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ABSTRACT Computed tomography (CT) images with a low-dose protocol generally have severe mottle
noise and streak artifacts. In this paper, we propose a novel diffusion method named ‘‘artifact suppressed
nonlinear diffusion filtering (ASNDF),’’ to process low-dose CT (LDCT) images. Different from other
diffusion filtering methods, the proposed ASNDF not only includes image gradient as the main cue to
construct a diffusion coefficient function, but also incorporates the local variances of image to be diffused and
residual image between two adjacent diffusions. In detail, the classical PM diffusion is first performed to get
the initial residual image, and then from the second iteration, the LDCT image is processed according to the
ASNDF processing. Simulated data, clinical data and rat data are conducted to evaluate the proposedmethod,
and the comparison experiments with other competing methods show that the proposed ASNDF method
makes an improvement in artifact suppression and structure preservation, and offers a sound alternative to
process LDCT images from most current CT systems.

INDEX TERMS Low-dose computed tomography, nonlinear diffusion, local variance, residual local
variance.

I. INTRODUCTION
Low-dose computed tomography (LDCT) was first proposed
by Naidich in 1990 for the reason that the radiation doses
delivered to patients during X-ray CT procedures may lead
to potential determinist and stochastic risks [1]. Nowadays,
the issue of X-ray CT radiation dose is raising more and more
concerns, especially for children and patients who need to
undergo several CT examinations in a short period [2]–[6].
Although radiation dose reduction is beneficial for human
health, it leads to the filtered back projection (FBP) recon-
structed images degraded with serious mottle noise and streak
artifacts [7], [8]. Noise and streak artifacts suppression for
LDCT images is therefore required and there are gener-
ally three strategies so far to improve the quality of LDCT
images: projection domain denoising, iterative reconstruction
algorithms and post-processing methods.

The associate editor coordinating the review of this manuscript and
approving it for publication was Haluk Eren.

The first one refers to techniques that suppress the
excessive quantum noise in projection data before per-
forming FBP reconstruction. Many denoising approaches
have been proposed to deal with the noisy projection data,
such as multi-dimensional adaptive filtering [9], nonlin-
ear filtering [10], penalized weighted least-squares (PWLS)
approaches [11], [12], bilateral filtering [13], fuzzy filter-
ing [14], [15], and iterative restoration [16]. Other techniques,
such as the bilateral-like filter [17], multi-scale decompo-
sition based method [18], also have potentials to process
noisy projection data. Denoising in projection domain takes
noise property of projection data into account, but it needs
access to projected raw data from CT vendors, which makes
researchers in this direction limited to some extent. Itera-
tive reconstruction approaches consists in finding an opti-
mal solution by maximizing or minimizing an objective
function regularized by prior terms. The prior design is the
key and many edge-preserving priors have been proposed
in the past decades, for example, Huber prior [19], [20],
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total-variation (TV) based priors [21], [22], nonlocal pri-
ors [23], [24], anisotropic priors [25], Markov random field
(MRF)-based prior [26], and bilateral prior [27]. In itera-
tive reconstruction noise and artifacts can be modeled, and
an appropriate prior or an adjusted forward model can be
designed to reduce artifacts. However, they also need the
access to projected raw data from CT vendors and suffer
from high computation cost. Those limitation in both projec-
tion restoration and iterative reconstruction lead us to con-
sider post-processing methods, which can be retrospectively
applied on different systems.

Post-processing methods are relatively simple to imple-
ment and can be applied directly on reconstructed LDCT
images with no requirement of raw projection data. The
challenge is to remove mottle noise and streak artifacts
without damaging structures and details. In the past decade,
various techniques have been proposed to improve the
quality of LDCT images, such as nonlocal means (NLM)
denoising [28]–[30], dictionary learning (DL) based denois-
ing [31], [32], and block-matching 3D (BM3D) denois-
ing [33], [34]. Most of these methods take structure similarity
into account, therefore they can improve CT images signifi-
cantly. Recently, deep learning based on convolution neural
network (CNN) is popular in image denoising [35]–[37], and
can be used for LDCT images. But the results of CNNs
depend on training data, and it takes a long time to train a
CNN model.

