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ABSTRACT Concept generation is one of the most critical steps in product design process. Recently, several
computational tools for automatically generating design concepts were developed, which can generate a
big number of design concepts. This brings a new challenge to traditional expert-based design concept
evaluation methods since experts are not capable of evaluating a large number of design concept in a short
time. Therefore, this work develops a knowledge-based method to roughly evaluation design concepts and
elect a small number of design concepts for expert-based evaluation. In the proposed method, a knowledge
base containing 100 design concepts extracted from existing products is constructed, and four features,
including Number of Function (#F), Function Compatibility Index (FCI), Function Component Mapping
Index (FCMI) and Component Compatibility Index (CCI) are defined for building evaluation models. Based
on the knowledge base and features, several computational evaluation models are developed including
novelty evaluation model (NEM), feasibility discrimination model (FDM) and feasibility evaluation model
(FEM). Empirical results show the proposed method is capable of evaluating design concepts. This work
makes two-fold contributes to the research community, the first is a manually constructed knowledge base is
published, while the second is four features are defined and used to define design concept evaluation models.

INDEX TERMS Concept evaluation, configuration flow graph, feasibility, Naïve Bayesian classifier, neural
network, novelty.

I. INTRODUCTION
Concept generation is an indispensable step of innovation
design [1], and there is a significant correlation between
the quality of design concepts and the success of final
products [2]. Traditionally, brainstorming is adopted in
many scenarios. Following this paradigm, the 6-3-5 [3] and
C-Sketch [4] were proposed to evaluate design concepts.
In these methods, only a small number of design concepts
can be generated, and the generated design concepts can be
evaluated by expert-based methods.

Recently, several computational methods were developed
to generate design concepts automatically. For examples,
Kurtoglu et al. [5] extracted 45 rules from existing prod-
ucts, and a rule-based system was developed to compu-
tationally generate new design concepts. Bryant et al. [6]
developed a design concept generation algorithm based on
two matrices: function component matrix and design
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structure matrix, which are extracted from a web-based
knowledge base. Huang et al. [7] adopted genetic algo-
rithms and fuzzy neural networks to generate design con-
cepts. The above methods can generate many design concepts
in a short time, which makes the expert-based methods
fail to evaluate the design concepts. Therefore, aided tools
must be provided to help designers during the evaluation
process.

In this work, we attempt to develop a method to filter the
design concepts first and only leave a small number of design
concepts for expert-based evaluation. Hence, the proposed
method is not to replace the expert-based methods. Overall,
we have the following goals in this work.

• First, to manually build a knowledge base by extracting
design concepts from existing products;

• Second, to define informative features that can be used
to define design concept evaluation models;

• Third, to develop design concept evaluation models
based on the knowledge base and features.
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The rest of the paper is structured as follows. The
next section provides related works to the current
research. Section 3 explains the proposed method in
detail. Section 4 conducts several experiments to verify
the evaluation models. Section 5 discusses the results and
Section 6 summarizes this work and outlines some potential
future studies.

II. RELATED WORKS
This section makes a summary of the research efforts that
paved the way for this study. Two aspects are addressed,
including design concept representation and design concept
evaluation.

A. DESIGN CONCEPT REPRESENTATION
Design concept representation is critical for design concept
generation and evaluation. One structured representation of
design concept was called function structure (FS) [9], which
defines all functions and their relationships between them
in a structure manner, and the relationships are defined by
flow, such as material, signal and energy. Following this idea,
several structured methods were developed, including
Function-Behavior-Structure (FBS) [10], [11], Structure-
Behavior-Function (SBF) and Function-Behavior-
State [12], [13]. Recently, Kurtoglu proposed a structured
method for representing design concepts, which is called
‘‘Configuration Flow Graph (CFG)’’ [14]. This method
provides both structure representation of functions and the
components. In this work, we use CFG to represent a design
concept.

Standard function and component vocabulary are another
issue to represent design concept. Many researchers have
contributed to the development of standard vocabularies in
recent decades. Most of the existing vocabularies have two
important parts, including function and flow. For example,
Pahl and Beitz listed five function terms (Channel, Connect,
Change, Vary and Store) and three flow terms (Material, Sig-
nal, Energy) at a very abstract level [9]. Based on this work,
Hundal further defined six function terms (Branch, Channel,
Connect, Change magnitude, Convert and Store/Supply) with
44 specific sub-function terms [17]. Furthermore, Altshuller
defined 30 function terms by analyzing massive patents [18].
Koch et al. introduced living systems theory into product
design and used 20 subsystems (function terms) to describe a
mechanical product [19].

Currently, a set of function terms called Function Basis
(FB) has been formed [20], which is built based on the
database proposed by Wood and Little [21]. The FB also
includes function part and flow part, and the function part
includes 8 categories and 24 sub-classes, while the flow part
includes 3 categories and 18 sub-classes. Further, Hirtz et al.
formed the RFB (Reconciled FB) [22] by integrating the
terminology built up by NIST (National Institute of Stan-
dards and Technology) [23] and FB. The function part of
RFB includes 8 categories and 22 sub-classes, while the
flow part includes 3 categories and 20 sub-classes. Excepting

the above vocabularies about function, Kurtoglu et al. [24]
developed a vocabulary called component basis (CB) to rep-
resent the configuration of design concepts. The details of the
above vocabularies are listed chronologically in TABLE 5 at
the Appendix.

