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ABSTRACT The existing mesh segmentation methods currently require long training times and have high
computational complexity. Consequently, many of these methods cannot meet the rapid requirements of
digital geometry processing in theWeb environment. This paper proposes an online rapid mesh segmentation
method based on an online sequential extreme learning machine (OS-ELM). In the training stage, the OS-
ELM is trained by analyzing the mapping relationship between the shape descriptors of the mesh and the
Gaussian curvature threshold. We reduce the dimensionality of the shape descriptor vector via principal
component analysis (PCA) and extract the Gaussian curvature threshold of the mesh as the sample label
using statistics. In the segmentation stage, the Gaussian curvature threshold is quickly extracted to realize
the online rapid mesh segmentation via the OS-ELM. Simultaneously, the OS-ELM is updated to realize
online incremental learning based on a small number of training samples. Our method is verified using the
meshes provided from ShapeNetCore. The experimental results indicate that segmentation results similar to
manual segmentation can be rapidly generated online using our method.

INDEX TERMS Online sequential extreme learning machine, rapid mesh segmentation, incremental
learning, Gaussian curvature threshold, web environment.

I. INTRODUCTION
Mesh segmentation is a fundamental topic in the field of
digital geometry processing [1]. It is widely used inmodeling,
patching, texture mapping and shape retrieval. In reverse
engineering, to transform the reconstructed triangular mesh
into a 3D solid model that supports parametric design, the tri-
angular mesh should be segmented, and each segmentation
region is matched with some basic solid features, such as
extruding and revolving [2]. Therefore, research on accurate
mesh segmentation methods is helpful in realizing inverse
solid modeling based on 3D scanning [3] and improving
the efficiency of reverse product design, which is of great
significance in the field of computer-aided design (CAD).

With the continuous development of Web technology, both
CAD and digital geometry processing have a tendency to
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migrate into the Web environment. However, online mesh
segmentation requires not only low computational complex-
ity of the algorithm to adapt to the high-concurrency phe-
nomenon but also rapid training and segmentation processes
to satisfy the requirements of the Web environment for effi-
cient and real-time digital geometry processing. Therefore,
the above situation presents a new challenge for mesh seg-
mentation in the Web environment.

We propose an online rapid mesh segmentation method
based on an online sequential extreme learning machine (OS-
ELM). The main contributions of this paper are as follows.
(1) The fusion of all these components which include Otsu,
PCA, OS-ELM and postprocessing algorithms are realized to
complete a common task of online rapid mesh segmentation
without any manual intervention. (2) A statistical method is
used to train the OS-ELM. The dimensionality reduction in
the shape descriptor vector is performed, and the Gaussian
curvature threshold is extracted as the sample label according
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to Otsu. While improving the reliability of the training sam-
ple, the low-dimensionality of the shape descriptor vector
ensures the lower computational complexity of the OS-ELM
training process. (3) An onlinemesh segmentation in realized.
With the characteristics of incremental learning and random
assignment of neuron weights, the OS-ELM can be trained
with a small number of training samples and the Gaussian
curvature threshold can be quickly extracted. Simultane-
ously, the accuracy of the Gaussian curvature threshold can
be continuously improved through subsequent incremental
learning. This algorithm effectively avoids the long train-
ing time of machine learning models in existing supervised
learning algorithms and is suitable for running in the Web
environment. (4) The quality of the mesh segmentation is
improved. The postprocessing algorithms are executed such
as skeletonizing the feature vertex region, boundary line clo-
sure and boundary line optimization, which effectively avoid
the unsatisfactory boundaries in the segmentation results gen-
erated by the unsupervised learning algorithms.

The remainder of this paper is organized as follows.
Section 2 introduces the related work in the field of mesh
segmentation and analyses the existing research deficien-
cies. Section 3 introduces the overview of our method.
Section 4 presents the statistically -based OS-ELM training
sample set. Section 5 introduces the specific implementation
steps of the online rapid mesh segmentation based on the
OS-ELM. Section 6 presents the experimental tests using
ShapeNetCore and the Princeton Segmentation Benchmark
(PSB). Section 7 contains the conclusions.

II. RELATED WORK
Initially, relevant image segmentation theory was applied in
the field ofmesh segmentation, andmanual segmentationwas
widely used. Chen et al. [4] proposed the PSB at SIGGRAPH
2009; this dataset contains more than 4,000 manual seg-
mentation results for 19 types of 380 meshes. Additionally,
he presented 4 types of metrics to evaluate different mesh seg-
mentation algorithms compared with manual segmentation
results. With the development of machine learning, research
regarding mesh segmentation has gradually evolved from
manual segmentation to automatic segmentation [5].

A. SUPERVISED LEARNING ALGORITHMS
In the field of mesh segmentation based on a supervised
learning algorithm, Kalogerakis et al. [6] used the Joint-
Boost algorithm to train a classifier using dozens of shape
descriptors to generate the initial segmentation result. A con-
ditional random field (CRF) was also used to obtain the
final segmentation result with a smooth boundary. This
method can achieve a high accuracy rate using PSB. Then,
Kalogerakis et al. [7] proposed a 3D shape segmentation
architecture with projective convolutional networks, which
combines image-based fully convolutional networks (FCNs)
and surface-based CRFs to yield coherent segmentations
of 3D shapes. Benhabiles et al. [8] proposed a fully auto-
matic mesh segmentation algorithm, in which the AdaBoost

algorithm was used to train the classifier and the active con-
tour model was used to obtain smooth segmentation results.
Xie et al. [9] proposed a rapid method for 3D shape segmen-
tation and labeling via an extreme learning machine (ELM); a
graph-cut optimization constrained by the super-face bound-
aries obtained by oversegmentation was executed to generate
the final smooth segmentation. Additionally, the real-time
sequential learning was realized through an OS-ELM. Then,
Xie et al. [10] proposed a multiview deep ELM (MVD-ELM)
to achieve fast and quality projective feature learning for 3D
shapes. The MVD-ELM was extended into a fully convo-
lutional version (referred to as FC-MVD-ELM) to achieve
mesh segmentation and labeling. Guo et al. [11] presented
a robust mesh representation that is learned by nonlinearly
combining and hierarchically compressing various geometry
features with deep convolutional neural networks (CNNs),
which can adapt to various 3D meshes. Yi et al. [12] propose
a novel active learning method capable of enriching massive
geometric datasets with accurate and robust semantic region
annotations. Then, Yi et al. [13] proposed a method for
learning hierarchical shape segmentation and labeling from
online repositories, in which the geometric shapes were con-
verted into hierarchically segmented parts with part labels.
Qi et al. [14] presented a deep learning network named
PointNet that provides a unified architecture for part seg-
mentation. Graham et al. [15] presented submanifold sparse
convolutional networks (SSCNs) for semantic segmentation
of spatially-sparse 3D point clouds.