The nonlinear diffusion filtering (NDF) is a useful tech-
nique for filtering noise from images. It is derived from the
well-known Perona-Malik nonlinear diffusion model [38],
which uses an edge seeking function to encourage diffusion
within regions and prohibit it across strong edges. Hence
edges can be preserved while removing noise from the image.
However, PM model often suffers from staircase effect and
removes fine details as noise. In order to overcome these
problems, improved versions have been proposed [39]–[41]
and are used to process all kinds of images, including
LDCT images. Mendrik et al. [42] proposed a hybrid dif-
fusion model that combines edge-enhancing diffusion and
coherence-enhancing diffusion in a continuous manner and
applied it to simulated low-dose CT scan. Saito et al. [43]
improved the nonlinear diffusion filtering by determining in
a theoretical manner the value of the parameter required for
calculating diffusivities, and applied it to LDCT perfusion
images. Yang et al. [44] presented a multi-resolution non-
linear anisotropic diffusion method using Laplace pyramid
decomposition to remove noise/artifacts in LDCT images.
Similarly, Liu et al. [18] modified the classical edge seek-
ing function in PM and performed the diffusion process in
Laplace pyramid domain to improve abdominal low-dose
cone beam CT. Wang et al. [45] proposed a new fractional-
order model named FPMTV by integrating fractional PM
model and fractional TV model to suppress noise for LDCT.

In summary, although the NDF methods mentioned above
can improve LDCT images to varying degrees, they may

fail to keep fine details and small structures well when
suppressing artifacts greatly, because most of them still
employ image gradient magnitude as the main cue of edge
indicator, which is not proper for LDCT images. With regard
to LDCT images, orientation in artifacts is prominent, streak
artifacts therefore may lead to similar gradient magnitudes as
edges or textures, andwill be retained in the diffusion process.

To remove streak artifacts in LDC images more effectively,
in this paper, we propose artifact suppressed nonlinear dif-
fusion filtering (ASNDF) based on PM model to improve
LDCT images. In the proposed ASNDF, a new diffusion
coefficient function is proposed, in which both the image
local variance and residual local variance (between two adja-
cent diffusions) are introduced to be the cue of edge/detail
indicator. The image local variance can effectively indicate
strong edges and especially distinguish details and noisy
background, whereas the residual local variance is more
effective to indicate location where weak textures and fine
details are. Specifically, both of them are not sensitive to
smooth regions and streak artifacts in LDCT images, thus the
new diffusion coefficient inhibits diffusion in edges, textures
and fine details, and encourage diffusion in streak artifacts
and smooth regions. Experiments on different simulated data,
clinical data and in-vitro rat data were conducted to show the
good performance of the proposed algorithm.

This paper is organized as follows: In Section II, wemainly
describe the classical PM diffusion and the proposed algo-
rithm. Experimental settings and results are given and dis-
cussed in Section III. Conclusions and plans for future work
are in Section IV.

II. MATERIALS AND METHODS
To overcome the drawback that only image gradient magni-
tude is used to be the main cue of edge indicator, and effec-
tively suppress artifacts in LDCT images, we propose the
ASNDF method based on PMmodel. The novelty of the pro-
posed method is that, in addition to gradient image, we also
employ image local variance and residual local variance
as edge/detail indicators, and design suitable combinations
of these indicators to construct a new diffusion coefficient
function.

The image local variance itself is a high pass filter and has
been used as edge/detail indicator in [46] and [47]. Residual
image (also named method noise) is defined as the difference
between the noisy image and its filtered version, thus it con-
tains high frequency information of details lost in filtering.
Many studies have utilized the high frequency information in
residual image to remove noise and meanwhile to preserve
image details [48]–[50]. In this paper, we combine image
local variance, residual local variance, and image gradient to
construct the diffusion coefficient function, which is more
effective to control diffusion degree in edge/detail regions
that are contaminated with noise/artifacts. Since the proposed
method refers to the PM model, we first illustrate it in the
following section.
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A. PM NONLINEAR DIFFUSION
The classical anisotropic diffusion with PM model employs
the image gradient to derive different diffusion intensities in
different directions. The PM process is described by