B. DESIGN CONCEPT EVALUATION
To evaluate design concepts, two issues must be addressed,
including evaluation metrics and evaluation method.

1) EVALUATION METRICS
During the last two decades, different metrics have
been proposed for evaluating design concepts. In 2000,
Shah et al. [25] used novelty, variety, quality and quantity
to evaluate design concepts, and further defined the formula
to calculate these four metrics in 2003 [26]. Novelty means
the degree to which a given design concept is unusual.
Variety means the degree of dissimilarity of a group of design
concepts. Quality means the degree of a given design concept
satisfying requirements. Quantity means the total number of
a group of design concepts.

Since then, these metrics were acknowledged by the
research community, although different terminologies were
adopted [1]. In this work, we make a brief summarization of
the metrics, the result is shown in TABLE 1. In this table,
the metrics that have similar meanings are grouped by the
four metrics proposed by Shah. However, this classification
does not imply that the metrics in the same group can be
replaced by each other. This is because even metrics in
the same group have different meanings. For example, the
‘‘Need Satisfaction’’ and ‘‘Completeness’’ refer to the degree
that the requirements are met, while the ‘‘Feasibility’’ and
‘‘Utility’’ refer to the degree a given design concept can be
implemented.

2) EVALUATION METHOD
From a technical perspective, two dimensions can be used
to classify the evaluation methods. The first dimension is
what method is used to deal with different criteria values.
In the research community, it was well acknowledged that
design concept evaluation inherently involves uncertainty
and fuzziness [34]–[36]. To handle the uncertainty, fuzzy
set [34], [37]–[41] and vague set [42] are adopted. How-
ever, these methods require the setting of membership func-
tions, which will bring new subjectivity. Therefore, rough
set [35], [36], [43]–[47] is adopted in the last decade to deal
with the uncertainty, and this method does not require the
setting of membership.

The second dimension is what method is used to rank
design concepts. Corresponding to themethods of dealing cri-
teria values, many traditional multi-criteria decision-making
(MCDM) approaches, such as AHP, ANP, TOPSIS, VIKOR
and so on, are extended by fuzzy set, vague set and rough
set. For example, AHP is extended to formulate several
new methods including fuzzy-AHP [40], [48] or FAHP [49],
rough-AHP [36], [43]. Similarly, TOPSIS and VIKOR are
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TABLE 1. The metrics proposed to evaluate design concepts.

also extended and used in many previous research
works [34], [36], [42], [43], [46], [49]. Another tendency
of the recent researches is to combine the advantages of
different methods to develop new methodologies, such as
TOPSIS, fuzzy set and AHP are combined in [49]; AHP,
rough set and VIKOR are combined in [36] and so on.
Besides these traditional methods, some advanced methods
adopting data mining and machine learning also proposed by
researchers. The second dimension is what method is used to
rank design concepts. Corresponding to the methods of deal-
ing criteria values, many traditional multi-criteria decision-
making (MCDM) approaches, such as AHP, ANP, TOPSIS,
VIKOR and so on, are extended by fuzzy set, vague set and
rough set. For example, AHP is extended to formulate several
new methods including fuzzy-AHP [40], [48] or FAHP [49],
rough-AHP [36], [43]. Similarly, TOPSIS and VIKOR are
also extended and used in many previous research works [34],
[36], [42], [43], [46], [49]. Another tendency of the recent
researches is to combine the advantages of different methods
to develop new methodologies, such as TOPSIS, fuzzy set
and AHP are combined in [49]; AHP, rough set and VIKOR
are combined in [36] and so on. Besides these traditional
methods, some advanced methods adopting data mining and
machine learning also proposed by researchers [50], [51].

C. RESEARCH GAP
While the above evaluation methods are effective when eval-
uating a small number of design concepts, when an automatic
design concept generation system is launched, which can

generate many design concepts in a short time, the above
evaluation methods tend to fail since all existing methods rely
on experts’ ratings. Therefore, there is a research gap between
the requirement of rapid evaluation of many design concepts
and the existing expert-based evaluation methods.

III. THE PROPOSED METHOD
This work is an attempt to fill the research gap illustrated in
section II by building a knowledge-based method for rapid
design concept evaluation. This method takes a number of
design concepts as input and outputs the evaluation results
instantly. To implement this method, three steps are con-
ducted in this work.
STEP 1:Knowledge Base Construction. A group of design

concepts are extracted from existing products and represented
in a structural manner.
STEP 2: Features Definition. Several numerical features

are defined based on the knowledge base. Then, all the design
concepts are converted into numerical representation.
STEP 3: Evaluation Models Construction. Three eval-

uation models are constructed by machine-learning algo-
rithms to evaluate the novelty and feasibility of given design
concepts.

The following subsections illustrate the above three steps
in detail.