In summary, the abovementioned methods usually use
meshes with labeled information to make a training set, and
some machine learning algorithms have been used to train
the triangular patch classifier. After the initial segmentation
result was generated, the CRF, graph cuts, or active contour
models (Snakes) were used to generate the final segmenta-
tion result with smooth boundaries. Although these super-
vised learning algorithms can obtain better evaluation scores
from PSB, they require several tens of hours to train the
machine learning models, which cannot satisfy the require-
ments of low computational complexity in the Web envi-
ronment. Although the method proposed by Xie et al. [9]
performs rapid segmentation compared with other supervised
algorithms, the quality of the final segmentation results is
highly dependent on that of the oversegmentation. In addi-
tion, the intention of ELM training takes only the labeling
information in the training data into account, leading to a face
classifier, but it does not exploit the boundary information
imparted in the data, for which the boundary may easily
exhibit obvious zigzags.

B. UNSUPERVISED LEARNING ALGORITHMS
In the field of mesh segmentation based on unsupervised
learning algorithms, Luo et al. [16] formulated the problem
of 3D shapes cosegmentation as a multiview spectral clus-
tering task by cotraining a set of affinity matrices derived
from different shape descriptors, which demonstrate robust to
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FIGURE 1. An overview of our online rapid mesh segmentation method.

outliers. Shu et al. [17] extracted the low-level shape features
from the oversegmentation regions, and high-level features
are learned, in an unsupervised style, from the low-level ones
based on deep learning to realize a clustering of triangular
patches in a high-level feature space. Theologou et al. [18]
presented a fully automatic mesh segmentation scheme
using heterogeneous graphs. They developed an unsuper-
vised spectral framework in which local geometry affinities
are coupled with surface patch affinities; the segmenta-
tion results were comparable to those of best supervised
approaches. Wang et al. [19] introduced an exemplar-based
clustering method based on affinity propagation for 3D shape
cosegmentation, which combines the advantages of both
affinity-based and model-based cosegmentation methods.
Zhang et al. [20] took the spectral clustering result as the ini-
tialization of the variational refining procedure to realize sat-
isfied 3D shape segmentation. Tong et al. [21] transformed
the spectral mesh segmentation as the problem of L0 gradient
minimization, which was highly suitable for detecting sharp
features on CAD models.

In summary, the abovementioned methods usually use
different clustering methods to segment and label the tri-
angular patches. To give an initial value to the clustering
algorithm and accelerate the clustering, the mesh should be
oversegmented first, and the feature extraction and cluster-
ing should be executed in the oversegmentation region to
optimize the segmentation boundaries. Although the faster
segmentation speed of such methods satisfies the require-
ment of lower computational complexity in the Web envi-
ronment, the final segmentation result is highly dependent
on the oversegmentation effect such that the quality of
segmentation is far less than that of supervised learning
algorithms.

C. OTHER METHODS
In addition to the abovementioned supervised learning and
unsupervised learningmethods, scholars have proposed some
other methods. Fayolle and Pasko [22] realized the segmenta-
tion of point clouds by fitting the template primitives from a
specified set of candidate template primitives and extracting
the points corresponding to the best-fitting primitive in each
iteration. Fan et al. [23] presented a self-adaptive segmenta-
tion method for a point cloud, which performed an automatic
selection of seed points according to extracted features and
segmentation of the points using an improved region-growing
algorithm. The segmentation accuracy rate was as high as
96%. Mejia et al. [24] presented an implementation of a
hybrid geometry / topology mesh segmentation algorithm,
which yields not only a parameterizable mesh but also a func-
tional partition of scanned mechanical workpieces without
resorting to oversegmentation. The algorithm allows auto-
matic processing of 3D meshes from scanned workpieces,
improving the reverse engineering workflow. Although the
abovementioned methods avoid the high computational com-
plexity caused by the machine learning algorithms, they are
only effective for a certain type of mesh, which cannot realize
satisfied cosegmentation results.

III. OVERVIEW
We present an online rapid mesh segmentation method based
on an OS-ELM. First, the statistical-based training sample set
of the OS-ELM is collected. Subsequently, the initialization
of the OS-ELM is finished. Consequently, the online incre-
mental learning of the OS-ELM is performed based on the
new input mesh. Finally, the mesh segmentation is realized
using the Gaussian curvature threshold extracted from the
OS-ELM. A flow-chart of our method is shown in Fig. 1.
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A. COLLECTION OF THE TRAINING SAMPLE SET
The first step of our method is to solve the Gaussian cur-
vature of each vertex on the sample mesh based on the
Gauss–Bonnet theorem and draw the frequency histogram
to extract the Gaussian curvature threshold using Otsu. The
operations are uniformly performed on all meshes in the
sample set such that we collect the training sample set of
the OS-ELM containing the labels of the Gaussian curvature
threshold.

B. INITIALIZATION OF THE OS-ELM
Then we construct the original shape descriptor vector
[D1, . . . ,DH ] of a sample mesh and perform dimension-
ality reduction on the compound shape descriptor vector
[D1, . . . ,DL] using PCA (L < H ).We initialize the OS-ELM
using a small sample of meshes that contains their compound
shape descriptor vectors and Gaussian curvature thresholds.

