32]. The ability of
the DLmethods to learn latent features from the input images
and signals alleviate the need to manually design the features.
In this vein, the use of convolutional neural networks (CNNs),
which is one of the commonly used DL methods, in image
classification problems has lead to a significant improvement
in the classification accuracy compared to other approaches
that rely on handcrafted features [12], [33]. Despite the fact
that the vast majority of the existing MI EEG-based BCI sys-
tems are based on using handcrafted features, few researchers
have recently explored the possibility of utilizing CNNs to
decode MI tasks related to large body-parts [33], such as the
left hand, right hand, feet, and tongue. For example, Tabar and
Halici [6] utilized the short time Fourier transform (STFT)
to convert EEG signals into two-dimensional (2D) images.
Then, a CNN is used to extract features from the obtained 2D
images. The extracted features are fed into a stack autoen-
coder network to classify the EEG signals into two classes
of MI task, namely the left hand and right hand MI tasks.
The average classification accuracy obtained by the proposed
approach based on the publicly available BCI competition IV
dataset 2b [34] was 74.8%. Lawhern et al. [12] proposed a
compact CNN (EEGNet) that employs depthwise and spatial
convolutions to extract features from the EEG signals. The
proposed EEGNet was evaluated using the publicly avail-
able BCI competition IV dataset 2a [35], which consists of
EEG signals that were recorded for nine healthy subjects
while performing four MI tasks related to the left hand, right
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hand, feet, and tongue. The average classification accuracy
obtained using the EEGNet computed over the four classes of
MI tasks was approximately 69%. Dose et al. [14] proposed
a CNN architecture that consists of two convolutional layers
for decoding MI tasks based on EEG signals. In particular,
the first layer convolves the EEG signals along the time
axis, while the second layer convolves the results of the
first layer along the EEG channels. The performance of the
proposed CNN architecture was evaluated using the publicly
available Physionet EEG Dataset [36], [37], which consists
of EEG signals that were recorded for 109 healthy subjects
while imagining to opening and closing both feet, both fists,
left fist, and right fist. The average classification accuracy
obtained using the proposedCNN architecture computed over
the four classes of MI tasks was 68.1%. In another study,
Schirrmeister et al. [13] designed three different CNN archi-
tectures, namely shallow, deep, and residual CNN architec-
tures, for decodingMI tasks using EEG signals. The effects of
design choices were systematically evaluated for each of the
three CNN architectures. Moreover, the classification perfor-
mance of each architecture was validated against a baseline
decoding method, namely the filter bank common spatial
patterns (FBCSP). Experimental results, which are obtained
based on the publicly available BCI Competition IV dataset
2a [35], show that the shallow and deep architectures were
able to archive classification accuracies that are very close to
the accuracies obtained using the FBCSP method for decod-
ing MI tasks using EEG signals. In fact, previous studies that
investigated the use of DL to decode MI tasks suggest the
feasibility of utilizing CNNs to distinguish between the EEG
signals associated with MI tasks that are performed by large
body-parts, including right hand, left hand, feet, and tongue.
However, the existing DL-based studies have not investigated
the capability of utilizing CNNs to distinguish between EEG
signals that are associated with MI tasks that are performed
by fine body-parts of the same hand, such as the wrist and
fingers.

In this study, we propose a novel framework that can dis-
tinguish between elevenMI tasks that are associated with fine
body-parts of the same hand, including the rest, three differ-
ent grasp-related tasks, the flexion/extension and ulnar/radial
deviation tasks of the wrist, and the flexion/extension task of
each finger, using EEG signals. In particular, the proposed
framework consists of three stages, namely the input, fea-
ture extraction, and classification stages. At the input stage,
we employ a quadratic time-frequency distribution (QTFD)
to analyze the EEG signals in the joint time-frequency
domain. The use of a QTFD enables to transform the EEG
signals into a set of 2D time-frequency images (TFIs) that
describe the distribution of the energy encapsulated within
the EEG signals in terms of the time, frequency, and electrode
position. At the feature extraction stage, we design a new
CNN architecture that can automatically analyze and extract
salient features from the TFIs obtained at the input stage.
Finally, the features obtained at the second stage are passed to

the classification stage, which in turn assigns each input TFI
to one of the eleven MI tasks considered in this work.

To evaluate the performance of our proposed framework,
we have recorded EEG signals for eighteen able-bodied
subjects and four transradial amputated subjects while per-
forming eleven MI tasks using the same hand. A ten-fold
cross-validation procedure is employed to train and test the
feature extraction stage and the classification stage of our
proposed framework using the TFIs constructed at the input
stage from the recorded EEG signals of each subject. The
classification performance is computed for each subject in
terms of four different evaluation metrics, namely the classi-
fication accuracy, recall, precision, and F1−score. Moreover,
the performance of our proposed framework is comparedwith
the performance obtained using handcrafted features that are
extracted from the QTFD-based time-frequency representa-
tion (TFR) and classified using a multi-class support vector
machine (SVM) classifier. The experimental results demon-
strate the capability of our proposed framework to decode the
eleven MI tasks that are associated with the same hand. In
addition, the results obtained using our proposed framework
are significantly higher than the results obtained using the
QTFD-based handcrafted features which are classified using
multi-class SVM classifier. To the best of our knowledge, this
is the first study that investigates the possibility of employing
CNNs to learn features from a QTFD-based TFR of the EEG
signals and to distinguish between eleven MI tasks that are
associated with fine body-parts of the same hand for both
able-bodied and transradial amputated subjects.

The rest of this paper is structured as follows: Section II
describes the experimental protocol and the proposed frame-
work for decodingMI tasks within the same hand. The results
and discussion are presented in sections III and IV, respec-
tively. Finally, the conclusion is provided in section V.