A. KNOWLEDGE BASE CONSTRUCTION
Knowledge base is an indispensable part of the whole method
since the underlying idea is to evaluate new design concepts
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FIGURE 1. The process of extracting design concepts from existing
product.

based on previous knowledge. In this work, we assume every
existing product contains a design concept. Therefore, build-
ing knowledge base is to extract design concept from existing
products. To implement design concept extraction, we first
build CFG and FS of an existing product, which are illustrated
in section II. Then a matrix-based representation is designed
to contain all information stored in CFG and FS. Based on this
idea, each existing product can be represented by a matrix.
We build a knowledge base containing 100 design concepts
(100 matrices) of 100 electromechanical products obtained
from two e-commerce websites (JD1 and Taobao),2 which are
two largest e-commerce websites in China. To illustrated how
the knowledge base is constructed, we take the humidifier as
an example.

As shown in FIGURE 1, a specific humidifier is shown
in the top layer and the critical components are identified
first. Then, these components are connected by flows to
form the corresponding CFG of the humidifier (the mid-
dle layer). The terms of components are from standard
vocabulary CB and RFB (see section II). Each component
implements one or more different functions. Therefore, the
FS of humidifier (the bottom layer) is constructed by simply
mapping each component to its main function.

To process design concepts by computer language, we fur-
ther develop a matrix-based method to represent a design
concept. All the terms of functions, components and flows are
assigned an identical integer first. Then, a design concept with
N functions is represented by a (N + 3) × (N + 1) matrix.
This matrix has twomain parts: theN×N core matrix and the
2×N additional matrix. In the core matrix, each value is the
flow that connects a pair of functions. In the additionalmatrix,
the first row stores theN components, while the second stores
the functions that implement the N components. Besides,

1www.jd.com
2www.taobao.com

FIGURE 2. The matrix-based method for design concept representation.

the input row and output column are the input flow and output
flow.

For the humidifier, a 9× 7 matrix is built, as shown
in FIGURE 2. The 6× 6 core matrix records the relationships
between the six components, which are marked in the top
and left side in FIGURE 2. On the right sides the term of
flows that connect the six components are also marked. The
2× 6 additional matrix records the six functions correspond-
ing to the six components. This 9× 7matrix can be processed
easily by computer programs, and it holds all information in
CFG and FS.

Besides, the 100 existing products are shown to three users
to rate their novelty, and all users majored in mechanical
design, and they are familiar with these products. Each user
was asked to assign a novelty score (from 1 to 10) to each
product. The final novelty score is the average of all three
users.

B. FEATUERS DEFINITION
Based on the knowledge base, several features are defined
to represent each design concept in a numerical manner,
including number of functions (#F), function compatibility
index (FCI), function component mapping index (FCMI)
and component compatibility index (CCI). With these fea-
tures, a design concept can be represented by a vector
{#F,FCI ,FCMI ,CCI }.

To clearly explain the meaning of these features,
we assume a design concept with N functions {F1,
F2, . . . ,FN } which are implemented by N components
{C1,C2, . . . ,CN }.
â #F means the total number of functions N of the design

concept.
â FCI indicates how often the functions {F1,F2, . . . ,FN }

appear together.
â FCMI indicates how often the functions {F1,F2, . . . ,FN }

are implemented by the components {C1,C2, . . . ,CN }.
â CCI indicates how often the components {C1,C2, . . . ,

CN } appear together.
To calculate the value of these features, three matrices

are extracted from the knowledge base, including function
compatibility matrix (FCM), function component
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mapping matrix (FCMM) and component compatibility
matrix (CCM).

FCM records the compatibility value between each pair of
functions. The compatibility is measured by the frequency
of co-occurrence in the 100 design concepts. If a pair of
functions always appears together in various products,
the compatibility will be high, and vice versa. The value
of compatibility is calculated simply by normalizing the
co-occurrence frequency so that the value is between [0, 1].

Similarly, FCMM records the relevancies between func-
tions and components, and by this matrix we can ask the
question like which component is capable of implementing
a function. The relevancies are measured by the frequency
that a component implements a specific function. If a function
is always implemented by a component in various products,
the relevancy is high, and vice versa. The relevancy is calcu-
lated simply by normalizing the co-occurrence frequency of
functions and components so that the value is between [0, 1].

CCM records the compatibility between each pair of com-
ponents. The compatibility is also measured by the fre-
quency of co-occurrence, if two components always appear
together in various products, the compatibility will be high,
and vice versa. Similar with FCM, the compatibility is
also calculated simply by normalizing the co-occurrence of
components.

Given a design concept with N functions {F1,F2, . . . ,FN }
which are implemented by N components {C1,C2, . . . ,CN },
the FCI is the average compatibility values between every
pairs of functions in {F1,F2, . . . ,FN }; the FCMI is the
average relevancy value of all mappings between functions
{F1,F2, . . . ,FN } and components {C1,C2, . . . ,CN }; and the
CCI is the average compatibility value between every pair of
components {C1,C2, . . . ,CN }.

C. EVALUATION MODELS CONSTRUCTION
Considering the fact that novelty and feasibility are two
critical metrics for design concept evaluation at the very
beginning of design process, three evaluation models are
developed here: novelty evaluation model (NEM), feasi-
bility discrimination model (FDM) and feasibility evalua-
tion model (FEM), the following subsections detail these
models.