It = div (c (∇I )∇I ) , It=0 = I0, (1)

where div and∇ is the divergence operator and gradient oper-
ator, respectively. c stands for the diffusion coefficient and
determines the diffusion degree. It is the denoised image with
respect to the initial image I0. The suggested two diffusion
coefficient functions are

c1 (|∇I |) =
1

1+
(
|∇I |

/
k
)2 , (2)

c2 (|∇I |) = exp
(
−
(
|∇I |

/
k
)2)

, (3)

where k is a threshold parameter. Given a k , we can easily
understand from (2) and (3) that a large gradient magnitude
(often happen in edges) contributes to a small diffusion coef-
ficient, thus the smoothing effect is negligible. Conversely,
a small gradient magnitude (happen in the smooth regions)
has a large diffusion coefficient and consequently the smooth-
ing effect is significant.

B. ARTIFACT SUPPRESSED NONLINEAR
DIFFUSION FILTERING
Although PM diffusion is useful in permitting edges, some
textures and fine details are removed during the diffusion
process, furthermore, staircase effective may be introduced in
the final diffused image. This is because that gradient-based
edge indicator is not a proper measure to detect weak textures
and fine details whose gradient magnitudes may be similar to
noise. In addition, for LDCT images, streak artifacts could
be easily retained as the strong orientation in artifacts. In this
part, we present a new anisotropic diffusion model that incor-
porates image gradient, image local variance, and residual
local variance for adaptive noise/artifacts suppression and
edges/details preserving.

FIGURE 1. LDCT slice of the abdomen. (a) Original image; (b) Sub-image
from a smooth region; (c) Sub-image from a texture-like detail and
(d) sub-image from small structure.

1) IMAGE LOCAL VARIANCE
In addition to the image gradient magnitude, image local vari-
ance is also can be seen as an edge indicator. Fig. 1(a) presents
a LDCT slice of abdomen, in which we can see strong edges,

many fine details and also artifacts/noise dispersed in the
entire image. Fig. 1(b)-(d) are three enlarged sub-images from
Fig. 1(a), marked as A, B, andC , indicating the homogeneous
region, fine detail and small structure, respectively. The mean
gradient magnitudes in (b)-(d) are 250.23, 243.53 and 161.24,
respectively, namely Region A and Region B have similar
gradient magnitudes, and both are larger than Region C .
Therefore, the conventional anisotropic diffusion model may
have similar degree of diffusion in Region A and Region B
since the gradient values in Fig. 1(b) and (c) are similar, and
more severe diffusion in Region C since the gradient value
in Fig. 1(d) is lower. As a result, the fine detail and small
structure will be blurred and the small structure even may
vanish in the final diffused image.

The variances of images (b)-(d) in Fig. 1 are 3676, 7001,
and 6328, respectively. Obviously, they are distinctly dif-
ferent compared with the gradient magnitudes and seems
a more reasonable indicator to control diffusion. There is
no doubt that the neighborhood in strong edges, e.g., inter-
region edges, generally has both high gradient magnitude
and large variance. The observation from this demonstrated
image reveals that the fine detail and noisy homogeneous
region have smaller gradient strength, but the variances in
fine detail and small structure are larger than that in the
noisy homogeneous region. To be specific, although the small
structure has lower gradientmagnitude, it has a relative higher
local variance. Fig. 2(b) illustrates the local variance image
at 20th iteration when using PM model to process the LDCT
image in Fig. 1(a). We can observe that edges and most
detail regions are bright, therefore, local variance could be
considered as a local pixel feature in the diffusion coefficient.

FIGURE 2. Images at 20th iteration in the PM diffusion process.
(a) Residual image, (b) local variance, (c) residual local variance and
(d) the plus of image (b) and image (c).

For a given pixel of coordinates (i, j) at iteration t , the local
variance is defined as

σ 2
It (i, j) =

1
9

1∑
k=−1

1∑
l=−1

[
It (i+ k, j+ l)− Īt (i, j)

]2
, (4)

where Ī (i, j) is the mean intensity in the 3× 3 neighborhood
of pixel I (i, j). Since the range of variance is dramatically
larger than that of gradient magnitude, we down-scaled the
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variance so that it is compatible to the gradient magnitude.
The variance is scaled as suggested in [49],

σ 2
It ,scaled (i, j) =

σ 2
It (i, j)−Minσ 2

It

Maxσ 2
It −Minσ 2

It

· (max (|∇It |)− 1)+ 1,

(5)

where Minσ 2
ItandMaxσ 2

It are the minimum and maximum
variances of the diffused image at iteration t , respectively.

