IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 8, 2019, accepted July 22, 2019, date of publication August 7, 2019, date of current version August 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933318

Identification of Self-Admitted Technical Debt
Using Enhanced Feature Selection Based

on Word Embedding

JERNEIJ FLISAR AND VILI PODGORELEC™, (Member, IEEE)

Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia

Corresponding author: Vili Podgorelec (vili.podgorelec @um.si)

This work was supported by the Slovenian Research Agency (Research Core Funding No. P2-0057).

ABSTRACT Self-admitted technical debt (SATD) is annotated in source code comments by developers
and has been recognized as a great source of discovering flawed software. To reduce manual effort, some
recent studies have focused on automated detection of SATD using text classification methods. To train their
classifier, these methods need labeled samples, which also require a lot of effort to obtain. We developed
a new SATD identification method, which takes advantage of a large corpus of unlabeled code comments,
extracted from open source projects, to train a word embedding model. After applying feature selection,
the pre-trained word embedding is used for discovering semantically similar features in source code
comments to enhance the original feature set. By using such enhanced feature set for classification, our
goal was to improve the identification of SATD when compared to existing methods. The proposed feature
enhancement method was used with the three most common feature selection methods (CHI, IG, and MI),
and three well-known text classification algorithms (NB, SVM, and ME) and was tested on ten open source
projects. The experimental results show a significant improvement in SATD identification over the compared
methods. With an achieved 82% of correct predictions of SATD, the proposed method seems to be a good
candidate to be adopted in practice.

INDEX TERMS Feature enhancement, feature selection, self-admitted technical debt, text classification,

word embedding.

I. INTRODUCTION
In software development, there has always been a trade-off
between software code quality and timely software
release [2]. A metaphor describing this phenomenon is
known as technical debt [4]. Technical debt has a negative
impact on future development, like the increased future cost
for code refactoring or architectural redesigning [43], [46].
In order to manage technical debt effectively and effi-
ciently, it first needs to be identified properly. However,
detecting technical debt has always been a challenging
task [7], [47]. The tools used are especially useful for iden-
tifying defect debt but cannot help in identifying many other
types of debt, including technical debt, so involving humans
in the identification process is still necessary. Manual inspec-
tion of the code, however, is very demanding and requires a
lot of effort. In a constantly-pressing push for timely delivery

The associate editor coordinating the review of this manuscript and
approving it for publication was Xi Peng.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

of software, an adequate manual inspection is frequently
neglected. In this manner, some automatic approaches to the
identification of technical debt have arisen. Such methods
generally use static code analyzers to detect different types of
anomalies in the source code, like design problems, defects,
and others [48].

Recently, a new aspect of technical debt emerged -
self-admitted technical debt (SATD). SATD refers to delib-
erate technical debt, that was introduced in source code
intentionally by developers with their documentation of the
debt, using source code comments [29]. Developers introduce
SATD to the source code for different reasons. Mostly it is
because of lack of time to develop quality code, last minute
changes, quick fixes etc. [1]. A tool for suggesting when
developers should have marked source code fragments as
SATD was proposed in [44].

Just like technical debt, SATD also tends to have a neg-
ative impact on software quality and appears frequently
in projects [21], [29], [41]. A survey in a recent study has

106475

https://orcid.org/0000-0001-6955-7868

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

shown that 88% of developers participating in that survey
introduce SATD in source code with the intent of future
refactoring [38].

While the manual classification of comments can provide
good results, it is far too inefficient, especially if millions of
lines of code from several projects have to be analyzed. There
are some approaches described in the literature, which have
focused on the identification of SATD from source code com-
ments. Potdar and Shihab inspected comments of open source
Java projects manually on GitHub, to detect SATD [29]. They
identified 62 text patterns, which were later used for the iden-
tification of SATD [20], [41]. Most recently, two approaches
were proposed based on natural language processing and text
mining techniques for automated detection and classification
of SATD comments [12], [19]. Both of these studies used
manually annotated source code comments, from different
open source java projects, as training data, to build their
classification model.

In these studies, comments are considered as short texts,
represented as bag-of-words (BOW) model [33]. Comments
can be viewed as short text documents since their length is
short and text is usually written in an informal language [34].
Each comment is represented as a feature vector. The feature
values in a vector for a single instance (i.e. a comment) are
counts of word occurrences within the comment. Despite
good overall performance, the BOW model has its own
drawbacks [9]. The main drawbacks are high dimensionality
(a corpus of all possible words, which are used in source
code comments, is very large) and extreme sparsity (in a
single comment, only a very small amount of words are
used) since every unique word is treated as a feature. The
number of unique words can be very high; but as many of
them are irrelevant for text classifiers, they can decrease the
performance of text classification.

To overcome the problem of high dimensionality in
text classification tasks, feature selection (FS) methods,
such as Information Gain (IG), Chi-square (CHI) and
Mutual Information (MI), are usually applied [42], and have
already been applied to improve the performance of SATD
classification [12]. On the other hand, the BOW presen-
tation model has problems with extreme sparsity in the
case of short texts. Additionally, short texts are usually
noisier, informal and do not provide enough contextual
information [3], [27], which lead to degradation of perfor-
mance in short text classification tasks. Classifiers, con-
structed from BOW models, can fail in capturing proper
differences of high dimensional and sparse document vec-
tors. To overcome those problems, many recent studies have
applied word embedding in order to improve performance
of text classification tasks [14], [17], [40]. Word embedding
is a distributed representation, where words are presented as
low-dimensional and real-valued vectors. In embedded space,
semantically similar words tend to have similar vectors [11].

The method proposed in this study builds on the combina-
tion of FS for reducing the number of features and thus reduc-
ing the dimensionality of the problem and then enhancing

106476

the selected features with the most similar not-used features
from the constructed word embedding vector space model,
and thus lessening the problem of sparsity.

Word embedding can be adapted to different tasks using
different corpora. Despite that, to the best of our knowledge,
no such model has been created from source code com-
ments. Therefore, in our recent work, we constructed such
word embedding model from source code comments, using
word2vec implementation, to create a word vector space
model for the software engineering domain [8]. By enhancing
the IG FS method, using similarity measures from the word
embedding model to select the best features, and applying
the method to the identification of SATD, we were able to
improve the classification of SATD comments.

Encouraged by the promising results, in this paper we
present a new, expanded method for SATD detection from
source code comments, which is based on enhanced feature
selection using word embedding, and discuss the obtained
results in detail. The main difference of our SATD identifi-
cation approach, presented in this paper, in regard to similar
existing approaches [12], is that we use a large amount of
unlabeled source code comments to train a word embed-
ding model first, from which we next enhance the prepared
BOW model in order to obtain a richer, more informative
set of words for classification. As we are using classification
algorithms for classifying source code comments into two
classes (whether they contain SATD or not), we are using the
term classification of SATD throughout the paper. The main
contributions of this paper are fourfold:

« First, a word embedding model is constructed to detect
semantically related terms from source code comments
(within a software engineering domain). The model is
built from 1.2 million lines of source code comments,
extracted from more than 200.000 source files, repre-
senting more than 360 open source java projects on
GitHub, using the word2vec tool.

o Second, a two-step FS method is proposed, using the
three most common FS methods (CHI, IG and MI)
in combination with the word embedding model. The
method is used to select a set of features, which are then
used for a learning algorithm, in order to improve the
classification results.

o Third, the results obtained from the conducted empir-
ical experiments are presented and discussed in detail.
To evaluate the effectiveness of our proposed FS method
objectively, we performed comprehensive statistical
tests, which show a significant improvement of our pro-
posed method when compared to existing methods.

« Finally, we applied our method to classify source code
comments in several popular open source projects,
to detect and identify comments with SATD.

The remainder of this paper is organized as follows.
Section 2 describes the background of the word embedding
idea and FS methods for text classification. In Section 3,
the proposed method for SATD identification is described.
Experimental setup and results are described in detail in

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

TABLE 1. Sample of comments with SATD.

comment

// Yuck! This is not quite good enough, it’s a quick hack around the problem
// TODO: is there a more elegant way than downcasting?

// XXX ignore attributes in a different NS (maybe store them ?)

// Ugly hack for cases like elements(foo.bar.collection)

// Quick hack check for a common case

// Below is a funny looking workaround

Sections 4 and 5. In Section 6, we discuss the obtained results
and their implications. Conclusions and some plans for future
work are provided in Section 7.

Il. BACKGROUND

SATD is technical debt that is described in source code
comments, and is introduced intentionally by developers.
Table 1 provides a sample of comments that were identified as
indicating self-admitted technical debt. It was first described
by Potdar and Shihab [29]. In their study, they examined four
open source projects manually and extracted textual patterns
which were likely indicating SATD comments. In a follow-up
study [20], different types of SATD were identified, namely,
defect debt, design debt, documentation debt, requirement
debt and test debt. They found out, that the most common type
of SATD comments are design debt (ranging between 42%-
84%) and requirement debt (ranging between 5% and 45%).

The impacts of SATD on software quality was examined by
Wehaibi et al. [41]. They analyzed five open-source projects,
and found out that changes in code when SATD was intro-
duced were more difficult to perform. Removal of SATD
was studied in [18], [45]. A study from Maldonado et al. [18]
showed that the majority of SATD is removed, and that the
average time to remove it was between 82 to 613 days.
Since the removal of SATD was based just on the removal of
comments reflecting SATD, Zampetti et al. [45] performed an
in-depth study of SATD removal with relation to the affected
source code. Their findings showed that a large percentage
of SATD removal occurs unintentionally, since only 8% of
SATD removal was acknowledged in commit messages.

The diffusion rate of SATD comments in open source
projects was studied by Bavota and Russo [1]. In their auto-
mated classification of comments, they identified, on aver-
age, 51 SATD comments per project. Additionally, they found
out that survivability of SATD was long, with an average of
over 1000 commits per project, before SATD was removed.
To automate the process of SATD identification, they used
textual patterns like fodo, fixme, and workaround, which were
proposed in [29]. The accuracy of such heuristics can be quite
low, which can affect the results of the studies [1]. In recent
works [12], [19], [21], text mining techniques were used to
improve identification of SATD comments, where signifi-
cant improvement of text classification approaches over the
pattern-based approach was reported [19].

In literature, all of the studies using text mining methods
for automated SATD classification were based on a BOW
representational model. Since every unique word from the

VOLUME 7, 2019

provided dataset can be used as a feature, we are dealing
with a high-dimensional space, which can cause degrada-
tion of performance of a given text classifier. To overcome
this problem, dimension reduction techniques such as FS
are applied in the pre-processing step of text classification.
The FS approaches aim to reduce the number of features
by selecting the most discriminating features in order to
improve the classification performance, independently of the
used classification algorithm. With a smaller set of features,
the text classification performance can be improved, as well
as the computational cost of a classifier can be reduced [33].

A. FEATURE SELECTION

Previous studies have shown that FS methods could improve
the performance of text classification [42]. FS methods rank
features based on evaluation criteria to identify features that
are most useful in differentiating classes. Usually, a threshold
is set to select the top k% of features as a feature set, where k
is set experimentally.