II. MATERIALS AND METHODS
A. SUBJECTS
In this study, we utilize an extended version of the EEG
dataset described in our previous work [7]. In particular,
the EEG signals were recorded for two groups of subjects.
The first group of subjects consists of eighteen able-bodied
subjects (six females and twelve males, four left-handed and
fourteen right-handed, with an average ± standard deviation
age of 21.2± 2.9 years). We refer to the eighteen subjects in
the first group as S1 to S18. The second group of subjects con-
sists of four male subjects with transradial amputations. The
average ± standard deviation age of the amputated subjects
is 28.5 ± 6.2 years. Table 1 describes the characteristics of
the amputations associated with each of the four amputated
subjects. We refer to the four subjects in the second group as
A1 to A4. Before participating in the experiment, each subject
received a thorough explanation of the experimental proce-
dure and signed a consent form. The experimental procedure
of this study was approved by the Research Ethics Committee
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TABLE 1. Characteristic information about each of the four transradial amputated subjects who participated in this study. For each amputated subject,
we provide the dominant hand, amputated hand, elapsed time since amputation, and the percentage of the remaining forearm. The percentage of the
remaining forearm is computed as the ratio between the length of the amputated forearm measured from the elbow and the length of the contralateral
intact forearm measured from the elbow to the wrist [38]. The right hand and left hand are abbreviated as RH and LH, respectively.

at the German Jordanian University and was conducted in
accordance with the Declaration of Helsinki.

B. EXPERIMENTAL PROCEDURE
At the beginning of the experiment, each subject was asked
to sit on a chair and to relax her/his arms on a table located
in front of her/him. A computer screen was placed on the
table at a distance of approximately 50 cm from the subject
and employed to display various visual cues. In particular,
each visual cue notifies the subject to imagine performing a
specific hand task. The MI tasks considered in this work can
be grouped into four categories: (1) Rest (M1), (2) Grasp-
related tasks, including the small diameter grasp (M2), lateral
grasp (M3), and extension-type grasp (M4), (3) Wrist-related
tasks, including the ulnar and radial deviation (U/R) of the
wrist (M5) and the flexion and extension (F/E) of the wrist
(M6), and (4) Fingers-related tasks, including the F/E of the
index finger (M7), F/E of the middle finger (M8), F/E of the
ring finger (M9), F/E of the little finger (M10), and F/E of
the thumb finger (M11). Figure 1 shows sample images of the
visual cues associated with each hand imagery task.

FIGURE 1. Sample images of the visual cues employed for each
MI task [7].

The experiment starts by displaying a visual cue on the
computer screen for three seconds. Then, a black screen is
displayed to prompt the subject to start imagining to perform
the task associated with the displayed visual cue. The able-
bodied subjects were asked to imagine performing each task
using their right hands, while the transradial amputated sub-
jects were asked to imagine performing the tasks using their

lost hands. Moreover, the subjects were asked to retain their
eyes closed during the imagination of each hand task. The
number of trials recorded per each imaginary hand task for
each able-bodied subject is 40 trials, while the number of tri-
als recorded per each imaginary hand task for each transradial
amputated subject is 56 trials. The lengths of the recorded
trials vary depending on the hand task being imagined. In
particular, the duration of each trial, including the duration of
the visual cue, recorded during the rest, wrist-related tasks,
and fingers-related tasks is equal to 10 s. On the other hand,
the duration of each trial, including the duration of the visual
cue, associated with the small diameter grasp, lateral grasp,
and extension-type grasp tasks is equal to 14 s, 14 s, and 12 s,
respectively.

C. RECORDING AND PREPROCESSING OF EEG SIGNALS
The BioSemi ActiveTwo EEG system (Biosemi B.V., Ams-
terdam, Netherlands) was used to record the EEG signals
using 16 Ag/AgCl electrodes at a sampling rate of 2048 Hz.
The utilized EEG electrodes are arranged on the scalp accord-
ing to the 10 − 20 international electrode placement system
at the following locations: C3, C4, Fp1, Fp2, F4, Fz, F3, T7,
Cz, T8, P4, Pz, P3, O1, Oz, and O2. The employed 16 EEG
electrodes are referenced to the common mode sense (CMS)/
driven right leg (DRL) at the C1 and C2 locations. The
recorded EEG signals were filtered by applying a bandpass
filter with a bandwidth of 0.5 − 32.5 Hz [21], [39]. The
filtered EEG signals were downsampled to 256 Hz. More-
over, the automatic artifact removal (AAR) toolbox [40], [41]
was employed to reduce the muscle and electrooculogra-
phy (EOG) artifacts in the filtered EEG signals.

D. DECODING MI TASKS OF THE SAME HAND
In this study, we propose a novel framework to decode the
eleven MI tasks of the same hand that are described in sub-
section II-B. In particular, the proposed framework consists of
three stages, namely the input, feature extraction, and classifi-
cation stages. At the input stage, we employ a quadratic time-
frequency distribution (QTFD) to analyze the EEG signals
in the joint time-frequency domain. The use of a QTFD
enables to transform the EEG signals into a set of 2D time-
frequency images (TFIs) that describe the distribution of the
energy encapsulated within the EEG signals in terms of the
time, frequency, and electrode position. Detailed description
of the input stage is provided in subsection II-D1. At the
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FIGURE 2. The architecture of the proposed framework for decoding MI tasks of the same hand.

feature extraction stage, we construct a CNN to automatically
analyze and extract salient features from the TFIs obtained
at the input stage. The structure of the CNN constructed at
the feature extraction stage is provided in subsection II-D2.
Finally, the features obtained at the second stage are passed to
the classification stage, which assigns each input TFI to one
of the eleven MI tasks considered in this work. The structure
of the classification stage is provided in subsection II-D3.
Figure 2 illustrates the architecture of our proposed frame-
work for decoding MI tasks of the same hand.