1) NOVELTY EVALUATION MODEL (NEM)
NEM is used to predict the novelty of a given design concept
represented by the four features. Since it is very hard to give a
computational definition of novelty, this work directly learns
a mapping between the four features and the novelty.

To learn the mapping, artificial neural network (ANN) is
adopted as the machine learning model since its capability for
design concept evaluation has been proved [52]. This work
uses a neural network with only one hidden layer. This model
is simple since not too much data is available. In the future,
with the increased data volume the NEM can be expanded to
a deep structure.

2) FEASIBILITY DISCRIMINATION MODEL (FDM)
FDM is used to judge whether a design concept is feasi-
ble or not, and it is used to roughly filter a big number
of design concepts. It takes a design concept as input and
output 0 (infeasible) or 1 (feasible). The design concept is
represented by FCI, FCMI and CCI. We try to train a model
to discriminate the existing design concepts (Group A) and
randomly generated design concepts (Group B). Group A
contains design concepts stored in the knowledge base, and
we assume all design concepts are feasible since they are
extracted from existing products. Group B contains a group
of randomly generated design concepts, and we assume all
design concepts are infeasible. The design concepts are gen-
erated according to the following steps:
• To randomly select a number of functions from RFB.
The number of functions follow the same distribu-
tion with number of functions of the existing design
concepts;

• To randomly select a component fromCB corresponding
to each function;

• To repeat the two steps until the required number of
design concepts are generated.

To train the model, this work adopts naïve Bayes classifier
as the machine learning model because of its simplification
and performance in many different tasks.

3) FEASIBILITY EVALUATION MODEL (FEM)
FEM is used to predict a value to measure the feasibility of a
given design concept. It takes a design concept as input and
outputs a value of feasibility. The design concept is repre-
sented by FCI, FCMI and CCI. To train FEM, we assume all
design concepts in the knowledge base are feasible but have
various degrees of feasibility. Intuitively, design concepts
that are close to existing design concepts are more feasible.
We further assume the value of feasibility decreases expo-
nentially with the increase of distance. Therefore, this work
calculates the value of feasibility as the following equation.

Fv = e
−

∥∥∥DC−C6

∥∥∥ (1)

where Fv indicates the value of feasibility; DC indi-
cates a design concept, which is represented by a vector
[FCI ,CCI ,FCMI ]; C is the cluster center of all existing
design concepts in the three-dimensional space; 6 is a 3× 3
matrix, which can be used to set preferences about the mea-
surement of feasibility.

IV. EXPERIMENTS
A. EXPERIMENTS ON NEM
We first visually investigate whether it’s possible to evaluate
the novelty of the existing design concepts using FCI, CCI
and FCMI. As shown in FIGURE 3, the top and last 10 design
concepts in terms of their novelty are scattered in the three-
dimensional space defined by FCI, CCI and FCMI. In this
figure, the last 10 design concepts are indicated by blue
diamonds. We can see that FCI, CCI and FCMI are obviously
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TABLE 2. The Performance Of FDM Based On 10 Times 10-Fold Cross-Validation.

FIGURE 3. The distribution of the top 10 and last 10 design concepts in
terms of the novelty value. The subplot A shows the design concepts in
the three-dimensional space (FCI, CCI, FCMI), and subplot B, C and D
show the projection view from the three directions.

bigger than that of the top 10 design concepts indicated by
red rectangles. As shown in FIGURE 4, when the top and last
30 design concepts are drawn in the three-dimensional space,
we still can observe the top 30 (red rectangles) located on
the lower left while the last 30 (blue diamonds) are scattered
on the upper right. From this result, we know that FCI, CCI
and FCMI are capable of measuring the novelty of design
concept.

To evaluate NEM, the learning and testing are conducted
30 times. For each run, all datasets (100 design concepts)
are divided randomly into three groups, including training
data (70%), validation data (15%) and test data (15%). This
work takes the Mean Square Error (MSE) as an indicator to
measure the performance. The average MSE of the 30 runs
is 0.3709. We think this is acceptable since the mean of
all novelty value is about 5.7 and the ratio of the error is
about 6.51%.

B. EXPERIMENTS ON FDM
As shown in FIGURE 5, the number of functions of all
the 100 design concepts follow a Gaussian distribution

FIGURE 4. The distribution of the top 30 and last 30 design concepts in
terms of the novelty value. The subplot A shows the design concepts in
the three-dimensional space (FCI, CCI, FCMI), and subplot B, C and D
show the projection view from the three directions.

FIGURE 5. The histogram and estimated Gaussian distribution of the
number of functions.

(µ = 8.42 and σ = 4.33). Based on this, 100 design
concepts are randomly generated, and they are scattered
in FIGURE 6 together with the existing design concepts.
From this figure, we can find that (1) the distribution of ran-
domly generated design concepts is obviously different with
existing design concepts. Specifically, the generated design

116840 VOLUME 7, 2019



J. Hao et al.: Knowledge-Based Method for Rapid Design Concept Evaluation

FIGURE 6. The distribution of the 100 existing design concepts (circle) and 100 random
generated design concepts (diamond). The subplot A shows the design concepts in the
three-dimensional space (FCI, CCI, FCMI), and subplot B, C and D show the projection
view from the three directions.