C. ONLINE INCREMENTAL LEARNING OF THE OS-ELM
In this stage, we also construct the original shape descriptor
vector [D1, . . . ,DH ] of a test mesh and perform dimen-
sionality reduction on the compound shape descriptor vector
[D1, . . . ,DL] using PCA as the input of the OS-ELM. Thus,
the Gaussian curvature threshold KT of this test mesh is
extracted using the OS-ELM. Meanwhile, the output weight
vector of the OS-ELM is updated to realize online incremen-
tal learning.

D. MESH SEGMENTATION AND OPTIMIZATION
Finally, the vertices with Gaussian curvature greater than
KT are marked as feature vertices, and accurate boundary
lines are generated through the skeletonizing of feature vertex
regions. Then, the boundary lines are closed based on the
ray method, and the active contour model (Snakes) is used
to optimize the boundary lines.

IV. STATISTICALLY-BASED OS-ELM TRAINING
SAMPLE SET COLLECTION
A. GAUSSIAN CURVATURE ESTIMATION
In differential geometry, the Gaussian curvature K of a vertex
on a surface is the product of the principal curvatures K1 and
K2 [25]; that is, K = K1K2. The Gaussian curvature is an
intrinsic measure of a curvature that reflects the degree of
local curvature of the surface [26]. According to the analy-
sis of the manual segmentation results in the PSB, the val-
ues of the Gaussian curvature of the boundary vertices are
often significantly higher than the nonboundary vertices [27].
We define the Gaussian curvature threshold KT as a key met-
ric to distinguish the boundary vertices from the nonboundary
vertices and consider the vertices with a Gaussian curvature
greater than KT as the feature vertices for distributing around
the accurate boundary lines.

Let the three vertices of triangular patchT be vi, vj and vj+1.
As shown in Fig. 2(a) and Fig. 2(b), the Gaussian curvature
estimation of vertex vi depends on the coordinate values of vi

FIGURE 2. Gaussian curvature estimation of a vertex on the mesh.
(a) Triangular patch with three acute angles. (b) Triangular patch with one
obtuse angle. (c) Gaussian curvature estimation of v through six
triangular patches.

and other vertices in the one-dimensional neighborhood of vi.
Meanwhile, let the angle between vivj and vjvj+1 be ϕi, and
the angle between vivj+1 and vjvj+1 be ψi. As is known from
the Gauss–Bonnet theorem [28],

K (v) =
1

A (v)

2π −
∑

vk∈N1(v)

θk

 (1)

where K (v) represents the Gaussian curvature of vertex v,
A(v) represents the areas of the region corresponding to the
neighborhood triangle patches of vertex v, and θk represents
the angle between v and the k-th triangle patch in the neigh-
borhood of v. A(v) is formulated as follows:

A (v) =
∑
i

Svi (2)

where Svi represents the area of the region segmented by the
Voronoi diagram in the neighborhood of vi (which are marked
in gray in Fig. 2) [29]. Svi is formulated as follows:

Svi =



1
8

(∥∥vivj+1∥∥2 cotϕk + ∥∥vivj∥∥2 cotψk) ,
0 < θk ≤

π
2

1
2

∥∥vivj∥∥ ∥∥vivj+1∥∥ sin θk
−

1
8

(∥∥vivj∥∥2 tanϕk + ∥∥vivj+1∥∥2 tanψk) ,
π
2 < θk < π

(3)

As shown in Fig. 2(c), the Gaussian curvature K (v) of
vertex v can be estimated as follows:

K (v) =

2π −
∑

vk∈N1(v)
θk

A (v)

=
2π − (θ1 + θ2 + θ3 + θ4 + θ5 + θ6)
Sv1 + Sv2 + Sv3 + Sv4 + Sv5 + Sv6

(4)
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B. GAUSSIAN CURVATURE THRESHOLD EXTRACTION
BASED ON FREQUENCY HISTOGRAM ANALYSIS
To make the values of the Gaussian curvature easy to process
as the frequency histogram, they should be linearly normal-
ized [30]:

K ′ (v) =
K (v)−min (K (v))

max (K (v))−min (K (v))
(5)

where K ′(v) ∈ [0, 1]. Taking the number of vertices V as
the ordinate and K ′(v) as the abscissa, the transverse axis is
equally divided into n parts. The number of vertices in each
part is calculated, and the histogram should be smoothed [31].
The Gaussian curvature frequency histogram is binarized to
obtain a Gaussian curvature threshold using Otsu [32]. First,
the hypothesis threshold K ′t (v) for the t-th equal partition is
formulated as follows:

K ′t (v) =
t
n
max

(
K ′ (v)

)
(6)

where max(K ′(v)) represents the maximum value of the
Gaussian curvature of all vertices after normalization. Then,
the algorithm calculates the number of vertices of 2 adja-
cent partitions Vt−1 and Vt+1. Therefore, the expectations of
Gaussian curvature E(Vt−1) and E(Vt+1) are formulated as
follows:

E (Vt) =
max

(
K ′ (v)

)
nVt

(7)

where Vt represents the number of vertices in the t-th par-
tition. While the hypothesis threshold is K ′t (v), the variance
D(Vt ) is formulated as follows:

D (Vt) = Vt−1 × Vt+1 × [E (Vt−1)− E (Vt+1)]2 (8)

Based on the distribution of D(Vt ), the hypothesis thresh-
old corresponding to max(D(Vt )) is selected as the Gaussian
curvature threshold KT . Thus, the OS-ELM training sample
set can be collected via the Gaussian curvature threshold
estimation for a plurality of meshes with the same or similar
appearance:

S=
{
M1

(
K 1
T

)
,M2

(
K 2
T

)
, · · ·,Mw

(
Kw
T
)
, · · ·,MW

(
KW
T

)}
(9)

whereW represents the number of samples, 1 ≤ w ≤ W , and
Kw
T represents the Gaussian curvature threshold of the w-th

sample mesh.