Since FS methods select a feature subset from the original
feature space according to an evaluation criterion using only
a labeled dataset, its selection relies only on the provided
dataset. This can be problematic, in our case, since source
code comments can be very diverse, as they are from different
domains of applications. Additionally, comments are written
as informal text, using different words and jargon, by various
developers from different backgrounds. For example, devel-
opers in one project can comment on unimplemented meth-
ods with the word “todo” and others with “xxx’’. Another
example can be the words “‘hack’ and ““workaround” which
are typical words when SATD is introduced [29]. Those
words are very similar semantically but are treated as separate
features when an FS method calculates their contribution
score. If their score is too low, they can both be excluded
from the feature subset list, which can lead to degradation of
performance. To address this problem, we select additional
features based on similarity. Since BOW representations
ignore the dependency among words in context and cannot be
used to measure words similarity, we used the learned word
embedding.

B. WORD EMBEDDING

Word embeddings are based on the hypothesis that
words appearing in similar context tend to have similar
meaning [11]. Word embedding is a learned representation
for text, where words with similar meaning have similar
representation as real-valued vectors in a predefined vector
space. Unlike BOW representation, distributed representation
of words in embedding space can capture the semantics of a
word. They are usually learned from neural language models,
and have been applied successfully in natural language pro-
cessing tasks such as information retrieval, sentiment anal-
ysis, paraphrase detection and text classification [5], [37].
One of the most established word embedding model is
word2vec where the model is trained from large unlabeled
text corpora [22].

106477

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

word embedding model training prediction
: train data test data
github : -
word2vec | | | preprocess

word
embeddings

Legend

~

“lenhancement

H

]

feature
selection

]

feature

train classifier prediction

{

flow dependecy

FIGURE 1. An overview of our SATD classification approach.

Word2vec is a neural network-based method for effi-
cient learning of word embeddings from a text corpus [22].
It contains two different approaches. Continuous bag of
word (CBOW) learns embedding by predicting current word
based on its context. The second approach is the skip-gram
model, which predicts the surrounding word in a current con-
text. Both methods learn about words from their surrounding
context, where context is defined as the window size of neigh-
boring words and is a configurable parameter in the model.
Another configurable parameter in the model is the size of
a vector, where each dimension encodes different aspects of
a word. This model has already been used on short texts
classification tasks with much success. Le and Mikolov com-
bined word embedding using simple vector addition to create
paragraph vectors to classify movie reviews [15]. Kim et al.
used the word2vec model and combined similar words to
clusters to design a bag-of-concept model, where clusters
are represented as concepts [14]. Wang et al. expanded short
texts with related words, defined in word embedding space,
to improve classification performance [40].

lll. METHOD

In this section, the proposed method for SATD identifica-
tion is described, as shown in Fig. 1. Our method aims to
enhance a FS process by taking advantage of the pre-trained
word embeddings for detecting similar features in source
code comments to improve SATD classification. The main
difference of our method with regard to classical text classifi-
cation process, is that we use a large amount of unlabeled
text (source code comments) to train a word embedding
model first. Then, in the process of SATD classification
model training, source code comments are first pre-processed
and represented in a form of BOW. After selecting the
most informative features for classification, for each of the

106478

selected feature its most similar features, not already con-
tained in the prepared BOW model, are taken from the trained
word embedding model and added to the BOW model in
order to obtain a richer, more informative set of words for
SATD classification. The classifier is then trained upon such
enhanced BOW representation using a common classification
algorithm.

A. OVERALL SYSTEM

Fig. 1 presents an overall framework of our approach. The
framework is composed of three separated phases: The word
embedding phase, the model training phase, and the predic-
tion phase. In the word embedding phase, a word2vec model
is built to support the feature enhancement method for the
model training phase. In the model training phase, the SATD
classifier is built within the next four steps: Comments’
preprocessing, feature selection, feature enhancement, and
classifier training. In the prediction phase, the built SATD
classification model can be used to perform a SATD predic-
tion upon new, previously unseen code comments.

In the model training phase, we first preprocess the text
of comments, from the corpus of labeled comments (i.e.,
a comment with or without SATD) from different open source
projects, to extract features (i.e., words), to represent each
comment. Then, the FS method is applied to compute the
score for each extracted feature. Here, generally, any known
FS method can be applied. Features are then ranked by their
scores, from the highest to the lowest, to create a ranked list
of features. Next, feature enhancement is applied, where the
top k% of features are selected (from the list of previous step),
and, for each of those features, we search for ¢ most similar
words in the trained word embedding model, generated in the
word embedding phase, using the cosine similarity measure

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

between two word vectors, which is computed as:
. Wt - Wy
sim(wy, wy) = —— (1)
Hwell - [lwall
where w; and w,, are words in the provided data set, where
words are embedded into a semantic space model.

This word embedding model is built using the gen-
sim library [30], which implements Mikolov’s word2vec
skip-gram model. The skip-gram model learns the vector rep-
resentation of words that are useful for predicting surrounding
words in a text.

In the last step, we train the text classifier using an
enhanced set of features, provided by our enhanced FS
method in the feature enhancement step.

B. PREPROCESSING

Source code comments are texts written in a natural language.
The initial phase in any classification process is usually text
preprocessing which is composed of three steps: tokenization,
stop words removal and stemming. We use preprocessing
methods, to clean up text comments of some Java language
syntax and strip of all punctuations and numeric characters.

1) Tokenization. Tokenization is the process that splits
text into words, phrases or other meaningful elements
so-called tokens. Comments are stripped of all punctu-
ations, non-alpha and numeric characters and extensive
whitespaces, so only English letters remains in a token.
Finally, all words all converted to lowercase.

2) Stop-words removal. Some words like preposition
don’t carry much meaning and are used frequently text
documents. Typically, they are filtered out, since they
don’t carry much meaning in distinguishing different
categories of text. We manually build a small list of stop
words, which contains prepositions like ““the’, “to”,
“at”, etc. We didn’t use the standard stop-word list
since it is not built for software engineering domain
and some words in this list can provide some useful
information [12].

3) Stemming. Stemming is the process of reducing a word
to its base or root form. We apply Porter stemmer [28]
algorithm to reduce word to its root form. For exam-
ple, the words “develop”, ‘“developer” and ‘“‘devel-
opment” would all be reduced to their base form
“develop”.

The described preprocessing of source code comments is
performed completely the same in both the word embedding
phase and in the model training phase.

C. FEATURE SELECTION

After the preprocessing step, we use the BOW model to
represent each comment with a word vector. Altogether,
we have a large vector dimension, since every unique word
is a feature. In this manner, we are faced with the problem of
high dimensionality [39]. To address this problem, we apply
an FS method, which selects the most relevant features f in
a given data set S. FS methods can be divided into three

VOLUME 7, 2019

classes [36]: Filter models, wrapper models, and embedded
models. In this paper, we focus on the filtering approach. This
approach aims to reduce the number of features by selecting
the most discriminative features, independent of the selected
classification algorithm. Many effective filtering FS methods
have been applied for text classification. The typical FS
methods include information gain (IG), chi-square (CHI), and
mutual information (MI) [42]. These FS methods calculate
the contribution of each independent feature to identify the
category. Based on this contribution, only the features with
high scores in identifying different categories are selected.
With a small set of features, we can improve the text classifi-
cation performance, as well as reduce the computational cost
of training the classifier [33]. Our work can be utilized with
any FS method since it just uses a final feature set provided
by the used FS method. In this paper, we consider the three
most common FS methods, i.e., IG, CHI, and MI.

1) INFORMATION GAIN

Information gain (IG) measures the amount of information a
feature have about the class prediction, where only informa-
tion available is the presence of the feature [24]. IG is one
of the most popular and widely used FS technique in text
mining [33]. It measures the number of bits of information
required for category prediction by knowing the presence or
absence of a word in the text document. The higher the score,
the more important is the word for category prediction. The
score for word w is computed as [39]:

IC|
IG(w) = —)~ Pc)logP(ci)
i=1
IC]
+P(w) Y P(ci, w)logP(c;, w)
i=1
IC|
+ P(w) x Z P(ci, w)logP(ci, w) 2)
i=1
Here, P(c;) represents the probability of the category, c;, P(w)
is the probability that word w appears and P(w) the probability
that word w doesn’t appears in documents. P(c;, w) is the con-
ditional probability of category c; that word w has appeared,
and P(c;, w) is the conditional probability of category c; that
word w has not appeared.

2) CHI-SQUARE
Chi-square (CHI) measures independency between two vari-
ables, category ¢ and feature w. The greater the value of the
CHI, the more information about category c the feature w
contains. The CHI formula is defined as follows [39]:
N(AD — CB)?
CHI(w,c) = 3)
(A+ C)B+ D)A+ B)(C + D)
Here A is the number of times word w is in category
¢, B is the number of times w occurs without ¢, C is the
number of times ¢ occurs without w, D is the number of times

106479

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

where neither w and ¢ appear, and N is the total number of
comments.

3) MUTUAL INFORMATION

Mutual information (MI) measures the dependency between
the feature w and the category c, where P(w, c) is the probabil-
ity that feature w occurs in category c. The higher value means
more information about category c the feature contains [39]:

P(w, ¢)

MI(W, C) = 10g WP(C)

“

D. FEATURE ENHANCEMENT

Our feature enhancement method contains three steps. In the
first step, the top k% of features are selected with the highest
FS score. In the second step, the cosine similarity score
between each feature f and all other features from the unla-
beled data set from github is calculated using the prepared
word2vec model. In the last step, the top ¢ semantically most
similar words for each feature are selected and added to the
feature list.

We ran some preliminary experiments, to determine the
best possible value for 1. We examined how many features
would be added to the original set, using a different value
for ¢ (ranged from 1 to 7,), using CHI as the FS method.
Figure 2 shows the percentage of additional features added
to the original feature set. The percentage of added features
is determined as the total number of additional features not
contained in the original feature set, divided by the theoretical
maximum for 7, where max = k %t + k. As we were trying
to select the value for 7, which would still add enough new
features to make an implication in our method, we did not
consider t = 1, since the addition of features in such manner
would be extremely low —less than 30% of additional features
would be added even for extremely small initial feature sets
(for k = 0.1%) and then dropping below 20% already for
k = 1%. All other values (t+ > 1) add a much greater
percentage of new features, more than 40% for k = 0.1%,
while the percentage drops similarly for larger k. Finally,
we chose 2 and 5 as values for ¢, since t = 2 adds the highest
percentage of features for k >= 10%, while t = 5 adds the
most features at the smallest initial set (k = 0.1%) and in
other cases a very similar percentage of features as t = 6
and t = 7. As the addition of too many features with lesser
similarities induces noise, which could hurt the performances
of classification, we decided to use only ¢+ = 5. At last,
t = 2 and t = 5 add a number of features, distinct enough,
so that the comparison of these two would make sense. We
examined the impact of using these different values for ¢ in
our experiments. A detailed pseudo code for our method is
shown in Algorithm 1.

For example, let’s have a list of five most important fea-
tures, as ranked by an FS method: rodo, fixm, stupid, hack,
ugli. For each of these features, we search for the most seman-
tically similar features from the word2vec model. Table 2
shows two (r = 2) most similar words for each feature,

106480

Percentage of additional features using CHI for feature selection

50

T
o-e t=1
A4 t=2
B E t=3]
<< t=4
@O t=5
*#% t=6

Percentage of additional features

FIGURE 2. Comparison of the percentage of added features using a
different value for t.