The image local variance has proposed to improve the
PM method by Chao in [40], and the improved PM (IPM)
method has been proved effective for retaining fine details.
The diffusion coefficient function in [40] is defined as

c
(
|∇I | , σ 2

It ,scaled

)
= 1

/[
1+

((
|∇I | · σ 2

It ,scaled

)/
k
)2]

.

(6)

Since this diffusion coefficient function takes both |∇I |
and σ 2

It ,scaled in to account, it can effectively distinguish
details and noisy homogeneous regions. However, the IPM
method cannot be well applied to the images containing high-
level noise and sparking impulse noise. In LDCT images,
artifacts/noise are serious, which can be seen as high-level
noise. Therefore, although the image local variance is use-
ful to distinguish details and noisy homogeneous regions,
the IPM method may fail to perform well on a very noisy
LDCT image. What we need to do is to find a more suitable
way to use the image local variance.

2) RESIDUAL LOCAL VARIANCE
The residual image in our study is defined as the different
image between two adjacent diffusions, i.e.,

R (t) = I (t − 1)− I (t) . (7)

The residual image includes both signal components,
e.g. fine details, and artifacts/noise components. Fig. 2(a)
shows the residual image at 20th iteration when using PM
model to process the LDCT image in Fig. 1(a). We observed
that it contains rich information of details and noise/artifacts
as well. We also calculate the local variances of the Region
A, B, and C in the residual image. They are 1.01, 1.24,
and 2.86, respectively. Obviously, the local variances in fine
detail and small structure are higher than that in smooth
region, especially the small structure has the highest variance.
Therefore, it seems that the residual local variance could be
considered as a reasonable feature to indicate small structures
in the diffusion process. Of course,R (t) contains less and less
information along with iterations, but this does not prevent
us to utilize it before the diffusion is stopped according to
a criterion. We also calculate all pixels’ local variance for
the residual image and show it in Fig. 2(c). The definition
of residual local variance is similar to (4).

σ 2
Rt (i, j) =

1
9

1∑
k=−1

1∑
l=−1

[
Rt (i+ k, j+ l)− R̄t (i, j)

]2
, (8)

where R̄t (i, j) is the mean intensity in the 3×3 neighborhood
of a given pixel of coordinates (i, j) at iteration t . Similar to
local variance, we also down-scale the residual local variance.

σ 2
Rt ,scaled (i, j) =

σ 2
Rt (i, j)−Minσ 2

Rt

Maxσ 2
Rt −Minσ 2

Rt

· (max (|∇It |)− 1)+ 1,

(9)

where Minσ 2
Rt and Maxσ 2

Rt are the minimum and maximum
variances of the residual image at iteration t , respectively.
As we observe in Fig. 2(c), edge and detail regions, espe-

cially the later, are brighter, denoting that residual local
variance is sensitive to fine details. So, the residual local
variance could be another detail detection indicator besides
local variance. One advantage of using this residual local
variance in diffusion is that if some edges or details are
wrongly removed during the diffusion process, it appears in
residual local variance and consequently can be preserved.

Since both the local variances of diffused image I and
residual image R can indicate edges and details, we confi-
dently integrate them to be as a new edge and detail detector.
In Fig. 2(d), we show a combination (using plus operator)
of image local variance and residual local variance at the
20th iteration. We observe that more small structures can be
seen in Fig. 2(d), compared to Fig. 2(b), that’s, fine details
that maybe cannot detected using image local variance, but
can be detected by using residual local variance.