V. ONLINE RAPID MESH SEGMENTATION BASED
ON THE OS-ELM
A. PCA-BASED DIMENSIONALITY REDUCTION
IN SHAPE DESCRIPTORS
The shape descriptor is an abstract and concise representa-
tion of the 3D shape, which reflects the geometric feature
information of the mesh. The shape descriptor has the char-
acteristics of invariance of mesh rotation and translation and
insensitivity of mesh deformation [33]. The input vector
contains a variety of shape descriptors, not only increasing

the complexity of OS-ELM but also increasing the compu-
tational complexity of the algorithm, which cannot satisfy
the requirement of low computational complexity in the Web
environment. Therefore, we reduce the dimensionality of
various shape descriptors using PCA. Let the number of shape
descriptors be H in the sample set S; the sample matrix is
formulated as follows:

X =



x11 x12 · · · x1w · · · x1W
x21 x22 · · · x2w · · · x2W
...

...
. . .

...
. . .

...

xh1 xh2 · · · xhw · · · xhW
...

...
. . .

...
. . .

...

xH1 xH2 · · · xHw · · · xHW


(10)

where xw = [x1w, x2w, · · · , xhw, xHw]T represents the input
vector that contains H kinds of shape descriptors of the w-th
sample mesh, 1 ≤ w ≤ W , 1 ≤ h ≤ H . The mean of each
rowµ is calculated and zero-averaged to generate a matrix X :

X = [xhw − µ] =

[
xhw −

1
W

W∑
w=1

xhw

]
(11)

The covariance matrix C is constructed, and the eigenval-
ues λh and eigenvectors uh of C are solved using singular
value decomposition (SVD) [34]:

C =
1
W
XX

T
(12)

The eigenvectors uh are arranged in a row from top to bot-
tom according to the corresponding eigenvalues λh, so that a
newmatrix is generated. The first L rows (L < H ) are used to
form another new matrix P, and the dimensionality-reduced
matrix Y can be generated through Y = PX , which is
formulated as follows:

Y =


y11 y12 · · · y1W
y21 y22 · · · y2W
...

...
. . .

...

yL1 yL2 · · · yLW

 (13)

B. INITIALIZATION OF THE OS-ELM BASED
ON A SMALL SAMPLE OF MESHES
The OS-ELM is a single hidden layer feedforward neural
network suitable for the Web environment. Its input weight
is subject to random assignment by a certain distribution
function, and the output weight is directly calculated via
the least squares method. Thus, its training and recognition
processes are rapid. The basic structure of OS-ELM is shown
in Fig. 3.

OS-ELM supports incremental learning for continuously
increasing sample meshes. That is, the initialization relies on
only a small number of meshes. After being deployed on a
Web server, it supports incremental learning of continuously
increasing sample meshes and updates the output weight
synchronously. Therefore, the training speed is dramatically
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FIGURE 3. The basic structure of OS-ELM and a neuron in the hidden
layer.

improved, which is suitable for performing machine learning
in a high-concurrency environment.

Let the Gaussian curvature threshold vector be tKT =
[K 1

T ,K
2
T , · · · ,K

W
T ]T . As is shown in Ref. [35], for an

OS-ELM with R hidden layer nodes and an activation func-
tion of g(y), the output Ow is formulated as follows:

Ow =
R∑
i=1

βigi (Si) =
R∑
i=1

βig (Wi · yw + bi) (14)

whereWi = [wi1,wi2, · · · ,win]T represents the input weight
vector, βi = [βi1, βi2, · · ·βim]T represents the output weight
vector, and bi represents the bias of the i-th hidden layer
node. We select the Sigmoid function as the activation func-
tion [36]. The training goal of OS-ELM is to approximateW
sample meshes with minimal error, which can be formulated
as

W∑
w=1

∥∥Ow − Kw
T

∥∥ = 0 (15)

That is, the existence of βi, Wi and bi make the following
equation true:

R∑
i=1

βig (Wi · yw + bi) = Kw
T (16)

We make a matrix form of equation (16) as Hβ = tKT . H
represents the output matrix of the hidden layer nodes, and
β represents the output weight vector. To train this model,
we want to find Wi, bi and βi that satisfy the following
equation:∥∥H (Wi, bi) βi − tKT

∥∥= min
W ,b,β

∥∥H (Wi, bi) βi−tKT
∥∥ (17)

Equation (17) is equivalent to minimizing the loss function
as follows:

E =
W∑
w=1

(
R∑
i=1

βig (Wi · yw + bi)− Kw
T

)2

(18)

Therefore, the process of solving the OS-ELM is trans-
formed into solving the linear system of Hβ = tKT . The
output weight vector β can be solved using the following
equation:

β̂ = H+tKT (19)

where H+ represents the Moore-Penrose generalized inverse
matrix of H [37].

C. ONLINE INCREMENTAL LEARNING OF THE
OS-ELM BASED ON NEW INPUT MESHES
The initialized OS-ELM is deployed in the Web server.
Assume that there are W ′ new input meshes uploaded to the
Web server at the same time. It is known from the classic ELM
theory that β ′ can be solved using the following equation:

min
W ′,β ′,b′

∥∥∥∥[ HH ′
]
β ′ =

[
tKT
t′KT

]∥∥∥∥ (20)

where H ′ represents the output matrix from the hidden layer
nodes and is generated from the new input meshes. t′KT repre-
sents the Gaussian curvature threshold vector of the new input
meshes. As is known from Ref. [38], whenW ′ >1, β ′ should
be satisfied as follows:{

β ′ = β + P′H ′T
(
t′KT − H

′β
)

P′ = P− PH ′T
(
I + H ′PH ′T

)
H ′P

(21)

However, when W ′ =1, H ′ is transformed into a vector h′

such that β ′ should be satisfied as follows:
β ′ = β + P′h′

(
t
′T
KT − h′β

)
P′ = P−

Ph′h
′TP

1+ h′TPh′

(22)

where P =
(
HTH

)−1. As shown in equations (21) and
(22), during the initialization process, the OS-ELM is trained
with a small number of sample meshes to obtain the initial
output weight vector β. Thus, it can be deployed in the Web
server. During the online incremental learning process, the
output weight vector β ′ of the OS-ELM is updated through
the newly input meshes, which effectively improves the train-
ing speed.