Algorithm 1 FS Enhancement
Input:
word2vec: a learned word embedding model
features: a list of features selected by FS method
t: number of most similar words
Output: featureSennanced
procedure FEATUREENHANCEMENT
Sfeaturesepnanced < features
for each word f in features do
Wyim < find ¢ most similar words in word2vec
for each word w in wy;;, do
if w is in not in features then
add w to featuresenhanced
end if
end for
end for
return featuresenhanced
end procedure

TABLE 2. Most similar words from trained word2vec.

Feature | Two (1=2) most similar features
todo XXX, here

stupid ugli, better

fixm todo, actual

hack fix, workaround

ugli ineffic, hack

ranked by their cosine similarity score. Our base feature set
is enhanced with the following additional features: xxx, here,
ugli, better, actual, workaround, ineffic.

By employing this method, we are able to select and add
more representative features since we use semantic infor-
mation about features from additional unlabeled corpora of

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

comments using word2vec. These features are then used for
training a text classifier.

E. TRAINING CLASSIFIER

The last stage in the text classification process is to train a
text classifier. A text classifier is trained with the provided
training documents. We train a classifier with the labeled
source code comments [19]. We use BOW to represent each
comment with a word vector, where the commonly used
tfidf term-weighting scheme [32] is applied to adjust the
count of a word based on its frequency in the entire cor-
pus. We only consider the features, provided by our feature
selection and enhancement method. Our work can be uti-
lized with any supervised text classification algorithm. In this
paper, we investigated the performance of three very common
classification methods, Naive Bayes (NB), Support Vector
Machine (SVM) and Maximum Entropy (ME).

F. WORD EMBEDDINGS

In order to implement our proposed FS enhanced method,
we first trained word embedding, using the Gensim Pyhon
library, which implements Mikolov’s word2vec skip-gram
model [30]. The skip-gram model learns vector represen-
tation of words that are useful for predicting surrounding
words in a text. To provide the learning corpora to train the
word2vec model, we retrieved the most popular 360 open
source projects from GitHub' using Github APL? To select
the most popular projects, we filtered out all non Java
projects,® and projects that didn’t have at least 3 forks and
100 rating stars, since it is very likely that repository with a
high number of stars contains relevant software engineered
project [26]. We ordered projects by the number of stars
and selected the top 360 projects. Examples of selected
projects are: ReactiveX — RxJava, elasticsearch, square —
retrofit, square — okhttp, google — guava, spring — boot,
bumptech — glide, JakeWharton — butterknife, kdn251 —
interviews, airbnb—lottie, etc. Python’s comment_parser
library* was used for extracting text comments from .java
source files. Using simple heuristic, license comments, and
comments with less than three words were ignored, since this
type of comments would not provide quality training data to
train word embeddings. Fig. 3 shows the main steps in the
comments extraction process.

Each comment represents a single text document in our
learning corpora. There were approximately 1.2 M comments
in the retrieved 360 open source Java projects. Before all
comments were passed into the word2vec model, we pre-
processed comments to strip them of all punctuations,
non-alphanumeric characters, and extensive white spaces,
using the preprocessing method described above.

1 https://github.com/
2https://github.com/PyGithub/l:’yGithub

3 projects without .java source files
4https://pypi.python.orglpypi/comment_pa.rser

VOLUME 7, 2019

)
exctract source

query github code comments|

~——

comment
parser

Y
)

filter comments

~—
Y
) >
preprocess w
~—

FIGURE 3. Comments extraction process.

Vector size for representing a word in the word2vec model
was set to 400. All the words were ignored with term fre-
quency lower than two. The window size for the surrounding
word context was set to four. These settings are based on
some limited preliminary experiments, and are similar to
previously reported configurations used to train the word
embeddings [14], [22], [40], and were not optimized.

After training, we obtained an embedded model with
110,760 unique tokens (words), where words with similar
meanings are embedded into neighboring semantic space.
Once word vectors were embedded into semantic space,
we could apply our enhancement method to add additional
features to the feature set. It takes about 20 minutes on a
Windows 10 based computer, 3.60 GHz Intel Core i7 CPU
and 32GB RAM, to train a word embedding model and save
it to the hard disk. The size of the model file is 1.4GB, and it
can fit in the main memory.

1) PRE-TRAINED WORD EMBEDDINGS
Instead of training our own word embedding model, we could
use some of the existing pre-trained word embedding models.
The advantage of pre-trained word embedding models is
generally the huge amount of text, upon which the model
was built. The disadvantage of pre-trained word embeddings,
on the other hand, is that the words contained within may not
capture the peculiarities of language in a specific application
domain. For example, although being huge, the Wikipedia
may not have great word exposure to particular aspects of
legal doctrine, religious texts, or source code comments for
that matter, so if an application is specific to a domain like
this, the results may not be optimal due to the generality of
the downloaded model’s word embeddings.

An often used pre-trained word embeddings model is
GoogleNews.” This model was trained on 100 billion
words from Google News dataset using 300-dimensional

5 https://code.google.com/archive/p/word2vec/

106481

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

vector [23]. Although this model is useful in a variety of NLP
tasks it is not specific enough in the domain of code com-
ments, since, despite 3 million word vocabulary, many of the
words like todo, fixme, hack,... were not found in this model.
Other studies also suggest that training a word embedding on
a specific domain is better than using pre-trained models [13].

To confirm this, we run some preliminary experiments
where we compared the performance of pre-trained Google-
News model with our model trained on source code com-
ments using our feature enhancement method. Figure 4 shows
the classification results, using our feature enhancement
method with different word embeddings. Our word embed-
ding model, trained on source code comments, outperformed
publicly available word vectors trained in a different domain.

0.82 Classification performance using SVM classifier and CHI for feature selection
82 : T T T

o-e GoogleNews_2
A -4 GoogleNews_5
=@ WE_2
< WES

0.81

:
|
&
3
T
|
|
|
|
|
|

: :
| |
| |
| |
| |
| i
| |
|
| |
s
080f A
- I
6
9
|
I
0.78¢———- T

[e

0.76 1 L L
0.1 0.2 0.5 0.75 1

Percentage of features used

FIGURE 4. Comparison of classification performances of different word
embedding models.

IV. EXPERIMENT SETUP

In this section, we describe the experimental setup that
we followed to evaluate the performance of the proposed
approach. We first describe the data collection that was used
for performing the experiments. Then we list the baseline
FS methods, feature enhancement settings, and classification
algorithms, which were used to assess our proposed method.
Finally, we explain the evaluation method and classification
performance metric. The obtained experimental results and
research questions are presented and discussed in the next
section.

A. DATASET

To evaluate our proposed method, we obtained the SATD
data provided by the authors in [19]. This publicly available
dataset contains comments from ten open source software
projects: Ant, ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby, and SQuirrel. Projects vary in
size and the number of contributors and belong to different
application domains. The dataset contains 39,033 unique

106482

comments and their labels. Comments are labeled as five
different types of SATD. Since our aim is to detect SATD
(i.e. to identify whether a comment contains an indication
of technical debt or not), we joined all SATD types into one
single category — whether a comment includes SATD or not.
There are a 3,298 comments that contain SATD, which is 8%
of all comments. Table 3 lists detailed information about the
used dataset.

B. BASELINE AND COMPARED METHODS

In order to assess the performance of the proposed method
and its applicability to the identification of self-admitted
technical debt, a series of tests has been carried out, in which
we measured text classification performance. As baseline
methods, we applied three different FS methods: CHI, IG,
and ML

We tested all three baseline methods with various numbers
of initially selected features, ranged from 0.1% to 100% of
all features. Feature sets, selected by the baseline FS meth-
ods, were then enhanced using our proposed method with
additional features using a similarity measure based on the
trained word embedding vector space model. We used two
different enhancing values and set the parameter ¢ as 2 and
5, which means that either 2 (WE2, word embedding method
with 2 additional words) or 5 additional words (WES), most
similar to the words obtained by the baseline FS method, were
added as additional features to enhance the set of selected
features. Those features were then used by a text classifier.

To validate the proposed feature enhancement method
using our word embedded model, we also used two existing
methods, that compute the semantic relatedness of words in a
different manner. The first is WS4J (WordNet Similarity for
Java) library,6 which implements several known algorithms
for computing semantic relatedness of words using Word-
Net.” For the similarity algorithm, we selected Resnik [31],
which uses information content of shared parents of words in
WordNet, where two concepts are more similar if they present
more shared information. For a fair comparison, we used
this method to also add either 2 (R2) or 5 most similar
words (R5). The second method is SEWordSim [35], which
is a software specific word similarity database, constructed
from StackOverflow.® It contains similarity information of
more than 5M word pairs, related to the software engineering
domain. Again, also using this method, we added either 2
(SE2) or 5 most similar words (SES5).

The baseline FS methods do not depend on the learning
model. Thus, as a text classifier, we used the support vector
machine (SVM), Naive Bayes multinomial (NB) and Maxi-
mum Entropy (ME), since they are some of the most effective
and widely used classification algorithms in text classifi-
cation tasks [39]. The SVM, NB and ME were employed

6https://github‘com/Sciss/ws4j
7https ://wordnet.princeton.edu/
8https :/[stackovertlow.com/

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

TABLE 3. SATD dataset statistic.

Project Comments | SATD comments | % SATD Avg. tokens per dpc.
preprocess | original

Ant 3138 124 3.95 10.13 13.36
ArgoUML 5706 1149 20.13 13.62 18.30
Columba 4329 163 3.77 7.32 10.64
EMF 2843 82 2.88 11.22 16.13
Hibernate 2590 428 16.15 11.75 15.10
JEdit 4759 235 4.94 6.41 11.30
JFreeChart 2629 109 4.15 7.70 11.11
JMeter 4254 318 134 9.71 13.15
JRuby 3822 462 12.09 8.87 11.93
SQuirell 4962 228 4.59 11.55 15.39
Total 39,033 3298 8.45 9.83 13.64

to investigate the contributions of the selected features to
classification performance.

In this manner, if the proposed method can truly enhance
a baseline FS method, it should perform well in this task
and improve the baseline classification results. Furthermore,
the comparison with the existing methods for computing
semantic relatedness of words, should show how well the
proposed method shall perform in practice. By using three
different baseline FS methods (CHI, IG, and MI), three dif-
ferent classification algorithms (NB, SVM, and ME), and two
different enhancement values (2 and 5), we should be able to
evaluate the proposed method comprehensively.

C. EVALUATION METHOD AND METRIC

Considering the imbalance of the data set, we performed the
evaluation using the F'1 measure averaged over two classes —
the F'1-macro. The F'1 score is computed for each class within
the data set and then the average is obtained over all classes.
In this way, equal weight is assigned to each class regardless
of the class frequency. The F'1 score can be interpreted as a
harmonic mean of the precision and recall, where precision
is the number of correct positive predictions divided by the
number of all positive predictions, and recall is the number
of correct positive predictions divided by the number of all
positive instances:

2 - precision - recall
F1=

&)

precision + recall

To test the proposed method objectively, we adopted the
10-fold cross validation approach, where each fold contains
all comments from a single open source project. In this man-
ner, within one fold, we trained the classification model using
the comments from 9 out of 10 folds (the comments from
9 projects) and then tested the model on the remaining fold
(the comments from the remaining project, which were not
used for training). All the results reported are the averaged
F1-macro scores, obtained on the test comments, over all
10 folds, if not specified otherwise.