3) THE PROPOSED METHOD
According to analysis mentioned above, we can find that the
image local variance can effectively indicate strong edges
and especially distinguish details and noisy homogeneous
regions, whereas the residual local variance is more effec-
tive to indicate where much weaker details are. Specifi-
cally, we can observe that components of streak artifacts
in Fig. 2(b)-(d) are not dominant, this means that streak
artifacts could be effectively suppressed if we employ image
local variance and residual local variance to control the dif-
fusion process. Therefore, we propose an ASNDF method
wherein both image local variance and residual local vari-
ance are incorporated to design the new diffusion coefficient
function as

cnew
(
|∇I | , σ 2

It ,scaled , σ
2
Rt ,scaled

)

=
1
3
×


1
/[

1+
((
|∇I | + σ 2

It ,scaled

)/
k
)2]

+1
/[

1+
((
|∇I | + σ 2

Rt ,scaled

)/
k
)2]

+1
/[

1+
((
σ 2
It ,scaled + σ

2
Rt ,scaled

)/
k
)2]

.
(10)

The new c is the combination of three diffusion coefficient
functions and calculates the average. Each term is similar
to the diffusion coefficient function of PM but makes a
difference.
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The first term in (10) is a decreasing function of the sum
of image gradient magnitude and scaled image local vari-
ance. In homogenous regions, both |∇I | and σ 2

It ,scaled are
small, thus the first term gets its largest value which leads
to strongly artifacts/noise removal. In strong edges wherein
|∇I | and σ 2

It ,scaled are large, the first diffusion coefficient
has its smallest amount and consequently this region is well
preserved. In small structures or details wherein |∇I | is small
but σ 2

It ,scaled is relatively large (as we see in Fig.1), the first
coefficient is relatively large and so these regions are pre-
served. The first term focuses on distinguishing details and
artifact-existing homogenous regions which may have sim-
ilar gradient magnitudes but have a big difference in image
local variance. In fact, the image local variance essentially
is a high pass filter and similar in appearance to gradient
magnitude, but it can effectively distinguish details and noisy
background.

FIGURE 3. The processed LDCT images by using different diffusion
coefficient functions. (a) Equation (6), (b) the first term in (10),
(c) the second term in (10), and (d) the third term in (10).

Specifically, since σ 2
It ,scaled was also used in IPM, we com-

pared our combination way of the two edge indicators (|∇I |
and σ 2

It ,scaled ) and that in IPM method. We performed the
diffusion function of IPM and also the first term in (10) on
the LDCT image Recon400 (more details could be found in
the ‘‘Phantom Data Study’’), which has serious noise and
artifacts. The IPM processed result is shown in Fig. 3(a), and
the PSNR and SSIM results of the processed image is tagged
in the right-upper corner (the definition of PSNR and SSIM
could be found in (16) and (18)). We can see that it cannot
effectively suppress noise and artifacts. We also use the first

term 1
/[

1+
((
|∇I | + σ 2

It ,scaled

)/
k
)2]

to control the dif-

fusion process, and the result is shown in Fig. 3(b) with the
PSNR and SSIM results tagged in the right-upper corner. All
parameters in both process are the same. Obviously, Fig. 3(b)
has less noise than the IPM processed image. It proves that
the way we exploit the local variance is effective and more
suitable than the IPM method for LDCT images.

The second term in (10) is a decreasing function of
the sum of image gradient magnitude and scaled residual

local variance. In homogenous regions, both |∇I | and
σ 2
Rt ,scaled are small, thus the second term gets its largest

value, leading to strongly artifacts/noise removal. In strong
edges, both |∇I | and σ 2

Rt ,scaled are large and most edges could
be preserved, therefore less is left in the residual image.
So the second term becomes from large to relatively small and
edges could be preserved in this process. In details, even if in
fine details and small structures, |∇I | is relatively small but
σ 2
Rt ,scaled is large. This makes the second diffusion coefficient

relatively large and so details and small structures can be
preserved. Specifically, when the residual image becomes to
none along with iterations, the second term degrades into the
diffusion coefficient function PM.

To prove the effectiveness of the residual local vari-
ance for low-dose images, we also use the second term

1
/[

1+
((
|∇I | + σ 2

Rt ,scaled

)/
k
)2]

to control the diffu-

sion process for image Recon400, and the result is shown
in Fig. 3(c). We can see that noise and artifacts are effectively
removed, showing that the residual local variance is effective
for LDCT images.