FIGURE 7. The cluster center (the blue rectangle) of all design concepts in
the knowledge base.

concepts are clustered in the lower left, while the existing
design concepts are clustered in the upper right. (2) There
are no obvious correlations between the FCI, CCI and FCMI
of generated design concepts, and this is quite different from
existing design concepts.

The above analysis shows that FCI, CCI and FCMI are
capable of distinguishing the generated design concepts and
the existing design concepts. Therefore, this work trains
a naïve Bayesian classifier with the two groups of design
concepts. The model is validated by 10 times 10-fold
cross-validation. As shown in TABLE 2, the average error
is 2.65%, i.e. the prediction accuracy is 97.35%.

C. EXPERIMENTS ON FEM
As shown in FIGURE 7, the cluster center of all design
concepts is indicated by a blue rectangle and its coordinate
is
[
0.025 0.033 0.019

]
. FIGURE 8 shows the feasibility

FIGURE 8. The distribution of feasibility value in the three-dimensional
space when 6 is an identity matrix. The three two dimensional subplots
show the projection view from the three directions.

value in the three-dimensional spacewhen6 is a 3×3 identity
matrix. We can see that the space close to the cluster center
has higher feasibility value, and the feasibility decreases with
the increase in distance. Another thing that should be noticed
is the trends of feasibility value are the same in all directions
since 6 is an identity matrix. This result can also be clearly
seen when comparing FIGURE 8 with FIGURE 9, which
shows the distribution of feasibility value when 6 is set as
below.

6 =

 1 0.3 0.5
0.3 1 0.5
0.5 0.5 1


Unlike FIGURE 8, different directions have various trends

in FIGURE 9. From the upper right subplot in FIGURE 9,
we know that the feasibility value in the diagonal direction
decreases slower than other directions, and this is determined
by 6. In this work, the setting of matrix 6 is left to the
developer of the design concept evaluation model. However,
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FIGURE 9. The distribution of feasibility value in the three-dimensional
space when 6 is a predefined matrix. The three two dimensional subplots
show the projection view from the three directions.

FIGURE 10. Mountain bicycle.

FIGURE 11. The CFG of mountain bicycle.

FIGURE 12. The FS of mountain bicycle.

in scenarios where some prior information about feasibility
is known, this matrix can also be determined by machine
learning methods.

To validate FEM, we collect 5 variants of two prod-
ucts respectively. All variants have several distinctive func-
tions which are implemented by different components. The
variants are listed in with their feasibility value computed
by FEM.

FIGURE 13. Scooter.

FIGURE 14. The CFG of scooter.

FIGURE 15. The FS of scooter.

FIGURE 16. Bicycle with fan.

As shown in TABLE 3, all product variants get very high
feasibility values (indicated by Fv). This result is reasonable
since all variants are already in the market. Further analysis
finds that the number of functions influences feasibility value
significantly. Therefore, we divide Fv by the number of func-
tions to get Fv’, and the last column of TABLE 3 shows the
order in terms of Fv’. Generally speaking, the order is in line
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TABLE 3. The feasibility value of real product calculated by FEM.

FIGURE 17. The CFG of bicycle with fan.

TABLE 4. The evaluation results of the three products.

with our intuition. For example, variant-1 and variant 5 of
toothbrush have higher Fv’ since they only have simple func-
tions and components, while variant-3 has lower Fv’ since it
has very unusual functions.

FIGURE 18. The FS of bicycle with fan.

V. CASE STUDY
To verify the proposed method, which incudes a knowl-
edge base, four defined features and three evaluation mod-
els, this work adopts three transpotation products, including
mountain bicycle (FIGURE 10), scooter (FIGURE 13) and
bicycle with fan (FIGURE 16). Accoding to the method
illustrated in existring literature, the CFG and FS are con-
structed which involves the main components and func-
tions, as shown in FIGURE 11, FIGURE 12, FIGURE 14,
FIGURE 15, FIGURE 17 and FIGURE 18.

The CFGs and FSs of the three products are transformed
in to a numerical vector based on the method illustrated
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TABLE 5. The detail of the vocabularies.
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TABLE 5. (Continued.) The detail of the vocabularies.

in section III.B, which are shown in TABLE 4. The evaluation
results of the NEM, FDM and FEM are also calculated and
shown in TABLE 4.

The results show that bicycle has the lowest novelty and
bicycle with fan has the highest novelty. This result is consis-
tent with our intuition. The FDM shows that the three prod-
ucts are all feasible and can be implemented. The feasibility
values of these three products are also onsistent with our
intuition. The three product are all have a very high feasibility
value and the values of bicycle and scooter are higher than
that of the bicycle with fan.

VI. CONCLUSION
A knowledge-based method for computational design con-
cept evaluation is developed in this work. This method con-
tains a knowledge base and four numberical features. With
this method, this work implements three evaluation models,
including NEM, FDM and FEM.

The empirical results show that the NEM can predict the
novelty value of design concepts with a low MSE. Since this
model is a three-layer neural network, the calculation process
is efficient. Therefore, it can be used to roughly predict the
novelty value of a big number of design concept.
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We also find that the FDM can distinguish existing design
concepts and randomly generated design concepts with high
accuracy. This model can act as an in-loop function to filter
infeasible design concepts in real time.