V. RESULTS
In this section, we present the obtained experimental results,
which are divided into subsections in accordance with the

VOLUME 7, 2019

defined research questions. In our study, we investigated the
following research questions:

« RQ 1: Can the classification performance of SATD be
improved by enhancing the features obtained with a
selected FS method, with our proposed method?

— RQ 1.1: What is the classification performance
when using different feature selection approaches
(CHL, IG, and MI) and different classification algo-
rithms (NB, SVM, and ME)?

— RQ 1.2: How does our proposed feature enhance-
ment method compare with other existing methods?

— RQ 1.3: Are there any differences in identification
of SATD between different feature enhancement
settings?

« RQ 2: How much of SATD is reported in open source
projects?

— RQ 2.1: Is there a set of words that determines the
SATD in source code comments?

— RQ 2.2: Which words are the most similar in source
code comments?

A. ANALYSIS OF CLASSIFICATION PERFORMANCE USING
DIFFERENT FS APPROACHES AND DIFFERENT
CLASSIFICATION ALGORITHMS

In order to evaluate our proposed method objectively,
we compared its two variants (either adding 2 or 5 most simi-
lar features) with the baseline (when no feature enhancement
is used) and two existing methods, already shown to perform
well on software engineering problems (SEWordSim and
WS4J-Resnik; these two methods have been used for exactly
the same purpose as our proposed method — to add either
2 or 5 most similar features). For this purpose, we performed
a series of experiments with three major feature selection
approaches (CHI, IG, MI) and three classification algorithms
(NB, SVM, ME) — for each combination of FS approach and
classification algorithm, all the compared methods have been
used to identify SATD in 10 selected software engineering
projects.

1) USING CHI AS THE UNDERLYING FS APPROACH
Fig. 5 shows SATD classification results, obtained with
the NB classifier when CHI wa used for feature selection.

106483

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

Classification performance using NB classifier and CHI for feature selection

et
056 S
o i
A 7 e j\‘
0.55 - X
' 2 / 2 ‘e \A“~
054 o i A
. i — I-I. .Y
L 4 / I
0.53 i
° i
5 gl
E 0.52 :
jd - 4
, - p
/
0.51 ; e X
oA s
0.50 I// il e NB_CHI
/ ,/:’ & —&— NB_CHI_WE2
MY = - -m- NB_CHI_WES
0491 s = : —— NB_CHI_SE2
/ NB_CHI_SES
7 NB_CHI_R2
0.481 d | NB_CHI RS

H N M YN ON~N®©®O OO0 Q9 9 9
48 MmS A6 R 69

0.75

o N
S o o

Percentage of features used

FIGURE 5. Comparison of seven methods when using NB classification
algorithm and CHI for feature selection.

The seven methods are compared — baseline CHI (NB_CHI),
baseline CHI enhanced with 2 most similar words
for each selected feature using our proposed method
(NB_CHI_WE2), baseline CHI enhanced with the 5 most
similar words for each selected feature using our proposed
method (NB_CHI_WEYS), baseline CHI enhanced with 2
(NB_CHI_SE2) and 5 (NB_CHI_SES5) most similar features
using the SEWordSim method, and baseline CHI enhanced
with either 2 (NB_CHI_R?2) or 5 (NB_CHI_R5) most similar
features using the WS4J-Resnik method.

We can see that all seven methods behave very similar to
the varying amount of features that are used to train the clas-
sifier. The classification performance (F 1-score) increases
continuously from the beginning (0.1% of features used)
and up to approximately 20% of used features. After that,
the predictive performance starts to drop continuously until
all the features are used, with the highest peak at around 30%
of used features.

Fig. 5 shows that our two enhancement methods
(NB_CHI_WE2 and NB_CHI_WES) outperformed the
baseline NB_CHI across the whole range, especially
NB_CHI_WES seems to have the advantage. We can see that
the four compared enhancement methods (NB_CHI_SE2,
NB_CHI_SES, NB_CHI_R2, NB_CHI_RS5) also outper-
formed the baseline NB_CHI, but at the same time lag behind
our proposed method. The best overall F' 1-score was achieved
by NB_CHI_WES5, while using the top 30% of features.
After this point, classification performance starts to decline
a bit. When all features (100%) are used, the result of all
the methods is the same, since all methods use the complete
set of all features and there is nothing to enhance. As can
be seen, the classification performance of our two proposed
enhanced methods is improved over the rest in almost every
measurement.

To evaluate the statistical significance of these results,
we first applied the Friedman test as suggested by Demsar [6]

106484

by calculating the asymptotic significance for the seven com-
pared methods for the whole range of measurements (0.1%
to 100% of features used). As the results are not normally
distributed, a non-parametric statistical test was chosen. Fur-
thermore, the obtained results of each method are related
regarding the initial set of selected features. Namely, the same
baseline FS approach is used to provide the initial set of fea-
tures, on which the methods operate next (by adding the most
similar features in their own, different ways). Consequently,
the Friedman test was applied, which is a non-parametric
statistical test used to detect differences in the results of
various methods across multiple test attempts. The results of
the performed Friedman test show that differences between
methods are statistically significant (p < 0.001).

To test further whether the results of our proposed
method NB_CHI_WES, which show the biggest improve-
ment, are indeed significant, the Wilcoxon signed-rank test
was applied next, as suggested by Demsar [6], to com-
pare NB_CHI_WES with the remaining six methods (the
Holm-Bonferroni correction was applied). The Wilcoxon
signed rank test is a non-parametric alternative for the paired
T-Test, which can be used to compare the statistical equality
of two methods over the same sample. It tests whether the
difference of achieved ranks of the two methods is statistically
significant [25]. In our case, the Wilcoxon test was used
to compare the results, achieved by our proposed method
NB_CHI_WES, with each of the remaining methods, one
by one. If the Wilcoxon test resulted in statistically signifi-
cant difference between the two methods, the one with the
higher average rank has been regarded as the better method.
The method NB_CHI_WES achieved the best average rank
among seven methods (rank = 6.78 on the scale from 1 being
the worst result up to 7 being the perfect score), and it turned
out that the results of NB_CHI_WES are indeed significantly
better than the results from the other methods (p = 0.0001
when compared to NB_CHI_WE2, and p < 0.0001 for all
the rest).

Similarly, Fig. 6 shows a comparison of SATD classifica-
tion results of seven methods, obtained with the SVM clas-
sifier, and Fig. 7 the results obtained with the ME classifier,
in both cases when CHI has been used for feature selection.
We can see that in both cases all seven methods behave very
similarly with the varying amount of features that are used
to train the classifier, and a bit different than when using the
NB for classification. In these two cases, the classification
performance (F'1-score) increases rapidly at the beginning,
when only a fraction of features are used (from 0.1% to
approx. 5%). After that, the predictive performance remains
quite stable until all the features are used, with the highest
peak again at around 30% of used features.

In these two cases, the dominance of our proposed method
is not so obvious across the whole range of measure-
ments (from 0.1% to 100% of features used). Nevertheless,
the Friedman tests show that the results of different methods
are again statistically significant (p < 0.001 in the case of
SVM_CHI, and p = 0.039 in the case of ME_CHI).

VOLUME 7, 2019

—

. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

Classification performance using SVM classifier and CHI for feature selection

0.82

ST

o
P
S
e
N

F1l-macro

o o
9 9
@ ©
\

|

®. SVM_CHI
—&— SVM_CHI_WE2 |
[-®- SVM_CHI_WES
—<— SVM_CHI_SE2

AT

SVM_CHI_R2
SVM_CHI_RS

SVM_CHI_SES

0.774 /
¥

oo
S o o

H N M YN ON~N®O OO0 Q9 Q90 9 0 9 9 Q
48 MmS A6 R o6 9

0.75

Percentage of features used

FIGURE 6. Comparison of seven methods when using SVM classification
algorithm and CHI for feature selection.

0.80 Classification performance using ME classifier and CHI for feature selection

0.79

o
S
@

Fl-macro

o
3
N
N
\
eSS

h @ ME_CHI
i —&— ME_CHI_WE2

0.76 = -®- ME_CHI_WE5
2i —<— ME_CHI_SE2

g ME_CHI_SE5

¥ ME_CHI_R2

ME_CHI_R5
0.75

75

H N MY ON~N®O O O O 9O O O
48 MmSH e R 69

0.1
0.2
0.5

Percentage of features used

FIGURE 7. Comparison of seven methods when using ME classification
algorithm and CHI for feature selection.

In both cases, again our proposed method that adds the
5 most similar features achieved the highest rank among the
seven compared methods (rank = 5.70 for SVM_CHI_WES,
and rank = 5.00 for ME_CHI_WES, see Table 4 for details).
In the case of using CHI as an FS approach and SVM for clas-
sification, the results of SVM_CHI_WES are significantly
better than those from all other methods: baseline (p <
0.0001), SVM_CHI_WE2 (p = 0.024), SVM_CHI_SE2
(p = 0.0225), SVM_CHI_SES (p = 0.048), SVM_CHI_R2
(» = 0.0001), and SVM_CHI_RS5 (p = 0.0074). In the
case of using CHI as a FS approach and ME for classifi-
cation, the results of ME_CHI_WES are significantly better
than those from baseline (p = 0.0074), ME_CHI_WE2
(p = 0.0027), and ME_CHI_SES (p = 0.0392), while not
being significantly different from those from ME_CHI_SE2
(p = 0.1396), ME_CHI_R2 (p = 0.2234), and ME_CHI_RS5
(p = 0.1485).

VOLUME 7, 2019

2) USING IG AND MI AS THE UNDERLYING FS APPROACHES
Similar analysis has also been performed for the other two
FS approaches, namely IG and MI. Generally, the findings
are very similar to those, as presented in the previous sub-
section. For this purpose, only an overview of results will be
presented in the next sub-section.

3) COMPARISON OF OUR PROPOSED METHOD WITH
BASELINE AND THE EXISTING ONES

Table 4 presents the average ranks of the seven compared
methods as achieved on each of 9 possible combinations of
FS approach and classification algorithms. The average rank
for each method is calculated as an average across all ranks,
achieved by that method on all data points (SATD classifica-
tion results when from 0.1% to 100% of features are used).
The best rank is 7 (when a method achieves the best score
among all methods), while the worst rank is 1. The last row of
Table 4 presents an overall average of ranks, achieved by each
of the seven compared methods, on all data points with all
combinations of FS approaches and classification algorithms.
It can be seen, that our proposed method WES achieved the
best overall average rank and the best average rank in 6 out
of 9 combinations, while achieving the second best average
rank in the other three testing combinations. The second best
overall average is achieved by the method SES5, followed
narrowly by WE2. All other methods lag quite far behind,
with the baseline being the least successful of all methods,
as expected.