1) INPUT STAGE
EEG signals are nonstationary signals that comprise time-
varying spectral components [7]. Hence, analyzing the EEG
signals in the time-domain or the frequency-domain may
not capture the spectral variations of the EEG signals over
time [42]. In this study, we propose the use of a QTFD,
namely the Choi-Willimas Distribution (CWD) [43], to ana-
lyze the EEG signals. The CWD can be viewed as a
two-dimensional (2D) transformation that maps the original
time-domain EEG signals into a joint time-frequency domain
which has an excellent resolution in both the time and fre-
quency domains [7], [25], [43]–[45]. In particular, the use
of the CWD enables the conversion of the EEG signals into
2D TFIs that can quantify the distribution of the energy
encapsulated in the EEG signals over the time and frequency
domains [25]. Therefore, the objective of the input stage is to
transform the EEG signals into TFIs.

In order to compute the TFIs of the EEG signals, we utilize
a sliding window that divides the EEG signal of each elec-
trode into a set of overlapped segments, such that the size
of each segment is 64 samples and the overlap between any
two consecutive segments is 10 samples. For a given EEG
segment, denoted by s(c,i)(t), where c ∈ E = {C3, C4, Fp1,
Fp2, F4, Fz, F3, T7, Cz, T8, P4, Pz, P3, O1, Oz, O2} rep-
resents the EEG electrode associated with the EEG segment
and i represents the time index of the first sample in the
window position that corresponds to the segment, the CWD-
based TFI of s(c,i)(t), denoted as TFI(c,i), can be constructed
as follows [25], [44]:

1. Compute the analytic signal of s(c,i)(t), denoted as
x(c,i)(t), as expressed below:

x(c,i)(t) = s(c,i)(t)+ jH{s(c,i)(t)}, (1)

whereH{·} is the Hilbert transform [46] and j =
√
−1.

2. Compute the CWD of x(c,i)(t), denoted as TFI(c,i)(t, f ),
as follows [43], [47]:

TFI(c,i)(t, f ) =
∫
∞

−∞

∫
∞

−∞
χx(c,i) (µ, ν)κ(µ, ν)e

−j2π(f ν+tµ)∂ν∂µ, (2)

where χx(c,i) (µ, ν) is the ambiguity function of x(c,i)(t),
and κ(µ, ν) is a time-frequency smoothing kernel. In
particular, χs(µ, ν) represents the Fourier transform
of the auto-correlation function of x(c,i)(t) and can be
computed as [43], [47]:

χx(c,i) (µ, ν)=
∫
∞

−∞

x(c,i)(t+
ν

2
)x∗(c,i)(t −

ν

2
)ej2πµt∂t,

(3)

where x∗(c,i)(·) is the complex conjugate of x(c,i)(·).
The time-frequency smoothing kernel, κ(µ, ν), can be
expressed as follows [43]:

κ(µ, ν) = exp
(
−
µ2ν2

ω2

)
, (4)

where ω > 0 is a smoothing parameter with an
experimentally-selected value of 0.5.

The size of the image TFI(c,i) is equal to 128×64, where 128
and 64 represent the number of samples along the frequency
and time axes, respectively. As shown in Fig. 3, at each win-
dow position, we construct 16 CWD-based TFIs, where each
image corresponds to an EEG segment that is associated with
one of the 16 EEG electrodes defined in the set E . After that,
the CWD-based TFIs obtained at each window position are
cropped to keep the frequency components within the range
0.5 − 32.5 Hz for each CWD-based TFI. We denote each of
the cropped TFIs at a specific window position as T̃FI (c,i).
The size of the image T̃FI (c,i) is Nf × Nt , where Nf = 32
and Nt = 64 represent the number of frequency and time
samples, respectively. Each image T̃FI (c,i) can be divided
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FIGURE 3. Structure diagram that demonstrates the procedure employed to construct an input image for the feature extraction stage, namely TFIi , using
the CWD-based TFIs obtained for the EEG segments at window position i , namely the images T̃FI (c,i ) for all c ∈ E . The yellow rectangle represents the
current position of the sliding window, the green dashed rectangle represents the previous position of the sliding window, and 4t represents the overlap
between two consecutive window positions and is equal to 10 samples.

along the frequency dimension into four sub-images, namely
sub-image1, sub-image2, sub-image3, and sub-image4, where
each sub-image is associated with one of four frequency
bands, detonated by B1, B2, B3, and B4, that are described
in Table 2. Finally, at each window position, the images
T̃FI (c,i) for all c ∈ E are vertically combined to form a new
image, denoted as TFIi. The size of the constructed TFIi is
Nh × Nt , where Nh = Nf × |E|, |E| is the number of EEG
electrodes. Figure 3 describes the procedure used to construct
the TFIi using the EEG signals that were recorded for the first
able-bodied subject, namely S1, while imagining to perform
the extension-type grasp task. In addition, Fig. 3 illustrates
the sub-images within each of the 16 images T̃FI (c,i) for all
c ∈ E of the constructed TFIi.