D. MESH SEGMENTATION STAGE
1) SKELETONIZING FEATURE VERTEX REGIONS
The mesh M to be segmented is input into the trained
OS-ELM to obtain its Gaussian curvature threshold KT , and
the vertices whose Gaussian curvatures are greater than KT
should be marked as feature vertices. The feature vertices
tend to present regional distributions near the segmentation
boundaries. To extract accurate boundary lines, some fake
feature vertices should be removed; that is, the skeletonizing
of feature vertex regions should be executed first. We present
a feature vertex region G =

∑30
i=1 vi, which is shown

in Fig. 4(a), as an example to describe the process of skele-
tonizing as follows:
Step 1 Remove the Obvious Outliers in G: Calculate the

average Euclidean distance from vi to the remaining feature
vertices, which is formulated as di = 1

30

∑30
k=1,k 6=i ‖vi − vk‖.

We consider that di obeys Gaussian distribution and calculate
the mean µ and variance σ of di. As shown in Fig. 4(b),
we treat the feature vertices distributed outside ±3σ as the
outliers (the outliers are v3, v6, v9, v14 and v18) and remove
them from G.

VOLUME 7, 2019 109099



F. Zhao et al.: Online Rapid Mesh Segmentation Method Based on an OS-ELM

FIGURE 4. Skeletonizing the feature vertex region. (a) Feature vertex region G. (b) Remove the obvious outliers in G.
(c) Judge the boundary edge. (d) Generate the boundary edge set of G. (e) Extract the suspected skeleton edges.
(f), (g) Extract the skeleton edges. (h) Extract the approximate boundary.

Step 2 Extract the Boundary Edges: Traverse all the edges
inG. Consider an edge that belongs to two adjacent triangles.
If any of the other four edges of the two adjacent triangles
does not belong to G, then it is a boundary edge; otherwise,
it is an inner edge. As shown in Fig. 4(c), edge v2v4 belongs
to two triangles, 1v2v4v27 and 1v2v4vs. The edges v2vs and
v4vs, which belong to1v2v4vs, are not the inner edges or the
boundary edges, so v2v4 is boundary edge. Meanwhile, edge
v2v22 belongs to two triangles1v1v2v22 and1v2v22v27. v1v2
is the boundary edge of G, and v1v22, v2v27, v22v27 are all the
inner edges of G; thus, v2v22 is an inner edge. We mark all of
the boundary edges with purple bold dotted lines in Fig. 4(d).
Step 3 Extract the Suspected Skeleton Edges: Traverse all

the boundary edges extracted from Step 2. If two endpoints
of a boundary edge belong to two or more inner edges in
G, the boundary edge is removed, and the remaining bound-
ary edges are defined as suspected skeleton edges. We take
the boundary edge v5v7 as an example, which is shown
in Fig. 4(e). The endpoint v5 belongs to the inner edges
v5v27 and v5v28, whereas the endpoint v7 belongs to the
inner edges v7v28 and v7v29 such that v5v7 is not a skeleton
edge, which should be removed. Meanwhile, the boundary
edges v7v8, v15v16, v16v17 and v17v19 should also be removed.
The remaining boundary edges are suspected skeleton edges,
which need to be further judged in Step 4.
Step 4 Extract the Skeleton Edges: Traverse all the sus-

pected skeleton edges extracted from Step 3. If both endpoints
of a suspected skeleton edge belong to only one inner edge
in G or do not belong to any inner edge in G, then it must
be a skeleton edge, and the suspected skeleton edges to
which it is connected must also be skeleton edges. We take
the suspected boundary edge v1v21 as an example, which is
shown in Fig. 4(f). The endpoints v1 and v21 belong only to
the inner edges v1v22 and v21v22, respectively; thus, v1v21 is

the skeleton edge, and v1v2, to which it is connected, must
also be skeleton edge, which are indicated by black bold lines.
Meanwhile, as shown in Fig. 4(g), v20v21 and v12v13 are also
the skeleton edges, and v19v20, v11v12, and v13v15, to which
they are connected must also be skeleton edges.
Step 5 Extract the Approximate Segmentation Boundary

Line:All the extracted skeleton edges are connected to gener-
ate the approximate boundary line along the boundary edges
of G using the shortest path. As shown in Fig. 4(h), from v15
to v19 along the boundary edges of G, only two points, v16
and v17, must be passed, less than the five points–v4, v5, v7,
v8, and v10–that must be passed through v2 to v11. Therefore,
the discrete skeleton edges are connected to generate the
approximate segmentation boundary line along v16 and v17.

2) BOUNDARY LINE CLOSURE
The approximate segmentation boundary line extracted using
the skeletonizing method often does not close, which makes
it impossible to ensure the closedness of the segmented area.
We design a ray-based boundary line closure method to real-
ize the boundary line closed by capturing the intersection of
the ray and the triangular patch to learn the internal shape of
the mesh.

a: CONSTRUCT THE RAY
To ensure that the ray is emitted from inside themesh, the cen-
troid of all vertices vg on the approximate boundary line is
selected as the starting point of the ray. vg is formulated as
follows:

vg =
1
q

q∑
i=1

vi (23)

where vi represents the vertices on the approximate boundary
line and q represents the number of vertices. Unit vectors es
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and ee are created by connecting vg, v2 and vg, v12, respec-
tively. Let the angle between es and ee be8 = arccos (es · ee).
If a series of rays with an angle of ϕ should be generated from
vg (0< ϕ < 8), Slerp [39] should be used from es to ee, which
is formulated as follows:

qt = qs
sin (1− t)8

sin8
+ qe

sin t8
sin8

(24)

where qs and qe represent the pure quaternions of es and ee,
respectively; qt represents the pure quaternion of et , which
is to be solved as the unit vector of the ray; t represents the
interpolation parameter; and t = ϕ

/
8. qt can be transformed

into et such that the ray is started along the direction of et .

b: COMPUTE THE INTERSECTION
To quickly calculate the intersection of the ray and the trian-
gular patch, the octree spatial index of themesh is established,
and vector decomposition is used to determine whether ray l
intersects the triangular patch.