Another interesting presentation of SATD classification
results of seven compared methods, based on achieved ranks,
is provided in Fig. 8. It can easily be seen that our proposed
method WES5 achieved the most wins (it was the best in 83 out
of 207 possible cases). It is also interesting, that the frequency
descends steadily with the descending ranks, which is not the
case for any other method. On the other hand, the baseline
is the only method, which ranks frequencies steadily ascend
with the descending ranks. When looking at the SE5 method,
as the one that is closest to WES, we can see that it has
quite some wins (51, compared to 83 wins of WES), but also
quite a lot of the worst results (20, which is twice as much
as WES).

The statistical tests, as described above for the case of using
CHI and NB, have been performed to validate the significance
of the results. In Table 5, the results of performed statistical
tests are presented. The first row denotes the testing situ-
ation (combination of FS approach and classification algo-
rithm). The second row presents the asymptotic significance
(p-value) of the performed Friedman test — if the p-value is
less than 0.05, then there are significant differences between
seven methods. The rows 3 through 8 present the asymptotic
significance (p-value) of the performed post-hoc Wilcoxon
test for comparing our proposed WE5 with the other six
methods — if the p-value is less than 0.05, then there are sig-
nificant differences between WES and the compared method.
In case of significant differences, the average ranks of the

106485

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

TABLE 4. The average ranks of seven methods when classifying SATD using different FS approaches and classification algorithms (the best average ranks
are shown in bold).

baseline WE2 WES SE2 SE5 R2 RS
CHI+NB 1.22 6.04 6.78 257 428 296 4.15
CHI+SVM 2.04 4.65 570 424 480 267 3.89
CHI+ME 2.78 3.83 5.00 4.13 413 413 4.00
IG+NB 1.35 543 683 326 483 224 407
IG+SVM 1.83 4.61 535 467 6.02 259 293
IG+ME 343 3.39 439 413 457 387 422
MI+NB 3.50 4.59 533 359 407 359 335
MI+SVM 3.48 4.70 483 454 480 252 313
MI+ME 322 2.93 459 435 574 352 3.65
overall average 2.54 4.46 542 394 480 312 371
baseline WE2 WES SE2 SES R2 RS
18 7 Wss | 7{lho 7 51 7010 741
Gt 6 45 61 2 6 31/‘ 64 12 6 “20
37 5 27 5 \\39 5 /a9 518 5 29
E] 4 i20 4 “v6 4 28 4 T3 4 Y ose
17/ 3 }’15 3 I\ns 3 1’§ 3 \\§a 3 3§‘
W2 2 {0 2 e 24T 2 Hes 2 I35
18 1 o 1 |4‘/ 1 20 1 1 it

0 20 40 60 80 100
ranks frequency

0 20 40 60 80 100
ranks frequency

0 20 40 60 80 100
ranks frequency

0 20 40 60 80 100
ranks frequency

0 20 40 60 80 100
ranks frequency

0 20 40 60 80 100
ranks frequency

0 20 40 60 80 100
ranks frequency

FIGURE 8. Comparison of seven methods regarding the achieved ranks on all 9 testing combinations - using three FS approaches
and three classification algorithms.

TABLE 5. The results of the statistical comparison of seven methods - Friedman’s asymptotic significance (2nd row) for comparing differences between
methods, and Wilcoxon’s asymptotic significance (rows 3-8) for comparing our proposed method WE5 with other methods (significant differences are

marked with *).

Friedman baseline WE2 SE2 SE5 R2 R5
CHI+NB *0.0000 *0.0000 *0.0001 *0.0000 *0.0000 *0.0000 *0.0000
CHI+SVM *0.0000 *0.0001 *0.0240 *0.0225 *0.0480 *0.0001 *0.0074
CHI+ME *0.0399 *0.0074 *0.0027 0.1396 *0.0392 0.2234 0.1485
IG+NB *0.0000 *0.0000 *0.0000 *0.0000 *0.0000 *0.0000 *0.0000
IG+SVM *(0.0000 *0.0000 0.1154 0.1361 0.0727 *0.0002 *0.0007
IG+ME 0.3790 - - - - - -
MI+NB *0.0072 0.0537 *0.0355 *0.0015 0.6894 *0.0013 *0.0004
MI+SVM *#0.0002 *0.0074 0.1677 0.3615 0.3458 *0.0011 *0.0014
MI+ME *0.0000 *0.0071 *0.0012 0.3219 0.2586 *0.0033 *0.0078

compared methods show which method is better (the one with
the highest rank, see Table 4).

As we can see, the only testing situation, where there
are no significant differences between the seven methods,
is the combination IG + ME — otherwise, the methods differ
significantly. For the combinations CHI + NB, CHI 4+ SVM,
and IG + NB, the WES is significantly better than all other
methods. For the combination CHI + ME, WES is signifi-
cantly better than baseline, WE2, and SES. For combination
IG + SVM, WES is better than baseline, R2, and R5. For
the combination MI + NB, WES is better than WE2, SE2,
R2, and RS. For combination MI + SVM, WES is better than
baseline, R2, and RS. Finally, for the combination MI + ME,
WES is better than baseline, WE2, R2, and R5. In all the
testing situations, our proposed method WES is never signif-
icantly worse than any other compared method.

B. COMPARING FEATURE ENHANCEMENT SETTINGS ON
SELECTED OPEN SOURCE PROJECTS

In the previous section, all the presented results provide
enough evidence in order to consider our proposed method
WES as the most successful for identifying SATD among
the compared methods in general. In this section, we will

106486

compare all the methods on a set of 10 open source projects,
using the general findings from the above performed analysis.
This should equip a software engineer with further insights
into how different feature enhancement settings influence the
identification of SATD.

WES achieved the best overall result using MI as the FS
approach and SVM for classification when 30% of features
were used (F 1-score = 82.12%). In general, the SVM classi-
fier achieved slightly better results than ME and much better
than NB, regardless of the used FS approach. The differ-
ences between different FS approaches, when using the same
classification algorithm, were only marginal. Furthermore,
generally, the best results were achieved with the feature
set sizes of approx. 30%. In this manner, we constructed a
classification model for each open source project using 30%
of features as selected by each baseline FS approach and
trained it with all the comments from the remaining nine
projects.

1) THE INFLUENCE OF THE CLASSIFICATION ALGORITHM

First, we analyzed the influence of different classification
algorithms (NB, SVM, and ME) on the results. For each test-
ing situation (different classification algorithm), the SATD

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

TABLE 6. The average ranks of seven methods when classifying SATD
using different classification algorithms (NB, SVM, ME) on ten selected
open source projects (the best average ranks are shown in bold).

baseline WE2 WE5 SE2 SE5 R2 RS

TABLE 7. The average ranks of seven methods when classifying SATD
using different underlying FS approaches (CHI, IG, MI) on ten selected
open source projects (the best average ranks are shown in bold).

baseline WE2 WE5 SE2 SE5 R2 RS

NB 2.75 472 533 375 445 322 378 CHI 3.37 417 4.68 393 412 385 3.88
SVM 3.82 422 463 445 3.68 373 347 1IG 2.83 472 513 393 492 308 338
ME 4.30 375 412 410 453 380 340 MI 4.67 380 427 443 3,63 382 338
overall avg 3.62 4.23 4.69 4.10 422 358 3.55 overall avg 3.62 4.23 4.69 4.10 422 358 3.55

classification results for all three underlying FS approaches
(CHI, IG, MI) were used, for all 10 open source projects.

When using NB for classification, the results of our pro-
posed method WES5 outperformed all other methods. The
Friedman test confirmed the significant difference (p <
0.001). As the best average rank (5.33) was achieved by the
WES, we performed the post-hoc Wilcoxon test to compare
WES with all other methods. The results show that WES is
indeed significantly better than all other methods: baseline
(p = 0.0001), WE2 (p = 0.0081), SE2 (p = 0.0014), SE5
(p = 0.0201), R2 (p = 0.0006), and RS (p = 0.0039). On the
other hand, when using either SVM or ME for classification,
the differences between methods on 10 selected projects are
only marginal. This was further confirmed by the Friedman
tests, which show no significant difference in the case of SVM
(p = 0.2731) and in the case of ME (p = 0.2989).

Next, we calculated the average ranks of all seven meth-
ods on three classification algorithms, which are summa-
rized in Table 6. We can see, that our proposed method
WES achieved the highest rank with two classification algo-
rithms (NB and SVM) while being the second best with
ME. Consequentially, WES also achieved the highest overall
average rank. In the case of the ME classifier — the only one
where WES5 did not achieve the top rank — the differences
of average ranks between the methods were the smallest.
It is also interesting, that the second highest overall rank was
achieved by WE2, even slightly in front of the best of the
compared existing methods SES. The comparison of seven
methods regarding the achieved average ranks on ten selected
open source projects using three classification algorithms is
presented visually in Fig. 9. Interestingly, when using ME
for classification, all the methods tended to have the average
rank around the mid-point at rank 4.00, which confirms that
differences in this case are indeed marginal.

2) THE INFLUENCE OF THE FS APPROACH

Similarly, we analyzed the influence of different FS
approaches (CHI, IG, and MI) on the results. For each testing
situation (different FS approach), the SATD results of all
three classification algorithms (NB, SVM, ME) were used,
for all 10 open source projects.

When using IG as the underlying FS approach, the results
of our proposed method WES5 outperformed all other meth-
ods. The Friedman test confirmed the significant difference
(»p < 0.001). As the best average rank (5.13) was achieved
by the WES, we performed the post-hoc Wilcoxon test to
compare WE5 with all other methods. The results show

VOLUME 7, 2019

that WES5 is indeed significantly better than the following
methods: Baseline (p = 0.0004), SE2 (p = 0.0225), R2
(»p = 0.0014), and R5 (p = 0.0057), while the results were
not significantly better than those from WE2 (p = 0.1442)
and SES (p = 0.3001). On the other hand, when using either
CHI or MI as the underlying FS approach, the differences
between methods on 10 selected projects are only marginal.
This was further confirmed by the Friedman tests, which
show no significant difference in case of CHI (p = 0.3706)
and in case of MI (p = 0.0905).

If we take a look at the calculated average ranks of all
seven methods using three FS approaches (Table 7), we can
see that our proposed method WES achieved the highest rank
with two FS approaches (CHI and IG), while being the third
best with MI. As already shown above, WES also achieved
the highest overall average rank. In the case of MI as the FS
approach — the only one where WES5 did not achieve the top
rank — the differences of average ranks between the methods
were the smallest. It is very interesting, that in the case of
using ME the best average rank was achieved by the baseline
method. The comparison of seven methods regarding the
achieved average ranks on ten selected open source projects
using three FS approaches is presented visually in Fig. 10.

C. HOW MUCH OF SATD IS REPORTED IN OPEN
SOURCE PROJECTS?
For the identification of the SATD comments, we used our
proposed method. Since the best performances were obtained
with the SVM_MI_WES, we used this model to classify
comments as SATD (or not SATD). We mined the same
projects that were used for creating the word embedding
model. We filtered out projects, from our analysis, which con-
tained less than 10 source files, have less than 100 comments
and less than 1000 LOC. That leaves us with 246 projects.
The obtained projects varied in size (LOC), in the number
of source files and in number of comments. The detailed
information about the analyzed projects is reported in Table 8.
On average, the analyzed projects have around 90k LOC
and 4.7k comments. The largest project is Intellij-community’
with 3.4M LOC which also has the most .java files. Despite
being the largest, it has fewer comments than the sec-
ond largest project platform_frameworks_base,'® which has
126,835 comments.