2) FEATURE EXTRACTION STAGE
The input stage generates TFIs that describe the distribution
of the energy of the EEG signals encapsulated within each
window position in terms of the time, frequency, and elec-
trode position. For example, the image TFIi comprises the
time-frequency distribution of the energy encapsulatedwithin
the EEG signals at the ith window position for each of the

16 EEG electrodes. Figure 4 provides samples of the TFIs
constructed at the ith window position of the EEG signals
recorded for the subject S1 while imagining to perform the
extension-type grasp, the F/E of the middle finger, the F/E
of the wrist, and the rest tasks, respectively. In addition,
Fig. 4 shows that the energy distribution of the EEG signal
associated with each EEG electrode is varying over time.
Moreover, for each TFIi, the TFIs associated with the 16
EEG electrodes, namely T̃FI (c,i) for all c ∈ E , exhibit large
variations in the energy distribution over time. This imposes
the requirement to analyze the spectral variations occurring
over time within the EEG signal of each electrode as well

TABLE 2. The frequency bands associated with the four sub-images
within the image T̃FI (c,i ).

VOLUME 7, 2019 109617



R. Alazrai et al.: Deep Learning Framework for Decoding MI Tasks of the Same Hand Using EEG Signals

FIGURE 4. Samples of the TFIs constructed at the i th window position
of the EEG signals recorded for the subject S1 while imagining to
perform (A) the extension-type grasp, (B) the F/E of the middle finger,
(C) the F/E of the wrist, and (D) the rest task, respectively.

as across the EEG signals of different electrodes. Therefore,
the feature extraction stage aims to learn salient features from
each TFIi that can be used to distinguish between differentMI
tasks within the same hand.

The feature extraction stage of our proposed framework is
realized using a CNN that consists of two blocks of layers
as shown in Fig. 2. The first block, namely block 1, consists
of three layers, including the convolutional layer (Conv1),
batch normalization layer (BN1), and rectified linear unit
layer (ReLU1). The Conv1 layer consists of a number of
neurons that are connected to local regions of the input image
TFIi. The spatial extent of these local regions is determined
based on the size of the filters employed to scan the input
image, where each filter consists of a set of weights and
one bias parameter that are learned during the training of
the CNN. The size of the filters in the Conv1 layer, denoted
by FConv1h × FConv1w , where FConv1h and FConv1w represent the
height and width of each filter, respectively. To scan the input
image TFIi, the filters in the Conv1 layer are shifted along
the horizontal and vertical directions of the image TFIi. The
amount of the shift along the horizontal and vertical directions
is determined based on the value of the stride parameter,
denoted as SConv1 = [Sv, Sh], where Sv and Sh determine
the value of the vertical and horizontal shifts of the filters,
respectively.

In this work, the height and width of the filters in the
Conv1 layer are selected experimentally to be FConv1h = 16
and FConv1w = 8. In addition, the stride parameter is set to
SConv1 = [16, 4]. The number of filters employed in the
Conv1 layer is selected experimentally to be 128 filters. The
selected size of the filters along with the selected value of
the stride parameter of the Conv1 layer enable to analyze
the sub-images within each of the 16 images T̃FI (c,i) for all
c ∈ E of the input image TFIi. In particular, the Conv1 layer

can be viewed as a time-frequency convolutional layer that
convolves the first two sub-images, which correspond to the
frequency bands B1 and B2, and the second two sub-images,
which correspond to the frequency bands B3 and B4, within
the image T̃FI (c,i) along the time axis to produce a set of
feature maps. Specifically, the feature map that is generated
using the r th filter of the Conv1 layer, denoted as fm(r,Conv1),
can be computed as follows:

fm(r,Conv1) = W(r,Conv1) ⊗ TFIi + b(r,Conv1), (5)

where ⊗ represents the convolution operator, and W(r,Conv1)
and b(r,Conv1) represent the weights matrix and the bias
parameter associated with the r th filter of the Conv1 layer,
respectively. The number of feature maps generated at the
output of theConv1 layer is equal to 128 maps, which is equal
to the number of filters employed in the Conv1 layer, and the
size of each feature map is 32 × 15. Figure 5 illustrates the
time-frequency convolution carried out at the Conv1 layer for
an input image TFIi.
The feature maps obtained at the output of the Conv1 layer

are passed on to the next layer in block 1, which is the BN1
layer. The BN1 layer normalizes the mean and variance of
the features during the training of the CNN. This in turn can
accelerate the training of the CNN and reduce the occurrence
of overfitting [13]. The size of each feature map obtained at
the output of the BN1 layer is 32×15. After that, the normal-
ized feature maps are passed on to the next layer in block 1,
which is the ReLU1 layer. The ReLU1 layer can be viewed
as an activation function that applies a threshold operation to
each feature within each feature map. In particular, theReLU1
layer sets all the features within a particular feature map that
have negative values to zero. Such an activation function
introduces sparsity and nonlinearity to the CNN structure
that can reduce the effect of the small variations in the input
images [6], [13], [48]. The size of each feature map obtained
at the output of the ReLU1 layer is 32× 15. The structure of
the feature maps obtained at the output of the ReLU1 layer
is illustrated in Fig. 6. Specifically, within each feature map,
the features extracted from the images T̃FI (c,i) ∀c ∈ E are
arranged in 16 sub-maps each of size 2 × 15. These sub-
maps are arranged according to the same order of the EEG
electrodes in the set E , where the first sub-map contains the
features that are associated with the EEG electrode C3 and
the last sub-map contains the features that are associated with
the EEG electrode O2. Therefore, the feature maps obtained
at the output of block 1 comprise features that characterize
the variations of the energy distribution within each indi-
vidual EEG electrode without taking into consideration the
variations of the energy distribution across different EEG
electrodes.