We take the intersection Pc as an example such that the ray
l constructed from vg to Pc can be formulated as follows:

p = vg + ηec (25)

where ec represents the unit vector constructed from vg to Pc,
which can be calculated using equation (24), and η ≥ 0. Pc
is located inside the triangular patch T (vi, vj, vk ), which is
formulated as follows:

p = vi + µ
(
vj − vi

)
+ ξ (vk − vi) (26)

where (µ, ξ) ∈ [0, 1]× [0, 1], such that Pc can be solved via
the following equation:

vg + ηec = vi + µ
(
vj − vi

)
+ ξ (vk − vi) (27)

We rewrite equation (27) in matrix form:

[
−ec vj − vi vk − vi

] ηµ
ξ

 = vg − vi (28)

According to Kramer’s law, η,µ, and ξ are computed when
the ray l intersects the triangular patch T , which is formulated
as follows: ηµ

ξ

 = 1

ec × (vk − vi) ·
(
vj − vi

)
×

 (vg − vi)× (vj − vi) · (vk − vi)ec × (vk − vi) ·
(
vg − vi

)(
vg − vi

)
×
(
vj − vi

)
· ec

 (29)

The ray l intersects the triangular patch T at Pc if and
only if η ∈ [0, 1] such that Pc is computed by substituting
η into equation (25). To avoid Pc lying inside the triangular
patch T , which may lead to mesh subdivision and increase
the computational complexity, the position of Pc should be
corrected. That is, the Euclidean distance between Pc and the
three vertices of the triangular patch T are determined, and the

FIGURE 5. Construction of the ray. (a) Calculate the centroid of all
vertices on the approximate boundary line. (b) Intersections of the ray
and the triangular patches.

FIGURE 6. Computation of the intersection of the ray and the triangular
patch.

vertex with the smallest distance is selected as the corrected
intersection vc, which is formulated as follows:

‖Pc−vc‖=min
{
‖Pc−vi‖ ,

∥∥Pc−vj∥∥ , ‖Pc−vk‖} (30)

c: CLOSE THE BOUNDARY LINE
Let v2 be the starting point, which is shown in Fig. 5. The
shortest path from v2 to v12 passing through all intersection
vertices is obtained to generate the closed boundary line Lb
using the Dijkstra algorithm [40].

As shown in Fig. 7(a), Pc and Pd are corrected to obtain vc
and vd , respectively. Let vcvd be the diameter of the reference
sphere S; the vertices vI, vII, vIII, vIV and vV located inside
S are used as nodes of Dijkstra algorithm, which is shown
in Fig. 7(b). The length of each edge is used as the weight,
such that the shortest path from vc to vd is ‘‘vc → vIII →
vd ’’, which is shown in Fig. 7(c). The closed processing of all
the discrete vertices in Fig. 5(b) is sequentially performed to
obtain a closed boundary line Lb, which is shown in Fig. 7(d).
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FIGURE 7. Boundary line closure based on the Dijkstra algorithm. (a) Pc
and Pd are corrected to vc and vd . (b) Nodes of the Dijkstra algorithm.
(c) Generation of the shortest path from vc to vd . (d) Boundary line
closed.

3) BOUNDARY LINE OPTIMIZATION
To create a good visualization effect of the boundary line Lb,
a smoothing optimization must be performed. The active con-
tour model (Snakes) is used to define the internal energy Eint
and the external energy Eext of the vertices on the boundary
line [41].With the greedy algorithm, the vertices on the curve
are iteratively moved to the minimum position of the energy
in the local range to achieve smoothing optimization. The
pseudocode of this algorithm is presented below.

Algorithm 1 Boundary Line Smoothing Based on an
Active Contour Model

Input: boundary line Lb with its vertexes vi;
neighborhood k;

Output: smooth boundary line L ′b;
1: foreach vertex vi in Lb to be smoothed do
2: Ei,min = Esnake(vi) = Eint(vi)+ Eext(vi);
3: foreach vertex vj in the k − neighborhood of vi do
4: Esnake(vj) = Eint(vi−1, vj, vi+1)+ Eext(vi−1, vj,

vi+1);
5: if (Esnake(vj) < Ei,min) do
6: Ei,min = Esnake(vj);
7: vi,min = vj;
8: end
9: end
10: vi = vj;
11: end
12: return L ′b;

As is known from Ref. [41], Eint is formulated as follows:

Eint (vi)=a · ‖vi−vi−1‖ + b · ‖vi+1 − 2vi+vi−1‖ (31)

where a is used to control the length of Lb, and the larger a
is, the shorter Lb is. b is used to ensure the smoothness of Lb,

and the larger b is, the less the zigzag in Lb. As is also known
from Ref. [41], Eext is formulated as follows:

Eext (vi) =

{
−k1 (vi) , if k1 (vi) > k1

(
vj
)
and vj ∈ D (vi)

C, else

(32)

where C is a large constant, k1(vi) and k1(vj) represent the
maximum principal curvatures of vi and vj, respectively, and
D(vi) is a set of vertices lying on or near the principal direction
of vi. The smoothing optimization effect of the boundary line
is shown in Fig. 8.

FIGURE 8. Smoothing optimization effect of the boundary using Snakes.