9https ://github.com/JetBrains/intellij-community
lOhttps:// github.com/aosp-mirror/platform_frameworks_base

106487

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

baseline WES SE2 SE5 R5
7 7 71 § 7 ~ 7 -3 7 7 3
6 6 64 Rt 614 6 4\‘\‘ 6 6 ’?
\
5 5 5 6 5] 3 5 FARE 5 s{ g
/ ~ \
4 4 441,/ 4 S8 4 7% 4 4 N7
4 AN //I \\
3 3 31Y 3 M 391, 3 3 5%
;
5 2 2 . 2 o 2003 2 2 W
0 prae =7
1 1 14 14o--~ 1 3 1 1 3
0 0 0 0)
ranks frequency ranks frequency ranks frequency ranks frequency ranks frequency
baseline WES5 SE2 SE5 R2 R5
7 N3 7 .6 74 .8 7 14 7 3 7 2 7
N - - \ \ N
6 2 6 6 E 6 5 6 3 6 N 6
/
5 Ay s{ 2! 5| s 5 is 5 5 \s 5
| 1
4 [4 \os 41 14 4 5 4 4 4 4
3 3 EN 34 i 3 s 3 3 3
\ /
5 2 B 2 s 2402/ 2 2 2
) .
1 1 “ L - L - 1 1 1
0 0 0
ranks frequency ranks frequency ranks frequency
baseline WE5 SE2 R2
7 N3 7 7 3 7 2. 7 4 7 2 7
- S >N N =
6 3 \\ 6 6 2 ~ 6 N5 6 L6 6 3 6
\ \ \ \
5 \‘ 7 5 5 i 5 s 5 4] 5 3 5
i] ; \
4 jos 4 4 L 4 LT 4 /s 4 i 9 | 4
/ / 7 /
3 4/ 3 3 5 3 3 311 3 3
)% 7 / P
2 - 2 2 2/ 2 B 2 o 5 2 2
- 7 7
18T 1 1 1 3 1 2 1 1
0) 0 0 0 0)

ranks frequency

ranks frequency

ranks frequency

ranks frequency

ranks frequency

ranks frequency

ranks frequency

FIGURE 9. Comparison of seven methods regarding the achieved ranks on ten selected projects using NB (top), SVM (middle), and
ME (bottom) for classification.

baseline WES SE2 SES5 R2 R5
7 7 7 6 7 3 7 13 7 7 s
6 6 6 4 6 ia 6 £ 6 6 2
5 5 5 S8 | s s 5 - 5 5 T
y 1 So
4 4 4 3/ 4 a 4 O 4 4 6
J |
3 3 3 3 3 al 34 2) 3 3 50
/ .
2 2 2 'E 2 W 2 - 2 2 e
1 1 1 3 1 3/ 1 1 1l
0 0 0 0)
ranks frequency ranks frequency ranks frequency ranks frequency ranks frequency
baseline WES5 SE2 SE5 R5
7 6 7 o 7402 7 s 7 7
ya e oy AN
6 Lo 6 ik 61 3 6 7 6 6 B
7 N X
5 4 54 2/ 5 N5 5 | s 54 2 %
/ < , \
a1/ 4 s 4 N7 4 2 7 4 4]
i e 1
3 /s 3 s 3 4] 3{0 3 3
7
2 I3 240,/ 2 s 2 - 2 2
g . _—
1 2 101 181 1 1 1
0 0 0 0
ranks frequency ranks frequency ranks frequency ranks frequency ranks frequency
baseline WE2 WES SE2 SES5 R2
7 s 740 7 - 7 14 702 72 7
6 4 6 6 30 6 A 6 6971 6
1 N |
5 16 5 4y 5 8 5 4 5 5 N7 5
i \
4 Jo7 4 ‘ 0| 4 4 Lo 4 ° 4 3 4
/7 I "
3 # 3 3 3 4/ 3 3 - 3
’ /
292 2 2 2 3’ 2 2 4. 2
1 2 1 1 12 1 1 3 1
0) 0 0 0 0

ranks frequency

ranks frequency

ranks frequency

ranks frequency

ranks frequency

ranks frequency

ranks frequency

FIGURE 10. Comparison of seven methods regarding the achieved ranks on ten selected projects using CHI (top), IG (middle), and

Ml (bottom) as the underlying FS approach.

There was a total of 1.2M comments which we classified
and identified 23,368 of those comments as SATD. That
represents 2% of all comments in analyzed GitHub projects.
On average, percentage of SATD comments in each project
was 1.86% (SD = 1.98). Fig. 11 depicts the diffusion of

106488

SATD comments found in the 246 analyzed open source
projects. Since different projects may have a substantially
different number of comments, we report both the discrete
number of SATD found in projects as well as the percentage
of comments containing SATD. The first plot (a) reports the

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

TABLE 8. Characteristics of analyzed GitHub projects.

LOC .Jjava files comments
max avg sum max avg sum max avg sum
3447064 | 89782.17 | 22M | 54969 | 897.6 | 220k | 126835 | 4728.7 1.2M

Total number of SATD
3000

2500

N
S
5]
8

1500

number of SATD

1000

projects

(a) The number of identified SATD in projects.

25

20

% of SATD in comments

projects

(b) The percentage of SATD in comments

FIGURE 11. Diffusion of SATD comments. a) Absolute number of SATD, and b) Percentage of comments reporting it.

distribution of the absolute number of SATD comments found
in the projects, while (b) shows the percentage of SATD in
comments.

On average, analyzed projects had 94.9 SATD com-
ments. The most identified SATD comments were found
in the Platform_frameworks_base and Intellij — community
projects, with 2,535 and 2,038 SATD comments, respec-
tively. Although such values look very high, it is impor-
tant to consider that these two projects contain a total
of 126,865 and 61,708 comments, which means that
1.9% and 3.3% of comments report SATD, which is not
very far from average. On the other hand, projects with
the most percentage of reported SATD in comments are
EffectiveAndroidUI'! and Android — classyshark.'> Both
are much smaller projects, containing only 2,225 and
9,267 LOC with 106 and 1,639 comments in 54 and 133 java
source files, respectively. Their percentages of SATD com-
ments are 21.6% and 7.9%, which are high above average
(which is 1.86%). The overall observed trend is in line
with some other research reporting SATD in open source
projects [1], [29].

It should be emphasized that we did not fully examine
whether the SATD comments actually discuss the detected
technical debt in source code or not; yet we did look
through some of identified SATD comments. Examples of
identified SATD, with underlying source code are the
following:

1 https://github.com/pedrovgs/Effective AndroidUI
12https:// github.com/google/android-classyshark

VOLUME 7, 2019

o Platform_Framework_base

o Android-classyshark (FilesTree.java)

// hack for manually stripped APKs

if

}

with one flat package
(packageNode != null &&
currentClassesDex.isLeaf ()) {
currentClassesDex.add (packageNode) ;

(PowerManagerService.

java)

// XXX should WorkSource have a
way to set uids as an int[]
instead of adding them

// one at a time?

ws = new WorkSource();
for (int i = 0; 1 < uids.length;
i++) |

ws.add (uids[i]);
}

o Intellij-community (ItentionManagerImpl.java)

//todo temporary hack,

// % on the first request,

need smarter
logic:

wait until
all the initialization is finished

// * ensure this request doesn’t come

// * while waiting,

if

runnable.

}

on EDT
check for
ProcessCanceledException

(ApplicationManager.

getApplication() .
isUnitTestMode ())
run();

{

else {
myInitActionsAlarm.addRequest (runnable,

300);

106489

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

« EffectiveAndroidUI (TVShowViewModel.java)

/* This class could be a interface
implementation if the

* TvShowViewModel has more than one

* implementation.

*/

public class TvShowViewModel ({

The classification process for identification of SATD com-
ments took about 13 minutes,!> which is a reasonable time,
considering the number of analyzed projects, since the aver-
age time was around 3 seconds per project. For example,
just to set up software quality tools, like Sonarqube'* or
JDeodorant," could take up hours, just for one project. With
this classification process, we have also created a new large
labeled dataset (comments with or without SATD) which
would serve for answering RQ 2.1. The detailed information
about created dataset is provided in Table 9.

TABLE 9. Results for identification of SATD comment in open source
projects.

Comments | SATD comments

1163258

% of SATD | Avg. numb. of tokens
23368 2.00 10.62

D. IS THERE A SET OF WORDS THAT DETERMINES THE
SATD IN SOURCE CODE COMMENTS?

To identify common words, used in SATD comments, across
multiple GitHub projects, we trained a new SVM classifier
with the same settings as used in previous steps. Since SVM is
a supervised learning method, we needed labeled information
whether comments in those projects contain SATD or not.
We used the newly created dataset (see Table 9) from the
previous step, to train this classifier. Since an SVM classifier
assigns weights to features, where more relevant features, for
a specific category, have higher score, we were able to extract
the most important features (words) for both category of
comments. Table 10 shows comparison of the top-10 features,
learned by the SVM classifier, to classify comments to those
with or without SATD. The first column shows the list of most
important features for identifying SATD comments; the sec-
ond column lists the features to identify comments without
SATD. From the results we can see, that most important fea-
tures are indeed those that are describing SATD comments.
For example, words like rodo, xxx indicate incomplete or
missing implementation of code (from Processing'®):

o /ltodo still not sure why category would be come back
null

o /Ixxx we can’t replace stuff soooooo do something dif-
ferent

13Windows 10 based computer with 3.6 GHz (i7) and 32GB RAM
14https://\7v\7vvv.sonarqube‘org/

15https://github.com/tsantalis/] Deodorant

16’https:// github.com/processing/processing

106490

TABLE 10. Top 10 features used by the text classifier to classify
comments.

SATD Not SATD
hack boolean
todo close
workaround construct
fixm charset
perhap target
ugli retain
bug stub
better timeout
refactor word
XXX archiv

Other words like workaround, fixm, refactor, hack indi-
cates poor code quality and temporary solutions (from
Jadx1y:

o //workaround for compile bug, see test duplicate cast
o /ffixm add this for equal method in scope,
« /frefactor this boilerplate code

Words perhap and better in comments like (from Small '®):

o //perhap start with number
o //fixm remove follow thread if you find the better place
to kill process

are questioning current solution, and indicate that improved
solution should be applied.

Features from the second column are common words that
appeared frequently in comments not containing SATD.

E. WHICH WORDS ARE THE MOST SIMILAR IN SOURCE
CODE COMMENTS?
Our enhancement method is based on the word2vec model
and its ability to retrieve words with the most similar meaning
since similar words are embedded closely together in seman-
tic space. We constructed word embedding model using
source code comments from 360 open source projects on
GitHub. With this model, we can retrieve similarity of words,
using the cosine similarity distance (1), since they are embed-
ded in the same vector space. To provide some insights into
the constructed model, we presented some common words
from the software engineering domain, extracted from source
code comments, with their most similar words, in Table 11.
When analyzing the similarity of words in a learned
word2vec model, we found out that the model indeed
found similar words with regard to the software engineering
and software development domains. For example, the word
private is used in java programming language as an access
modifier. Other access modifiers are public and protected
which our model also finds as similar words. Numeric types
in Java like long, short, double, int are also identified as
similar words. Another such example could be the word
workaround with its similar words being fix and hack, and
the word ineffici with the most similar words better and ugli.