The empirical results show that the FEM is generally in line
with our intuition.We also believe that the parameter6 leaves
a space to train and develop different feasibility evaluation
models for different domains.

The empirical results show that the proposed method and
its knowledge base and feature space have the potential to
support the development of computational design concept
evaluation models. However, the proposed method also has
its own limtations. The main limitation is that the method
heavily relies on the quality of the knowledge base, which is
time-consuing to construct. However, in the big data era some
advanced methods can be applied to build the knowledge
base, such as knowledge graph. By this way, the quality of
the knowledge base can be improved. On the whole, this work
contributes to the research community by manually building
and publishing a knowledge base, and defining four featurest
that are used to develop design concept evaluation models.

APPENDIX
See Table 5.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable Comments.

REFERENCES
[1] J. Hao, Q. Zhao, and Y. Yan, ‘‘A function-based computational method

for design concept evaluation,’’ Adv. Eng. Inform., vol. 32, pp. 237–247,
Apr. 2017.

[2] T. Kurtoglu, M. I. Campbell, and J. S. Linsey, ‘‘An experimental study on
the effects of a computational design tool on concept generation,’’ Des.
Stud., vol. 30, no. 6, pp. 676–703, 2009.

[3] A. Wodehouse and W. Ion, ‘‘Augmenting the 6-3-5 method with design
information,’’ Res. Eng. Des., vol. 23, no. 1, pp. 5–15, Apr. 2012.

[4] J. J. Shah, N. Vargas-Hernandez, J. D. Summers, and S. Kulkarni, ‘‘Collab-
orative sketching (C-sketch)—An idea generation technique for engineer-
ing design,’’ J. Creative Behav., vol. 35, no. 3, pp. 168–198, Sep. 2001.

[5] T. Kurtoglu, M. I. Campbell, J. Gonzalez, C. R. Bryant, R. B. Stone, and
D. A. McAdams, ‘‘Capturing empirically derived design knowledge for
creating conceptual design configurations,’’ in Proc. 17th Int. Conf. Design
Theory Methodol., 2005, pp. 249–257.

[6] C. R. Bryant, D. A. McAdams, R. B. Stone, T. Kurtoglu, and
M. I. Campbell, ‘‘A computational technique for concept generation,’’ in
Proc. 17th Int. Conf. Design Theory Methodol., vol. 5, 2005, pp. 267–276.

[7] H.-Z. Huang, R. Bo, and W. Chen, ‘‘An integrated computational intelli-
gence approach to product concept generation and evaluation,’’Mechanism
Mach. Theory, vol. 41, no. 5, pp. 567–583, 2006.

[8] Y. T. Chong, C.-H. Chen, and K. F. Leong, ‘‘A heuristic-based approach to
conceptual design,’’ Res. Eng. Des., vol. 20, no. 2, pp. 97–116, Nov. 2009.

[9] G. Pahl and W. Beitz, ‘‘Engineering design: A systematic approach,’’
Students Q. J., vol. 34, no. 133, pp. 63–64, 1963. [Online]. Available:
https://digital-library.theiet.org/content/journals/10.1049/sqj.1963.0055

[10] J. S. Gero, ‘‘Role of function-behavior-structure models in design,’’ in
Proc. Comput. Civil Eng., vol. 1, New York, NY, USA, 1995, pp. 294–301.

[11] S. Yang, M. M. Tseng, D. Schaefer, and M. Fathianathan, ‘‘An Evo–
Devo framework for computational design synthesis based on a regulation
process,’’ in Proc. 28th Comput. Inf. Eng. Conf., vol. 3, 2008, pp. 37–45.

[12] Y. Umeda, M. Ishii, M. Yoshioka, Y. Shimomura, and T. Tomiyama, ‘‘Sup-
porting conceptual design based on the function-behavior-state modeler,’’
Artif. Intell. Eng. Des. Anal. Manuf., vol. 10, no. 4, pp. 275–288, 1996.

[13] Y. Umeda, S. Kondoh, Y. Shimomura, and T. Tomiyama, ‘‘Development of
design methodology for upgradable products based on function–behavior–
state modeling,’’ Artif. Intell. Eng. Des. Anal. Manuf., vol. 19, no. 3,
pp. 161–182, 2005.

[14] Z. Strawbridge, D. A. McAdams, and R. B. Stone, ‘‘A computational
approach to conceptual design,’’ in Proc. ASME Design Eng. Tech. Conf.
Comput. Inf. Eng. Conf., 2002, pp. 15–25.

[15] L. D. Miles, Techniques of Value Analysis and Engineering. Connecticut
Avenue, MD, USA: Miles Value Foundation, 1972.

[16] J. A. Collins, B. T. Hagan, and H. M. Bratt, ‘‘The failure-experience
matrix—A useful design tool,’’ J. Eng. Ind., vol. 98, no. 3, pp. 1074–1079,
1976.

[17] M. S. Hundal, ‘‘A Systematic method for developing function structures,
solutions and concept variants,’’ Mech. Mach. Theory, vol. 25, no. 3,
pp. 243–256, 1990.