In order to characterize the variations of the energy dis-
tribution across different EEG electrodes, we fed the feature
maps obtained at the output of block 1 to the second block in
the feature extraction stage, namely block 2, which consists
of three layers, including the convolutional layer (Conv2),
batch normalization layer (BN2), and rectified linear unit
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FIGURE 5. Graphical illustration of the time-frequency convolution performed at the Conv1 layer. The TFI associated with each EEG electrode is
divided into four sub-images, where each sub-image is associated with a frequency band. The red grid represents the current position of a particular
filter, while the yellow grid represents the next position of the filter.

FIGURE 6. The structure of the feature maps obtained at the output of
the ReLU1 layer in block 1.

layer (ReLU2). The Conv2 layer consists of a number of
neurons that are connected to local regions of the feature
maps obtained at the output of the ReLU1 layer in block 1.
Similar to the Conv1 layer, the spatial extent of the local
regions defined at the Conv2 layer is determined based on
the size of the filters employed to scan the feature maps,
where each filter consists of a set of weights and one bias
parameter that are learned during the training of the CNN.
The size of each filter is set to FConv2h × FConv2w , where
FConv2h = 32 and FConv1w = 4 represent the height and width,
respectively, of each filter. In addition, the stride of the Conv2
layer, denoted by SConv2 = [Sv, Sh], is set to SConv2 = [0, 1].
The number of filters employed in the Conv2 layer is equal to
128 filters. These selected values of the filters sizes and the
stride parameter of theConv2 layer enable the scanning of the

FIGURE 7. Graphical illustration of the spatial convolution performed at
the Conv2 layer. The red rectangle represents the current position of a
particular filter, while the yellow rectangle represents the next position
of the filter.

features associated with all EEG electrodes along the time
axis. Therefore, the Conv2 layer can be viewed as a spatial
convolutional layer that convolves all the sub-maps within a
particular feature map along the time axis to produce a new
set of feature maps. The number of feature maps generated at
the output of the Conv2 layer is equal to 128 maps, which is
equal to the number of filters employed in the Conv2 layer,
and the size of each feature map is 1×12. Figure 7 illustrates
the spatial convolution performed at the Conv2 layer for each
of the feature maps obtained from the ReLU1 layer.

Similar to block 1, the feature maps obtained at the out-
put of the Conv2 layer are passed on to the BN2 layer
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for normalization. The size of each feature map obtained at
the output of the BN2 layer is 1× 12. Finally, the normalized
feature maps are passed through the ReLU2 layer. The size of
each feature map obtained at the output of the ReLU2 layer is
1×12. The feature maps obtained at the output of the ReLU2
layer represent the features extracted from the input image
TFIi. These feature maps are passed on to the classification
stage in order to determine the class of the MI task associated
with the input image TFIi.

3) CLASSIFICATION STAGE
The objective of the classification stage is to assign each TFIi,
which is obtained at the input stage, to one of the eleven MI
tasks described in subsection II-B using the features learned
at the feature extraction stage. In particular, the classification
stage consists of four layers, including flatten layer, fully con-
nected layer, softmax layer, and classification layer, as shown
in Fig. 2. At the flatten layer, the feature maps obtained
at the output of the ReLU2 layer in the feature extraction
stage, which are computed for a particular TFIi, are reshaped
into one-dimensional (1D) feature vector. The size of the 1D
feature vector obtained at the output of the flatten layer is
R×1, where R equals to the number of feature maps obtained
at the output of the ReLU2 layer multiplied by the size of
each feature map. The 1D feature vector constructed at the
output of the flatten layer is passed on to the next layer in
the classification stage, which is the fully connected layer.
The fully connected layer consists of eleven neurons, where
each neuron is connected to all the features in the 1D feature
vector. Specifically, the fully connected layer combines all the
features learned via the feature extraction stage to classify the
input image TFIi. The outputs of the fully connected layer,
which are obtained by multiplying the 1D feature vector by a
trainable weight matrix and then add a trainable bias vector,
are passed on to the softmax layer. The softmax layer nor-
malizes the outputs of the fully connected layer to ensure that
the output values of the softmax layer are positive numbers
that sum to one. Therefore, each of the eleven outputs of
the softmax layer can be viewed as the probability value that
the input image TFIi belongs to one of the eleven MI tasks.
Finally, the eleven probability values obtained at the output
of the softmax layer are passed on to the classification layer,
which assigns the input image TFIi to the MI task that has the
highest probability value.

4) TRAINING AND TESTING OF THE PROPOSED
FRAMEWORK
For each subject, we utilize a ten-fold cross-validation proce-
dure to construct the framework described in subsection II-D.
In particular, the EEG signals associated with each trial of
a particular subject are converted into a set of labeled TFIs,
where the label of each TFI represents the MI task associated
with the trial from which the TFI was extracted. The con-
struction of each TFI is based on the procedure employed
at the input stage, which is described in subsection II-D1.
Concretely, the set of labeled TFIs extracted from the jth trial,

denoted as Tj, of the kth MI task, denoted as Mk , of the r th
subject is expressed as follows:

D(j,k,r)
= {(TFI

Tj
1 ,Mk ), · · · , (TFI

Tj
i ,Mk ), · · · , (TFI

Tj
l ,Mk )}, (6)

where 1 ≤ k ≤ 11, 1 ≤ i ≤ l, l, and r represent the index
of the MI task, the window position, the number of window
positions in the trial Tj, and the index of the subject, respec-
tively. The pair (TFI