1 https://github.com/skylot/jadx
18https:// github.com/wequick/Small

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

TABLE 11. Some word enhancements (5 most similar resulting words for
a given input word) as provided by our constructed word2vec model from
source code comments.

assert check verifi expect valid test

bug issu problem situat test todo

buggi bug crash bad sometim broken

code return param string object prog

hack todo better workaround fix realli
hashtabl linkedhashmap hashset enummap treemap hashmap
inconsist unexpect corrupt invalid bad problem
improv better optim help impact fix

issu problem messag error fail

logo icon actionbar drawabl thumbnail titl
long short int doubl integ valu

polygon shape triangl rectangl circl polylin
private public static protect final class

ugli ineffici hack better strang weird
workaround | fix hack avoid detect prevent

XXX todo but these we comment

All those words are identified in the literature as words used
commonly for SATD [19].

Some words may not seem related at first. For example,
some would argue that the words ugli and better are not
related. However, these two words are related in the context
of a source code comment. For instance, comments ‘‘this
method is ugly” and ‘“‘should find better implementation”,
both suggest that the implementation of the method should
be improved. In this case, you can see how words tend to be
semantically closely together regarding context.

VI. DISCUSSION

The obtained results show that the classification performance
has been improved over baseline significantly with the help of
the proposed enhancement method WES in practically every
tested situation. The only two exceptions, where improve-
ments did not prove to be statistically significant, were IG
+ ME and MI + NB. In both, however, the ranks analysis
showed the advantage of our proposed method, as well as
in all other testing situations. Similarly, the performed com-
parison of our proposed method with the existing feature
enhancement methods showed the clear overall advantage of
WES over all the compared methods, with significant advan-
tage in most of the testing situations. The most competitive
method to our WES5, regarding the obtained test results, turned
out to be SE5. However, while WES was significantly better
in 4 out of 9 cases, in the other 5 testing situations there were
no significant differences between the two methods, and thus
we can pronounce the WES as the dominant method.

Based on these results, we may say that using the proposed
feature enhancement method will most likely improve the
prediction of SATD in practically any case or settings. In this
manner, software developers, software project managers, and
other practitioners can benefit from applying the proposed
method to identify the SATD. The experiments have shown
that it is generally the best option to use the SVM as a
classification algorithm, to select initially approx. 30% of
features and then use our proposed method WES5 to add the

VOLUME 7, 2019

top 5 most similar features to each of the selected ones. The
use of the FS approach is not so important as all three FS
approaches performed very similarly.

Let us remember once again that the features in our case are
the words from comments in the source code. By analyzing
the words, selected initially by a FS method, and the sets of
most similar words, added by our proposed feature enhance-
ment method, we may derive some insights, which can help
software practitioners to evaluate their projects better, thus
making better decisions.

First of all, the calculated similar words are in fact semanti-
cally very related to the given input words (look at Table 11).
By enhancing the features, we have a much better chance
to include different words with practically the same mean-
ing. As the source code comments can be very different,
depending on the application domain, cultural background
of a developer and similar, the enhancement includes such
different words, which would be otherwise overlooked, to be
used to train the model. In detecting SATD, such examples
are: “improve” is similar to “better”” and “optimize”, “fix”’
is similar to “workaround” and ‘“‘hack™, “bug” is similar
to “issue”, “problem” and even “todo”, etc. In addition to
our feature enhancement method, the trained word embed-
ding model for computing word similarity could also help
to improve many tasks related to information retrieval. Word
similarity is already used successfully in a variety of tasks
related to the natural language processing (NLP) commu-
nity. In the software engineering domain, there are many
such tasks, like duplicate bug identification, code search,
bug localization, etc. [35]. For example, word similarity
information from our embedded model could be used for
query expansion with additional similar words to improve the
accuracy of information retrieval based solutions (e.g., code
search, bug classification, bug localization, etc.) [10].

Second, the improvement in accuracy of the constructed
model for SATD identification would benefit the tools like
SATD detector [16]. It is a recently developed tool that is
able to detect and manage SATD comments to support soft-
ware development in an integrated development environment
(IDE), like Eclipse. Since it uses a learned classifier, this
tool can analyze and classify source code comments in real
time. The identified SATD comments are then highlighted to
remind the developers and project managers of the existence
of SATD and a need for future refactoring. With the utilization
of our approach, project managers can have a quick insight
into the quality of code and discover potential problems
related to technical debt, which can help to improve evalu-
ation of project quality and thus making a better decision,
regarding the release date of the software. Usually, project
managers are supervising multiple projects, with many dif-
ferent developers. Since our method is trained on comments
from many different projects, it is robust to be used across
different projects. For a developer, our method can provide a
better reminder of the existence of a possibly forgotten SATD.
This is especially useful for new-coming developers since
their knowledge of the previously developed code is limited,

106491

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

and the vocabulary they used for code commenting elsewhere
was different.

Finally, with our presented feature enhancement method,
which is based on a vector space model built from a huge
amount of unlabeled comments in various open source soft-
ware projects, we have shown that the use of word embed-
ding can improve the classification performance of SATD
detection. Additionally, we took advantage of an abundance
of available source code. Although the comments were not
labeled, we were able to utilize the information contained
within the content and structure of available source code. As
we have demonstrated that our approach can quickly analyze
hundreds of thousands of comments in source code to identify
SATD, we believe that our work highlights an opportunity for
researchers to extensively study the code structure marked as
SATD to gain more insights.

A. THREATS TO VALIDITY

We are aware of possible threats to the validity of the pre-
sented results and implications they bring.

1) CONSTRUCT VALIDITY

Primarily they relate to the diversity, quality, and quantity of
the data. The amount of used unlabeled source code com-
ments and their verified source (all are open-source projects
on GitHub) can be considered as very adequate. On the other
hand, source code with labeled source code comments is
much more difficult to obtain. In this manner, we used a
set of 10 open source projects that varied in size, applica-
tion domain, developers and the number of comments. Open
source projects are highly transparent in which developers
are more likely to admit technical debt in comments [12].
Thus, we believe the threat to be reasonable. In the future,
however, we plan to reduce this threat further by analyzing
even more labeled source code comments from additional
software projects. Another threat of using only comments for
the identification of SATD is that code comments may not
be updated consistently with source code. Thus, identifying
SATD just using comments would sometimes be misleading.
However, some previous works show that changes in code and
comments are consistent [29]. Finally, this study relies only
on source code comments. In this manner, the detection of
SATD in projects with limited code comments, or projects
where developers do not express themselves in code com-
ments, would not be possible using the presented method (or
would at least be very hard to perform).

2) RELIABILITY

The dataset for training and testing that we used heavily relies
on manual analysis and classification of the source code com-
ments made in a previous study [19]. In that study, to reduce
human errors and personal bias, the dataset was validated
by Master students. Besides, our approach depends on the
correctness of the underlying tools we utilize. To mitigate
this risk, we used tools that are commonly used in machine

106492

learning community, such as scikit-learn,'® which contains
multiple methods for text classification and feature selection,
used in our approach.

3) INTERNAL VALIDITY

The potential threat to internal validity could be the selection
of projects we analyzed, since not all projects on GitHub
are software projects. To avoid such projects, a threshold for
minimal number of .java files, and total LOC was considered.
Imprecision of our automated SATD in detection method
could also effect results of the analysis. Still, we believe
that the vast amount of data and high result scores on the
validation dataset make us confident about our findings.

4) EXTERNAL VALIDITY

All of our findings were based on comments, written in
English, derived from open source Java projects. To minimize
the threat to external validity, we chose open source projects
from different domains. Nevertheless, our results may not be
simply generalized to non-Java projects, commercial projects
or projects in different languages. Particularly, our results
may not generalize to projects with a low number of com-
ments or comments that are not written in English.

VIi. CONCLUSION AND FUTURE WORK

The detection of technical debt is an important task in the
software development process. Our work was focused on
improving the identification of SATD, which is technical debt
that is described in source code comments. Current state—of—
the art approaches only use supervised learners to automate
the classification of SATD comments. Thus, we proposed the
use of word embeddings to improve the detection of SATD.
We obtained and preprocessed more than a million unla-
beled comments to build a word2vec model. In this model,
words are embedded into semantic space so that semantically
more similar words are closer to each other. We applied the
semantic similarity measure to find features, most similar
to those from the feature set previously selected by a FS
method. These additional features were then used to enhance
the original feature set. With the enhanced set of features,
we were able to improve the detection of SATD.

Then, we applied our enhanced model for SATD iden-
tification to different open source projects. The results of
an exploration for the introduction of SATD comments in
open source projects have shown that, on average, 1.9% of
comments in projects contain SATD. Finally, we explored
which words are most common to describe SATD comments
in open source projects. Additionally, we have shown that our
learned word embedding model can find similar words in the
software engineering domain.

In the future, we plan to perform more analyses on how to
optimize all the parameters for improving the word embed-
ding model, so that the search for most similar features will be
even more accurate. Additionally, an improved word embed-

19http://scikit-learn.org/

VOLUME 7, 2019

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

IEEE Access

ding model could be used to construct a software specific
word similarity database, to help and solve different specific
software engineering problems based on software textual
artifacts, like code search and bug localization. We also plan
to further analyze the source code, identified with our pro-
posed method as containing technical debt, in order to extract
information about code structure and some common patterns
of such code.

Since multiple text classification methods have been devel-
oped and tested in literature, we plan to conduct additional
experiments on applying our enhancement method to differ-
ent classifiers. We also plan to perform additional experi-
ments on different textual datasets from different domains,
to validate our approach.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

G. Bavota and B. Russo, ““A large-scale empirical study on self-admitted
technical debt,” in Proc. IEEE/ACM 13th Work. Conf. Mining Softw.
Repositories (MSR), May 2016, pp. 315-326.

N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A.MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan,
and N. Zazworka, ‘““Managing technical debt in software-reliant systems,”
in Proc. FSE/SDP Workshop Future Softw. Eng. Res. (FOoSER), 2010,
pp. 47-52.

M. Chen, X. Jin, and D. Shen, ‘“Short text classification improved by learn-
ing multi-granularity topics,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI),
2011, pp. 1776-1781.

W. Cunningham, “The WyCash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29-30, 1993.

C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, “Repre-
sentation learning for very short texts using weighted word embedding
aggregation,” Pattern Recognit. Lett., vol. 80, pp. 150-156, Sep. 2016.

J. Demsar, ““Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

C. Fernandez-Sanchez, J. Garbajosa, A. Yagiie, and J. Perez, ““Identifica-
tion and analysis of the elements required to manage technical debt by
means of a systematic mapping study,” J. Syst. Softw., vol. 124, pp. 22-38,
Feb. 2017.

J. Flisar and V. Podgorelec, “Enhanced feature selection using word
embeddings for self-admitted technical debt identification,” in Proc. 44th
Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2018, pp. 230-233.
E. Gabrilovich and S. Markovitch, “Overcoming the brittleness bottle-
neck using Wikipedia: Enhancing text categorization with encyclopedic
knowledge,” in Proc. 21st Nat. Conf. Artif. Intell. (AAAI), Jul. 2006,
pp. 1301-1306.