[18] G. Altshuller, ‘‘Creativity as an exact science: The theory of the solution
of inventive problems,’’ J. Develop. Econ., vol. 91, no. 1, pp. 64–76, 1984.

[19] P. Koch, J. Peplinski, J. K. Allen, and F.Mistree, ‘‘Amethod of design using
available assets: Identifying a feasible system configuration,’’ Behav. Sci.,
vol. 39, no. 3, pp. 229–250, 1994.

[20] R. B. Stone and K. L. Wood, ‘‘Development of a functional basis for
design,’’ J. Mech. Des., vol. 122, no. 4, pp. 359–370, 2000.

[21] K. L. Wood and A. D. Little, ‘‘Functional analysis: A fundamental empir-
ical study for reverse engineering, benchmarking, and redesign,’’ in Proc.
ASME DTM Conf., 1997, pp. 1–21.

[22] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood,
‘‘A functional basis for engineering design: Reconciling and evolving
previous efforts,’’ Res. Eng. Des., vol. 13, no. 2, pp. 65–82, 2002.

[23] S. Szykman, J.W. Racz, and R. D. Sriram, ‘‘ The representation of function
in computer-based design,’’ in Proc. ASMEDesign Eng. Tech. Conf., 1999,
pp. 1–14.

[24] T. Kurtoglu, M. I. Campbell, C. R. Bryant, R. B. Stone, and
D. A. McAdams, ‘‘Deriving a component basis for computational func-
tional synthesis,’’ in Proc. 15th Int. Conf. Eng. Design (ICED), 2005,
pp. 1687–1701.

[25] J. J. Shah, S. V. Kulkarni, and N. Vargas-Hernandez, ‘‘Evaluation of
idea generation methods for conceptual design: Effectiveness metrics and
design of experiments,’’ J. Mech. Des., vol. 122, no. 4, pp. 377–384, 2000.

[26] J. J. Shah, S. M. Smith, and N. Vargas-Hernandez, ‘‘Metrics for measuring
ideation effectiveness,’’ Des. Stud., vol. 24, no. 2, pp. 111–134, 2003.

[27] C. Redelinghuys, ‘‘A model for the measurement of creativity. Part I—
Relating expertise, quality and creative effort,’’ Int. J. Eng. Educ., vol. 13,
no. 2, pp. 98–107, 1997.

[28] S. Oman and I. Y. Tumer, ‘‘The potential of creativity metrics for mechan-
ical engineering concept design,’’ in Proc. Int. Conf. Eng. Design, 2009,
pp. 145–156.

[29] L. A. Elizondo, L. G. Kisselburgh, E. D. Hirleman, R. J. Cipra, K. Ramani,
M. Yang, and T. Carleton, ‘‘Understanding innovation in student design
projects,’’ in Proc. ASME Int. Design Eng. Tech. Conf. Comput. Inf. Eng.
Conf., 2010, pp. 805–810.

[30] V. Chulvi, E. Mulet, A. Chakrabarti, B. López-Mesa, and C. González-
Cruz, ‘‘Comparison of the degree of creativity in the design outcomes using
different design methods,’’ J. Eng. Des., vol. 23, no. 4, pp. 241–269, 2012.

[31] E. Lennon, J. Farr, and R. Besser, ‘‘Evaluation of multi-attribute decision
making systems applied during the concept design of new microplasma
devices,’’ Expert Syst. Appl., vol. 40, no. 16, pp. 6321–6329, 2013.

[32] S. K. Oman, I. Y. Tumer, K. Wood, and C. Seepersad, ‘‘A comparison of
creativity and innovation metrics and sample validation through in-class
design projects,’’ Res. Eng. Des., vol. 24, no. 1, pp. 65–92, Sep. 2013.

[33] Y. Borgianni, G. Cascini, and F. Rotini, ‘‘Assessing creativity of design
projects: Criteria for the service engineering field,’’ Int. J. Des. Creat.
Innov., vol. 1, no. 3, pp. 131–159, 2013.

[34] D. O. Aikhuele and F. M. Turan, ‘‘An interval fuzzy-valued M-TOPSIS
model for design concept selection,’’ in Proc. Nat. Conf. Postgraduate Res.
Malaysia: Univ. Malaysia Pahang, 2016, pp. 374–384.

[35] J. Hu, G. Zhu, J. Qi, Y. Peng, and X. Peng, ‘‘Design concept evaluation
based on rough number and information entropy theory,’’ in Proc. IEEE
12th Int. Conf. Autonomic Trusted Comput., Aug. 2015, pp. 1425–1431.

[36] G.-N. Zhu, J. Hu, J. Qi, C.-C. Gu, and Y.-H. Peng, ‘‘An integrated AHP
and VIKOR for design concept evaluation based on rough number,’’ Adv.
Eng. Inform., vol. 29, no. 3, pp. 408–418, Aug. 2015.

[37] D. Akay, O. Kulak, and B. Henson, ‘‘Conceptual design evaluation using
interval type-2 fuzzy information axiom,’’ Comput. Ind., vol. 62, no. 2,
pp. 138–146, 2011.