Tj
i ,Mk ) represents the TFI extracted from

the EEG segments located at window position i within the
trial Tj of the MI task Mk . The labeled data obtained from
all trials of all MI tasks of a particular subject are divided
randomly into ten folds. The feature extraction stage and
classification stage of the proposed framework are trained
using nine folds and tested using the remaining fold. The
ten-fold cross-validation procedure is repeated for ten times
and the average classification performance for each subject
is computed over the ten repetitions. During each repetition
of the ten-fold cross-validation procedure, the parameters of
the feature extraction stage and classification stage in our
proposed framework, including the weights and biases of
the filters in the Conv1 and Conv2 layers as well as the
weight matrix and bias vector of the neurons in the fully
connected layer, are learned using a mini-batch stochastic
gradient decent (SGD) optimization method that minimizes
the categorical cross-entropy loss function using the back-
propagation algorithm [31]. In particular, the training process
was run for 40 epochs, where each epoch represents one
pass over all the training samples. In addition, the mini-
batch size, which is the number of training samples used
during each iteration of the training process, is selected to
be 64 samples. The learning rate of the SGD optimization
method is selected to be 0.01. Finally, the hyperparameters
of the feature extraction stage and classification stage in our
proposed framework, including the number of filters, the size
of the filters, and the stride of each convolutional layer, were
experimentally selected [6], [12]–[14], [48] as described in
section II-D2.

E. PERFORMANCE EVALUATION
The proposed framework is implemented and run on a work-
station with an Intel Xeon E5-1620 3.50GHz 4 cores CPU,
8 GB RAM, and Nvidia Quadro K620 GPU. To quantify
the classification performance of the constructed framework,
which is measured based on the testing folds, we employ
five standard evaluation metrics, namely the classification
accuracy (CA), recall (REC), precision (PRE), and F1−score
(F1), that are computed as follows [49]:

CA =
(tp+ tn)

(tp+ tn+ fp+ fn)
× 100%, (7)

REC =
tp

(tp+ fn)
× 100%, (8)

PRE =
tp

(tp+ fp)
× 100%, (9)

F1 = 2×
(REC × PRE)
(REC + PRE)

× 100%, (10)
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where tp, tn, fp, and fn represent the number of true pos-
itive, true negative, false positive, and false negative cases,
respectively.

The runtime of the proposed framework is quantified by
computing the average ± standard deviation values of three
metrics, namely the training time, construction time, and clas-
sification time, for the able-bodied subjects and transradial
amputated subjects. In particular, the training time is defined
as the time required to complete one of the ten repetitions
of the cross-validation procedure employed to train our pro-
posed framework. The construction time is defined as the time
required to construct the image TFIi at the input stage. The
classification time is defined as the time required to classify
the image TFIi at the classification stage into one of the eleven
MI tasks.

Finally, we compare the classification performance of
our proposed framework with the classification performance
obtained using conventional CWD-based handcrafted fea-
tures and a multi-class SVM classifier.

III. EXPERIMENTAL RESULTS
In this section, we present the results of our proposed
framework obtained based on the EEG signals of the
able-bodied subjects and transradial amputated subjects.
Moreover, we provide the runtime analysis of our proposed
framework. Finally, we compare the performance of our
proposed framework with the performance obtained using
conventional handcrafted features that are extracted from the
CWD-based TFR of the EEG signals and classified using a
multi-class SVM classifier.

A. RESULTS OF THE ABLE-BODIED SUBJECTS
In this section, we present the classification results of our
proposed framework obtained based on the EEG signals of
the able-bodied subjects. Figure 8 shows the CA values and
the corresponding standard deviation (STD) values obtained
for each MI tasks per each able-bodied subject. In particular,
Fig. 8a shows the CA values and the corresponding STD
values computed for the rest MI task, namely M1, per each
able-bodied subject. In fat, the average ± STD CA value
computed over all able-bodied subjects for the M1 task is
72.9% ± 1.1%. Figure 8b shows the CA values and the
corresponding STD values computed for the grasp-relatedMI
tasks, namelyM2,M3, andM4, per each able-bodied subject.
The average± STDCAvalues computed over all able-bodied
subjects for the M2, M3, and M4 tasks are 79.7% ± 0.6%,
81.8% ± 0.5%, and 76.1% ± 0.7%, respectively. Figure 8c
presents the CA values and the corresponding STD values
computed for the wrist-related MI tasks, namelyM5 andM6,
per each able-bodied subject. The average± STD CA values
computed over all able-bodied subjects for the M5 and M6
tasks are 70.9% ± 0.7% and 69.5% ± 0.9%, respectively.
Figure 8d shows the CA values and the corresponding STD
values computed for the finger-related MI tasks, namelyM7,
M8, M9, M10, and M11, per each able-bodied subject. The
average ± STD CA values computed over all able-bodied

subjects for theM7,M8,M9,M10, andM11 tasks are 70.9%±
0.7%, 70.8% ± 0.8%, 71.8% ± 0.8%, 68.3% ± 1.1%, and
68.2%± 0.6%, respectively. Finally, Fig. 8e presents the CA
values and the corresponding STD values computed over all
MI tasks per each able-bodied subject. The average ± STD
CA value computed over all MI tasks for all able-bodied
subjects is 73.7%± 0.5%.
Table 3 shows the values of the REC, PRE, and F1 metrics

computed for each MI task per each able-bodied subject.
Moreover, the last four rows in Table 3, which are associated
with the columns labeled as S1 to S18, provide the average
values of the REC, PRE, and F1 metrics computed over all
MI tasks per each able-bodied subject. In addition, the last
column in Table 3 provides the average values of the REC,
PRE, and F1 metrics computed over all able-bodied subjects
for each MI task. Finally, the last four rows in the last column
of Table 3 provide the average values of the REC, PRE, and
F1 metrics computed over all MI tasks for all able-bodied
subjects. In particular, the overall average values of the REC,
PRE, and F1 metrics computed over all able-bodied sub-
jects and across all MI tasks are 72.8%, 73.2%, and 72.9%,
respectively.