S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies,
“Automatic query reformulations for text retrieval in software engineer-
ing,” in Proc. Int. Conf. Softw. Eng. (ICSE). Piscataway, NJ, USA: IEEE
Press, 2013, pp. 842-851.

Z. S. Harris, “Distributional structure,”
pp. 146-162, 1954.

Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted
technical debt in open source projects using text mining,” Empirical Softw.
Eng., vol. 23, no. 1, pp. 418-451, 2018.

A. Khatua, A. Khatua, and E. Cambria, “A tale of two epidemics: Con-
textual Word2Vec for classifying twitter streams during outbreaks,” Inf.
Process. Manage., vol. 56, no. 1, pp. 247-257, Jan. 2019.

H. K. Kim, H. Kim, and S. Cho, ‘“Bag-of-concepts: Comprehending
document representation through clustering words in distributed represen-
tation,” Neurocomputing, vol. 266, pp. 336-352, Nov. 2017.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. 24th Int. Conf. World Wide Web, vol. 32. New York,
NY, USA: ACM Press, 2014, pp. 29-30.

Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd detector:
A text-mining-based self-admitted technical debt detection tool,” in Proc.
40th Int. Conf. Softw. Eng., Companion (ICSE). New York, NY, USA:
ACM, 2018, pp. 9-12.

Word, vol. 10, nos. 2-3,

VOLUME 7, 2019

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(39]

(40]

(41]

C. Ma, Q. Zhao, J. Pan, and Y. Yan, ““Short text classification based on dis-
tributional representations of words,” IEICE Trans. Inf. Syst., vol. E99-D,
no. 10, pp. 2562-2565, 2016.

E. D. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical debt,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 238-248.

E. D. S. Maldonado, E. Shihab, and N. Tsantalis, ‘““Using natural language
processing to automatically detect self-admitted technical debt,” IEEE
Trans. Softw. Eng., vol. 43, no. 11, pp. 1044-1062, Nov. 2017.

E. D. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical Debt,” in Proc. IEEE 7th Int. Workshop
Manag. Tech. Debt (MTD), Oct. 2015, pp. 9-15.

S. Mensah, J. Keung, J. Svajlenko, K. E. Bennin, and Q. Mi, “On the value
of a prioritization scheme for resolving Self-admitted technical debt,”
J. Syst. Softw., vol. 135, pp. 37-54, 2018.

T. Mikolov, K. Chen, S. Gregory Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” CoRR, vol. abs/1301.3781,
pp. 1-12, Jan. 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ““Distributed
representations of words and phrases and their compositionality,” in Proc.
26th Int. Conf. Neural Inf. Process. Syst. (NIPS), vol. 2. Lake Tahoe, NV,
USA: Curran Associates, 2013, pp. 3111-3119.

T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-
Hill, 1997.

D. S. Moore, G. P. McCabe, and B. A. Craig, Introduction to the Practice
of Statistics SPSS Manual. New York, NY, USA: W. H. Freeman, 2009.
N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, *“Curating GitHub
for engineered software projects,” Empirical Softw. Eng., vol. 22, no. 6,
pp. 3219-3253, 2017.

X.-H. Phan, L.-M. Nguyen, and S. Horiguchi, “Learning to classify short
and sparse text & Web with hidden topics from large-scale data collec-
tions,” in Proc. 17th Int. Conf. World Wide Web (WWW). New York, NY,
USA; ACM Press, 2008, pp. 91-100.

M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130-137, 1980.

A. Potdar and E. Shihab, “An exploratory study on self-admitted technical
debt,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., Sep./Oct. 2014,
pp. 91-100.

R. Rehufek and P. Sojka, “Software framework for topic modelling with
large corpora,” in Proc. LREC Workshop New Challenges NLP Frame-
works. Valletta, Malta: ELRA, May 2010, pp. 45-50. [Online]. Available:
http://is.muni.cz/publication/884893/en

P. Resnik, “Using information content to evaluate semantic similarity in a
taxonomy,” CoRR, vol. cmp-1g/9511007, pp. 1-6, Nov. 1995.

G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Inf. Process. Manage., vol. 24, no. 5, pp. 513-523, Aug. 1988.
F. Sebastiani, ‘“Machine learning in automated text categorization,” ACM
Comput. Surv., vol. 34, no. 1, pp. 1-47, Mar. 2002.

D. Steidl, B. Hummel, and E. Juergens, ““Quality analysis of source code
comments,” in Proc. 21st Int. Conf. Program Comprehension (ICPC),
May 2013, pp. 83-92.

Y. Tian, D. Lo, and J. Lawall, “SEWordSim: Software-specific word
similarity database,” in Proc. Companion 36th Int. Conf. Softw. Eng. (ICSE
Companion). New York, NY, USA: ACM, 2014, pp. 568-571.

A. K. Uysal and S. Gunal, “A novel probabilistic feature selection
method for text classification,” Knowl.-Based Syst., vol. 36, pp. 226235,
Dec. 2012.

A. K. Uysal and Y. L. Murphey, “Sentiment classification: Feature selec-
tion based approaches versus deep learning,” in Proc. IEEE Int. Conf.
Comput. Inf. Technol. (CIT), Aug. 2017, pp. 23-30.

C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella,
M. Di Penta, and A. Zaidman, ““Continuous delivery practices in a large
financial organization,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol. (ICSME), Oct. 2017, pp. 519-528.

L. Vinet and A. Zhedanov, “A ’missing’ family of classical orthogonal
polynomials,” J. Phys. A, Math. Theor., vol. 44, pp. 163-222, Nov. 2010.
P. Wang, B. Xu, J. Xu, G. Tian, C. Liu, and H. Hao, “Semantic expan-
sion using word embedding clustering and convolutional neural net-
work for improving short text classification,” Neurocomputing, vol. 174,
pp. 806-814, Jan. 2016.

S. Wehaibi, E. Shihab, and L. Guerrouj, ‘“Examining the impact of self-
admitted technical debt on software quality,” in Proc. IEEE 23rd Int. Conf.
Softw. Anal., Evol., Reeng. (SANER), Mar. 2016, pp. 179-188.

106493

IEEE Access

J. Flisar, V. Podgorelec: Identification of SATD Using Enhanced Feature Selection Based on Word Embedding

[42] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” in Proc. 14th Int. Conf. Mach. Learn. (ICML).
Burlington, MA, USA: Morgan Kaufmann Publishers, 1997, pp. 412-420.

[43] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software develop-
ment teams manage technical debt?—An empirical study,” J. Syst. Softw.,
vol. 120, pp. 195-218, Oct. 2016.

[44] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-admitted,”
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 216-226.

[45] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted tech-
nical debt removal a real removal? An in-depth perspective,” in Proc.
IEEE/ACM 15th Int. Conf. Mining Softw. Repositories (MSR). New York,
NY, USA: ACM, 2018, pp. 526-536.

[46] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, ‘“‘Investigating the
impact of design debt on software quality,” in Proc. 2nd Workshop Manag.
Tech. Debt (MTD). New York, NY, USA: ACM, 2011, pp. 17-23.

[47] N. Zazworka, R. O. Spinola, A. Vetro, F. Shull, and C. Seaman, “A case
study on effectively identifying technical debt,” in Proc. 17th Int. Conf.
Eval. Assessment Softw. Eng. (EASE), 2013, pp. 42-47.

[48] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing four approaches for technical debt identification,”
Softw. Qual. J., vol. 22, no. 3, pp. 403—426, 2014.

JERNEJ FLISAR received the B.Sc. and M.Sc.
degrees in computer science from the University
of Maribor, Slovenia, in 2010 and 2012, respec-
tively, where he is currently pursuing the Ph.D.
degree in computer science. From 2009 to 2012,
he was a Java EE Information System Developer.
Since 2012, he has been a Researcher and also a
Teaching Assistant with the University of Maribor,
Slovenia.

His research interests include intelligent sys-
tems, text mining, semantic web, and software engineering. He is the author
of two journal papers, one book chapter, and eight conference papers. He has
been involved in several national research projects, both scientific and indus-
trial Research and Development projects.

106494

VILI PODGORELEC (M’18) received the Ph.D.
degree from the University of Maribor, Slovenia,
in 2001, where he is currently a Professor of com-
puter science. He was a Visiting Professor and
a Researcher at several universities around the
world, including the University of Osaka, Japan;
Federal University of Sao Paulo, Brazil; Univer-
sity of Nantes, France; University of La Laguna,
Spain; University of Madeira, Portugal; University
of Applied Sciences Seinéjoki, Finland; University
of Apphed Sciences Valencia, Spain. He has been involved in Al and
intelligent systems for 20 years, where he gained professional experience
in implementation of many scientific and industrial Research and Develop-
ment projects related to analysis, design, implementation, integration, and
evaluation of intelligent information systems. He has authored more than
50 peer-reviewed scientific journal papers, more than 100 conference papers,
three books, and several book chapters on machine learning, computational
intelligence, data science, medical informatics, and software engineering.
He has the leading role in the field of research and applications of transparent
data-driven decision making (especially in medicine), top expertise in Al and
machine learning methods and algorithms, in-depth knowledge of systems
integration technologies and methods applied to intelligent data analysis,
classification and prediction of human-centered data, as well as large experi-
ence in designing and implementing information retrieval, natural language
processing and text mining solutions for academia, industrial partners and
international companies using the state-of-the-art approaches, methods, and
tools. He received several international awards and grants for his research
activities.

VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND
	FEATURE SELECTION
	WORD EMBEDDING

	METHOD
	OVERALL SYSTEM
	PREPROCESSING
	FEATURE SELECTION
	INFORMATION GAIN
	CHI-SQUARE
	MUTUAL INFORMATION

	FEATURE ENHANCEMENT
	TRAINING CLASSIFIER
	WORD EMBEDDINGS
	PRE-TRAINED WORD EMBEDDINGS

	EXPERIMENT SETUP
	DATASET
	BASELINE AND COMPARED METHODS
	EVALUATION METHOD AND METRIC

	RESULTS
	ANALYSIS OF CLASSIFICATION PERFORMANCE USING DIFFERENT FS APPROACHES AND DIFFERENT CLASSIFICATION ALGORITHMS
	USING CHI AS THE UNDERLYING FS APPROACH
	USING IG AND MI AS THE UNDERLYING FS APPROACHES
	COMPARISON OF OUR PROPOSED METHOD WITH BASELINE AND THE EXISTING ONES

	COMPARING FEATURE ENHANCEMENT SETTINGS ON SELECTED OPEN SOURCE PROJECTS
	THE INFLUENCE OF THE CLASSIFICATION ALGORITHM
	THE INFLUENCE OF THE FS APPROACH

	HOW MUCH OF SATD IS REPORTED IN OPEN SOURCE PROJECTS?
	IS THERE A SET OF WORDS THAT DETERMINES THE SATD IN SOURCE CODE COMMENTS?
	WHICH WORDS ARE THE MOST SIMILAR IN SOURCE CODE COMMENTS?

	DISCUSSION
	THREATS TO VALIDITY
	CONSTRUCT VALIDITY
	RELIABILITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	JERNEJ FLISAR
	VILI PODGORELEC