116846 VOLUME 7, 2019



J. Hao et al.: Knowledge-Based Method for Rapid Design Concept Evaluation

[38] H. Malekly, S. M. Mousavi, and H. Hashemi, ‘‘A fuzzy integrated method-
ology for evaluating conceptual bridge design,’’ Expert Syst. Appl., vol. 37,
no. 7, pp. 4910–4920, 2010.

[39] Z. Ayağ and R. G. Özdemir, ‘‘A hybrid approach to concept selection
through fuzzy analytic network process,’’Comput. Ind. Eng., vol. 56, no. 1,
pp. 368–379, 2009.

[40] Z. Ayağ, ‘‘A fuzzy AHP-based simulation approach to concept evaluation
in a NPD environment,’’ IIE Trans., vol. 37, no. 9, pp. 827–842, 2004.

[41] W. Yan, C.-H. Chen, and M.-D. Shieh, ‘‘Product concept generation and
selection using sorting technique and fuzzy c-means algorithm,’’ Comput.
Ind. Eng., vol. 50, no. 3, pp. 273–285, 2006.

[42] X. Geng, X. Chu, and Z. Zhang, ‘‘A new integrated design concept eval-
uation approach based on vague sets,’’ Expert Syst. Appl., vol. 37, no. 9,
pp. 6629–6638, 2010.

[43] W. Song, X. Ming, and Z. Wu, ‘‘An integrated rough number-based
approach to design concept evaluation under subjective environments,’’
J. Eng. Des., vol. 24, no. 5, pp. 320–341, 2013.

[44] G. Xie, J. Zhang, K. K. Lai, and L. Yu, ‘‘Variable precision rough set
for group decision-making: An application,’’ Int. J. Approx. Reasoning,
vol. 49, no. 2, pp. 331–343, 2008.

[45] J. Guo and W. Zhang, ‘‘Selection of suppliers based on rough set theory
and VIKOR algorithm,’’ in Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl.
Workshop (IITA), Dec. 2008, pp. 49–52.

[46] V. Tiwari, P. K. Jain, and P. Tandon, ‘‘Product design concept evaluation
using rough sets and VIKOR method,’’ Adv. Eng. Inform., vol. 30, no. 1,
pp. 16–25, 2016.

[47] L.-Y. Zhai, L.-P. Khoo, and Z.-W. Zhong, ‘‘Design concept evaluation in
product development using rough sets and grey relation analysis,’’ Expert
Syst. Appl., vol. 36, no. 3, pp. 7072–7079, 2009.

[48] H. Shidpour, C. Da Cunha, and A. Bernard, ‘‘Group multi-criteria design
concept evaluation using combined rough set theory and fuzzy set theory,’’
Expert Syst. Appl., vol. 64, pp. 633–644, Dec. 2016.

[49] H. Shidpour, M. Shahrokhi, and A. Bernard, ‘‘A multi-objective program-
ming approach, integrated into the TOPSIS method, in order to optimize
product design; In three-dimensional concurrent engineering,’’ Comput.
Ind. Eng., vol. 64, no. 4, pp. 875–885, 2013.

[50] D. Chang and C.-H. Chen, ‘‘Product concept evaluation and selection using
data mining and domain ontology in a crowdsourcing environment,’’ Adv.
Eng. Informat., vol. 29, no. 4, pp. 759–774, 2015.

[51] Z.-J. Zhang, L. Gong, Y. Jin, J. Xie, and J. Hao, ‘‘A quantitative approach
to design alternative evaluation based on data-driven performance predic-
tion,’’ Adv. Eng. Inform., vol. 32, no. 1, pp. 52–65, Apr. 2017.

[52] P. C. Matthews, ‘‘A Bayesian support tool for morphological design,’’ Adv.
Eng. Inform., vol. 22, no. 2, pp. 236–253, 2008.

JIA HAO received the M.S. and Ph.D. degrees in
mechanical engineering from the Beijing Institute
of Technology, China, in 2010 and 2014, respec-
tively, where he is currently an Assistant Professor.
His current research interests include intelligent
design, computational creativity, and related area.

LINGYAN XU received the B.S. degree inmechan-
ical engineering from the Beijing Institute of Tech-
nology, China, in 2017, where she is currently
pursuing the M.S. degree. Her research interests
include concept design and intelligent manufactur-
ing systems.

GUOXIN WANG received the B.S. degree from
Lanzhou Jiaotong University, in 2001, the M.S.
degree fromLanzhou Jiaotong University, in 2004,
and the Ph.D. degree from the Beijing Institute
of Technology, China, in 2007. He was a Visiting
Scholar with The University of Oklahoma, USA,
from 2014 to 2015. He is currently an Associate
Professor with the Beijing Institute of Technology.
His current research interests include reconfig-
urable manufacturing systems, intelligent design,
and knowledge engineering.

YILING JIN is currently pursuing the B.S. degree
in industrial engineering from the Beijing Institute
of Technology, China. Her current research inter-
ests include intelligent design, gesture recognition,
and related areas.

YAN YAN received the B.S. and Ph.D. degrees in
mechanical engineering from the Beijing Institute
of Technology, China, in 1989 and 2001, respec-
tively, where she is currently a Professor. Her
current research interests include reconfigurable
manufacturing systems, intelligent design, and
knowledge engineering.

VOLUME 7, 2019 116847