VI. EXPERIMENT AND ANALYSIS
A. INITIALIZATION OF THE EXPERIMENT
1) EXPERIMENTAL PLATFORM
To verify the feasibility of the proposed method, we estab-
lished an experimental platform, which is shown in Fig. 9.
Three kinds of experimental tests were conducted: seg-
mentation visualization, time complexity and segmentation
consistency. Additionally, we performed a comprehensive
evaluation compared with other mesh segmentation algo-
rithms using the entropy method [42]. The platform was run
using MeshLabJS, an open-source digital geometry process-
ing software package, which was deployed on an Apache
Server. We developed a mesh segmentation filter plugin in
MeshLabJS using JavaScript. A sample set containing Gaus-
sian curvature thresholds was stored in MySQL and encap-
sulated as JSON, which was uploaded to the Apache Server
through WebSocket to train the OS-ELM. Users can upload
the test mesh to an Apache Server such that the Gaussian
curvature threshold of the test mesh is extracted through
the OS-ELM and downloaded to the local browser using
HTTP communication. The online mesh segmentation and
rendering can be realized through geometric processing and
the WebGL graphics rendering function in a browser.
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FIGURE 9. Experimental platform of online rapid mesh segmentation based on MeshLabJS, which is divided into two stages: The training stage and
segmentation stage.

WeusedWindows 7Ultimate x64 as the OS andWebStorm
2016.3.1 as the IDE. The server PC was equipped with an
Intel Xeon-E5 2620 V4 2.1 GHz CPU and 32 GB RAM, and
the client PC had an Intel(R) i5-7200U 2.5 GHz CPU and
8 GB RAM.

2) EXPERIMENTAL DATASET AND SHAPE DESCRIPTORS
To test the rapidness of our method, we aim to test it on
a massive and diverse dataset of typical real-life meshes.
We selected a subset of 16 diverse categories contain-
ing 10458 meshes from ShapeNetCore [43], which is pre-
sented in Table 1. N represents the number of meshes for
each category, W represents the number of each categories
of training meshes in the initialization stage of the OS-
ELM, and W ′ represents the number of each categories of
training meshes in the online incremental learning stage
of the OS-ELM. We ensure that the number of training
meshes is 5% of the total number of meshes for each
category.

The visualization results for 16 types of meshes provided
by ShapeNetCore and segmented using ourmethod are shown
in Fig. 10, in which different segmented regions are indicated
by different colors. At the same time, our segmentation results
are compared with the method presented by Xie et al. [9],
in which the segmentation regions with differences are indi-
cated by dashed circles and shown in Fig. 11.

TABLE 1. Categories of the experimental dataset.

3) EXPERIMENTAL PARAMETERS
All of the experimental parameters used in our tests are listed
in Table 2.

B. SEGMENTATION VISUALIZATION
The visualization results for 16 types of meshes provided by
ShapeNetCore and segmented using our method are shown
in Fig. 10, in which different segmented regions are indicated
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FIGURE 10. We use our method to obtain the segmentation results for
more than 10000 meshes in 16 shape categories from ShapeNetCore.
We denote the number of meshes in each category in parentheses.

by different colors. At the same time, our segmentation results
are compared with the method presented by Xie et al. [9],
in which the segmentation regions with differences are indi-
cated by dashed circles and shown in Fig. 11.

When using the method proposed by Xie et al., it is nec-
essary to predefine different regions of the mesh segmen-
tation result in advance, which results in worse effects for
regions with sharp features. In contrast, our method adopts
the Gaussian curvature threshold as the basis for determining
the feature points of the segmentation boundary. Therefore,
we pay more attention to the influence of sharp features,
which makes our method sensitive to tiny regions with sharp
features. As shown in Fig. 11, our method can accurately
distinguish between shell and blade regions in Airplane, tire
and wheel in Car, lampshade and light source in Lamp, panel
and keyboard in Laptop, etc. In contrast, the method proposed
by Xie et al. can only perform mesh segmentation according
to the predefined regions.

In addition, Gaussian curvature is only a kind of geometric
features to the vertex of the mesh, but the current unsu-
pervised algorithms always use different clustering methods
to segment and label the triangular patches. If we combine
Gaussian curvature with unsupervised methods, we should
construct a complex mathematical model contains both geo-
metric features of vertex and triangular patch. Although it

TABLE 2. Experimental parameters of the mesh segmentation tests.

may improve the quality of segmentation, the computational
complexity is bound to increase.

However, it must be emphasized that the Xie et al. method
was combined with the accurate classification of triangular
patches via the ELM and the generation of smooth boundary
via graph cuts such that the accurate segmentation effect was
guaranteed. Meanwhile, although the segmentation results
generated by our algorithm exhibit tiny zigzags near the
boundaries, there is almost no difference between the method
presented by Xie et al. and ours.

C. TIME COMPLEXITY
The training time and the segmentation time to segment
16 types of meshes are listed in Table 3, which contain six
methods: JointBoost presented by Kalogerakis et al. [6];
Projective Convolutional Networks presented by
Kalogerakis et al. [7]; the ELM presented by Xie et al. [9];
spectral clustering presented by Tong et al. [21]; our method
without dimensionality reduction via PCA; and ours with
dimensionality reduction via PCA. Tt represents the training
time (unit: h), and Ts represents the segmentation time (unit:
second). Additionally, we present two histograms that repre-
sent the training time and the segmentation time in Fig. 12 and
Fig. 13, respectively.

Table 3 shows that for the methods of JointBoost, Pro-
jective Convolutional Network and ELM, the average times
spent on machine learning training are 7.6 h, 10.3 h and
4.4 h, respectively. Compared with our method, for which
the average time is only 2.1 h, these methods require 72.4%,
80.0% and 52.3% more time, respectively. In addition, using
themethods of JointBoost, Projective Convolutional Network
and ELM formesh segmentation, the average times are 38.5 s,
48.1 s and 21.9 s, respectively. Compared with the average
time of 12.8 s using our method, these methods require
66.7%, 73.2% and 41.3% more time, respectively. Although
the average training time and segmentation time of spectral
clustering are only 1.7 h and 7.5 s, respectively, which is
obviously superior to the other five methods, the segmenta-
tion consistency still should be improved compared with the
supervised methods. The test results show that the proposed
incremental learning mechanism of the OS-ELM has obvious
advantages in terms of improving the training speed.
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FIGURE 11. Sixteen segmentation results are compared with results from the method presented by Xie et al., in which the segmentation regions with
differences are indicated by dashed circles.