B. RESULTS OF THE TRANSRADIAL
AMPUTATED SUBJECTS
In this section, we present the classification results of our
proposed framework obtained based on the EEG signals of
the transradial amputated subjects. Figure 9 presents the CA
values and the corresponding STD values obtained for each
MI tasks per each transradial amputated subject. In particular,
Fig. 9a shows the CA values and the corresponding STD
values computed for the rest MI task, namely M1, per each
transradial amputated subject. In fact, the average ± STD
CA value computed over all transradial amputated subjects
for the M1 task is 81.8% ± 0.5%. Figure 9b shows the CA
values and the corresponding STD values computed for the
grasp-related MI tasks, namely M2, M3, and M4, per each
transradial amputated subject. The average± STDCA values
computed over all transradial amputated subjects for the M2,
M3, and M4 tasks are 79.1% ± 0.5%, 78.1% ± 0.6%, and
75.2%± 1.3%, respectively. Figure 9c shows the CA values
and the corresponding STD values computed for the wrist-
related MI tasks, namely M5 and M6, per each transradial
amputated subject. The average± STD CA values computed
over all transradial amputated subjects for the M5 and M6
tasks are 71.1% ± 0.5% and 66.7% ± 0.3%, respectively.
Figure 9d shows the CA values and the corresponding STD
values computed for the finger-related MI tasks, namely
M7, M8, M9, M10, and M11, per each transradial amputated
subject. The average ± STD CA values computed over all
transradial amputated subjects for the M7, M8, M9, M10, and
M11 tasks are 71.3%± 0.9%, 68.9%± 0.2%, 66.2%± 0.4%,
62.6%± 0.8%, and 72.2% ± 0.3%, respectively. Finally,
Fig. 9e shows the CA values and the corresponding STD
values computed over all MI tasks per each transradial
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TABLE 3. The results obtained for each able-bodied subject expressed in terms of the values of the REC, PRE, and F1 evaluation metrics computed for
each MI task.

TABLE 4. The results obtained for each transradial amputated subject expressed in terms of the values of the REC, PRE, and F1 evaluation metrics
computed for each MI task.

amputated subject. The average ± STD CA value com-
puted over all MI tasks and transradial amputated subjects
is 72.8%± 0.6%.

Table 4 shows the values of the REC, PRE, and F1 metrics
computed for each MI task per each transradial amputated
subject. Moreover, the last column in Table 4, provides the
average values of the REC, PRE, and F1 metrics computed
over all MI tasks per each transradial amputated subject.
The last four rows in Table 4, which are associated with the
columns labeled asM1 toM11, provides the average values of
the REC, PRE, and F1 metrics computed over all able-bodied
subjects for eachMI task. Finally, the last four rows in the last
column of Table 4 provide the average values of the REC,

PRE, and F1 metrics computed over all MI tasks and across
all transradial amputated subjects. In particular, the overall
average values of the REC, PRE, and F1 metrics computed
over all MI tasks and all transradial amputated subjects are
72.1%, 72.4%, and 72.2%, respectively.

C. RUNTIME OF OUR PROPOSED FRAMEWORK
The runtime results of our proposed framework are sum-
marized in Table 5. In particular, Table 5 shows that the
average± STD training time that is computed over all able-
bodied subjects is 1232.9 ± 14.79 s. Moreover, the average
± STD training time computed for all transradial amputate
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FIGURE 8. The results obtained using the EEG signals of the able-bodied subjects expressed in terms of the CA metric. The black vertical bars
represent the STD values and the red dashed line represents the random classification rate (RCR), which is defined as the reciprocal of the
number of MI tasks and equal to 9.09%.

subject is 1300.1± 10.7 s. The average± STD time required
to construct the image TFIi at the input stage computed for all
MI tasks over all able-bodied subjects is 0.0419 ± 0.0015 s,
while the average± STD time required to construct the image
TFIi for all MI tasks over all transradial amputated subjects is
0.0419± 0.0018 s. Finally, the average± STD classification
time computed for all MI tasks over all able-bodied subjects
is 0.00059± 0.00001 s. In addition, the average± STD clas-
sification time computed for all MI tasks over all transradial
amputated subjects is 0.00054± 0.00003 s.

D. COMPARISON WITH THE CLASSIFICATION
PERFORMANCE OBTAINED USING CONVENTIONAL
CWD-BASED HANDCRAFTED FEATURES AND A
MULTI-CLASS SVM CLASSIFIER
As described in section II, the feature extraction stage of
our proposed framework learns latent features from the con-
structed TFI at each window position, namely TFIi. These
learned features are used at the classification stage to clas-
sify each input TFI into one of the eleven MI tasks. In
this section, we compare the classification performance of
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FIGURE 9. The results obtained using the EEG signals of the transradial amputated subjects expressed in terms of the CA metric. The black
vertical bars represent the STD values and the red dashed line represents the random classification rate (RCR), which is defined as the
reciprocal of the number of MI tasks and equal to 9.09%.

our proposed framework with the classification performance
obtained using twelve conventional handcrafted features that
are extracted from the CWD-based representation of the
EEG signal [7]. In particular, the twelve conventional CWD-
based handcrafted features, which are presented in [7], are
re-implemented and utilized to construct a multi-class SVM
classifier with radial basis function kernel to decode the
eleven MI tasks. The performance of the constructed multi-
class SVM classifier was evaluated using the ten-fold cross-
validation procedure described in subsection II-D4.