FIGURE 12. Training times of the six methods to segment 16 types of meshes.

In addition, the dimensionality reduction in the shape
descriptor vector based on PCA reduces the training time
and segmentation time by 40.7% and 30.0%, respectively,
which indicates that the dimensionality reduction based on
PCA reduces the computational complexity of the algorithm.
It has a significant effect in improving the speed of our
algorithm.

D. SEGMENTATION CONSISTENCY
We use the PSB to analyze the consistency of the segmenta-
tion results. This benchmark offers four quantitative metrics,
i.e., the Cut Discrepancy (CD), Hamming Distance (HD),
Rand Index (RI) and Consistency Error (CE), to measure

the similarity between automatic segmentations and manual
segmentations together with source code for computing these
metrics. Smaller values indicate better segmentation results.
We conducted an evaluation of our method on the benchmark
by the automatic mode and using the default parameters,
and a snapshot of our segmentation results in each category
is illustrated in Fig. 14. The detailed quantitative results
are presented in Table 4, in which OWTPCA represents
our method without PCA, OWPCA represents our method
with PCA, JB represents JointBoost [6], PCN represents
Projective Convolutional Network [7], ELM represents the
method presented by Xie et al. [9], and SC represents spec-
tral clustering [21]. Based on the assumptions that people
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FIGURE 13. Segmentation times of the six methods to segment 16 types of meshes.

TABLE 3. Training time and segmentation time of 16 types of meshes with six different methods.

tend to segment objects consistently and that segmentation
algorithms ought to mimic what people do, the manual seg-
mentations are regarded as the ground truth. We use the
results of manual segmentation of the ShapeNetCore model
provided by Kalogerakis et al. [7] as the ground truth.
To provide comparisons with the highly performing state-
of-the-art methods, i.e., JointBoost [6], Projective Convolu-
tional Network [7] and spectral clustering [21], we present
the detailed Rand Index score statistics of each category
in Table 4. Our method achieves average Rand Index errors
of 10.0 and 9.9 with or without dimensionality reduction
via PCA; it clearly outperforms the other four automatic
methods and manual segmentation. In addition, the four
metrics of PSB do not change greatly after dimension-
ality reduction in the shape descriptor vector via PCA,
which indicates that the dimensionality reduction based on
PCA has a minor impact on the segmentation result. Alto-
gether, the test results demonstrate the advantage of the low

computational complexity and segmentation consistency of
our method.

E. COMPREHENSIVE EVALUATION
To comprehensively evaluate the abovementioned six seg-
mentation methods, we used the entropy method [43] to per-
form a comprehensive evaluation according to the following
9 metrics: training time; segmentation time; cut discrepancy
(CD); Hamming distance (HD); Hamming distance based on
missing rate (HD-Rm); Hamming distance based on false
alarm rate (HD-Rf); Rand Index (RI); global consistency
error (GCE); and local consistency error (LCE). The entropy
method fully considers the decisive role of metrics on the
evaluation results, weakens the influence of subjective factors
on the evaluation results, and helps to obtain more objective
and true evaluation results. The values of 9 metrics of 6 seg-
mentation methods are listed in Table 5, in which OWTPCA
represents our method without PCA, OWPCA represents our

109106 VOLUME 7, 2019



F. Zhao et al.: Online Rapid Mesh Segmentation Method Based on an OS-ELM

FIGURE 14. Quantitative evaluation of our method on the PSB [4].

TABLE 4. Rand index values of our method and some state-of-the-art methods across all 16 categories, where PSB [4] denotes the error included in the
manual segmentations.

method with PCA, JB represents JointBoost [6], PCN repre-
sents Projective Convolutional Network [7], ELM represents
the method presented by Xie et al. [9], and SC represents
spectral clustering [21].

The above nine metrics have negative influences, and the
values of these metrics must be negatively normalized. The
online mesh segmentation algorithm requires a lower time
complexity, so the weights of the training time and the
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TABLE 5. The values of 9 metrics of 6 segmentation methods.

TABLE 6. The entropy weights of the 9 metrics.

TABLE 7. The comprehensive scores of the six methods.

segmentation time are both 0.15, and the remaining weights
are 0.10. The entropy weights of 9 metrics are calculated and
reported in Table 6.

Finally, the comprehensive scores of the six methods are
calculated according to the entropy weight vector and the
values of 9 metrics; they are reported in Table 7, in which
OWPCA represents our method with PCA, JB represents
JointBoost [6], PCN represents Projective Convolutional
Network [7], ELM represents the method presented by
Xie et al. [9], and SC represents spectral clustering [21].
The above evaluation results demonstrate that under the

premise of rapid mesh segmentation, our method obtains the
highest score, has obvious advantages in terms of algorithm
execution efficiency and rapidity, and can take into account
segmentation visualization effect and segmentation speed; it
is thus suitable for execution in the Web environment.

VII. CONCLUSION
In this paper, we present an online rapid mesh segmentation
method based on an OS-ELM that aims to achieve online
rapid mesh segmentation in the Web environment. The statis-
tical method is used to obtain the Gaussian curvature thresh-
old of the sample mesh, and the training sample set of the
OS-ELM is collected. The online incremental learning mech-
anism of the OS-ELM is performed to increase the training
speed. The Gaussian curvature threshold of the mesh to be
segmented is extracted through the OS-ELM, and relevant
processes of the boundary lines are executed to realize rapid
mesh segmentation in the Web environment. Finally, we con-
duct some experimental tests on these segmentation results
using the PSB and ShapeNetCore. This study has certain
significance for implementing digital geometry processing of
grids in the Web environment and for implementing digital
geometry processing in the Web environment.

In the future, research should focus on two aspects.
First, the segmentation consistency of our method should
be improved through research regarding the segmentation
boundary generation method according to multimetric fusion
rather than a single metric. Second, the existing method
performs better on the mesh with obvious boundary features.
However, the segmentation consistency of mesh provided
by ShapeNetCore with complex surfaces is not sufficiently
satisfactory. A more general segmentation algorithm should
be studied.
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