Figures 10a and 10b show the average CA values obtained
using the multi-class SVM classifier for the able-bodied and
transradial amputated subjects, respectively. The average CA
values presented in Fig. 10 are computed over the ten rep-
etitions of the cross-validation procedure across the eleven
MI tasks per each subject. In particular, the average ± STD
CA value computed over all able-bodied subjects is 59.2%±
4.6%, while the average ± STD CA value computed over
all transradial amputated subjects is 61.6% ± 7.5%. The
results presented in Fig. 10 indicate that the classification
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TABLE 5. Runtime of our proposed framework.

FIGURE 10. The CA values obtained using the conventional CWD-based
handcrafted features and multi-class SVM classifier computed for the
able-bodied and transradial amputated subjects. The black vertical bars
represent the STD values and the red dashed line represents the RCR,
which is equal to 9.09%.

performance of our proposed framework, which is shown
in Fig. 8e and Fig. 9e, outperforms significantly the classifica-
tion performance obtained using the CWD-based handcrafted
features and a multi-class SVM classifier.

IV. DISCUSSION
In this work, we demonstrated the potential of utilizing a
CNN to decode MI tasks within the same hand using the
CWD-based TFIs that are extracted from the EEG signals.
The performance of our proposed framework was evaluated
using EEG data that were recorded for able-bodied and tran-
sradial amputated subjects while performing eleven MI tasks
of the same hand. The results obtained for the able-bodied and
transradial amputated subjects demonstrate the capability of
our proposed framework to successfully decode eleven MI
tasks of the same hand.

A. CLASSIFICATION PERFORMANCE OF OUR
PROPOSED FRAMEWORK
Fig. 8e shows that the average CA value of each able-bodied
subject, which is computed over all MI tasks, is considerably
higher than the RCR, which is defined as the reciprocal of the
number of MI tasks and its value is equal to 9.09%. Similarly,
the results presented in Fig. 9e indicate that the average CA
value computed for each transradial amputated subject over
allMI tasks is considerably higher than the RCR. This implies
that the input stage provides a suitable representation of the
EEG signals in the joint time-frequency domain. Moreover,
these results suggest the capability of the feature extraction
stage to extract salient features from the TFIs, which are
constructed at the input stage, that can be used to discriminate
between different MI tasks of the same hand.

The results obtained for the able-bodied and transradial
amputated subjects, which are presented in subsection III-A
and subsection III-B, show substantial variation in the clas-
sification performance computed for different subjects. In
particular, for the able-bodied subjects, the mean CA values
computed for each subject over all MI tasks are between
59.5%, which was obtained for the subject S4, and 97.4%,
which was obtained for the subject S1. Similarly, for the tran-
sradial amputated subjects, the mean CA values computed for
each subject over theMI tasks are between 59.8%, which was
obtained for the subject A4, and 88.5%, which was obtained
for the subject A1. This variation in the classification perfor-
mance obtained for the able-bodied and transradial amputated
subjects can be attributed to the different capability of the
subjects to successfully perform various MI tasks [6], [50].
The classification results obtained for the able-bodied and

transradial amputated subjects, which are presented in Table 3
and Table 4, indicate that the REC, PRE, and F1 values com-
puted for the grasp-relatedMI tasks, namelyM2,M3, andM4,
are relatively higher than the REC, PRE, and F1 values com-
puted for the wrist- and fingers-related MI tasks. This can be
attributed to the following factors [22], [23]: (1) Grasp-related
tasks activate larger brain regions compared to the acti-
vated brain regions during wrist- or fingers-related MI tasks.
(2) Wrist- and fingers-related MI tasks activate relatively
small and close regions in the sensorimotor cortex region.
(3) The low SNR and limited spatial resolution of the EEG
signals reduce the capability of distinguishing between brain
activities recorded during wrist- and fingers-related MI tasks.

B. RUNTIME ANALYSIS
The runtime analysis presented in Table 5 indicates the pos-
sibility of utilizing our proposed framework to construct a
real-time system for decoding MI tasks of the same hand. In
particular, for able-bodied subjects, the average time required
to construct and classify the image TFIi using the trained
framework is equal to 0.0478 s. We refer to the average time
required to construct and classify the image TFIi as the aver-
age response time. The ratio between the average response
time and the duration of the sliding window, which is equal
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to 0.250 s, is approximately 19.1%. Similarly, for transra-
dial amputated subjects, the average response time computed
using the trained framework is equal to 0.0424 s. Hence,
the ratio between the average response time and the duration
of the sliding window, which is equal to 0.250 s, is approx-
imately 16.9%. These results indicate that our proposed
framework can classify the EEG segments associated with
each window position into one of the eleven MI tasks before
the extraction of the next set of segments from the EEG sig-
nals (i.e., before moving from the current window position to
the next window position). This implies the possibility of uti-
lizing our proposed framework to construct a system that can
discriminate between MI tasks of the same hand in real time.

V. CONCLUSION
In this paper, we proposed a novel framework that employs
a new CNN architecture to decode MI tasks associated with
fine body-parts within the same hand, such as the wrist and
fingers, using a CWD-based representation of the EEG sig-
nals. The performance of our proposed framework was eval-
uated using EEG signals that were recorded from eighteen
able-bodied subjects and four transradial amputated subjects
while performing eleven MI tasks within the same hand.
The results presented in this study indicate the capability
of our proposed framework to distinguish between the MI
tasks within the same hand for able-bodied and transradial
amputated subjects.

In the future, we plan to investigate the possibility of
applying our proposed deep learning frame to decode move-
ments and imaginary tasks that are performed by the same
upper extremity, such as the elbow and shoulder. In addi-
tion, we intend to compare the performance of our proposed
deep learning framework with the performance obtained
using other traditional state-of-the-art feature extraction pro-
cedures, such as the common spatial patterns.
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