The third term in (10) is a decreasing function of the
sum of scaled image local variance and scaled residual local
variance. From Fig. 2(d), we can observe that the sum of
σ 2
It ,scaled and σ 2

Rt ,scaled are large in edges, details, and struc-
tures, whereas in homogeneous regions they are both small.
Thus, the third coefficient is effective in preserving edges
and details. Since components of artifacts are not obviously
reflected both in image local variance and residual local
variance, as shown in Fig. 2, artifacts will not prevent the
diffusion strength and then can be suppressed.

TABLE 1. PSNR and SSIM results the original and processed images
in Fig. 3.

To further improve the effectiveness of local variance and
residual local variance for low-dose images, we also use the

third term 1
/[

1+
((
σ 2
It ,scaled + σ

2
Rt ,scaled

)/
k
)2]

as the

diffusion coefficient function to control the diffusion process
for image Recon400, and the result is shown in Fig. 3(d)
with the PSNR and SSIM results tagged in the right-upper
corner. We can see that noise and artifacts are significantly
removed, showing that the combination of local variance and
residual local variance is effective for LDCT images. To show
the effectiveness of local variance and residual local variance
clearly, we also calculate the PSNR and SSIM results of the
LDCT image Recon400. Table 1 lists the PSNR and SSIM
results of Recon 400 and the processed images in Fig. 3.
We can see that the PSNR and SSIM values of Fig. 3(b)-(d)
are higher than those in the original Rcon400, indicating that
each term in (10) can improve the LDCT image Rcon400.

In addition, since components of streak artifacts are not
dominant in image local variance and residual local variance,
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(see Fig. 2(b)-(d)), we will get high diffusion coefficients
according to (10), thus there will be a greater diffusion degree
and artifacts can be removed. This also proves that the intro-
duction of image local variance and residual local variance is
effective to suppress artifacts.

In our study, the threshold k in (10) is automatically set and
updated according to the histogram of the gradient magnitude
of the diffused image, the value at 90% of the histogram is
chosen through trial and error. Additionally, we improve the
diffusion coefficient function in (10) by using a Gaussian fil-
ter according to [51] since a Gaussian filter for c is beneficial
to remove speckle noise. Thus, the diffusion coefficient is
redefined in (11) as

cAPNDF
(
|∇I | , σ 2

It ,scaled , σ
2
Rt ,scaled

)
= cnew

(
|∇I | , σ 2

It ,scaled , σ
2
Rt ,scaled

)
∗ Gσ , (11)

whereGσ is a Gaussian kernel of 3×3 size and standard devi-
ation σ . When σ is small, the filtering of diffusion function
in (11) does not change the diffusion coefficient dramatically
at edges, whereas it turns diffusion less conservative at mottle
points.

In our study, we adopt the explicit numerical scheme sim-
ilar to PM diffusion, given by

In+1 (i, j)

= In (i, j)+1t

×

[
cnAPNDF,N (i, j)∇I

n
N (i, j)+c

n
APNDF,s(i, j)∇I

n
S (i, j)

+cnAPNDF,E (i, j)∇I
n
E (i, j)+c

n
APNDF,W (i, j)∇InW (i, j)

]
,

(12)

where1t is the time step with the max1t = 0.25 for explicit
2D schemes to achieve stability of the iterative update. Sub-
scripts N , S, E , andW indicate North, South, East, and West,
respectively. The directional derivative estimates are defined
as follows:{

∇N Ini,j = Ini−1,j − I
n
i,j, ∇S I

n
i,j = Ini+1,j − I

n
i,j

∇E Ini,j = Ini,j+1 − I
n
i,j, ∇W I

n
i,j = Ini,j−1 − I

n
i,j.

(13)

We stop the diffusion by using the mean absolute
error (MAE) between two adjacent diffusions.

MAE
(
I (n)

)
=

i=M ,j=N∑
i=1,j=1

∣∣∣I (n) (i, j)− I (n−1) (i, j)∣∣∣/(M×N ),

(14)

where superscript n stands for time sample, I (n−1) (i, j) and
I (n) (i, j) are the filtered value at pixel at (n−1)th and (n)th iter-
ations, respectively. M and N are height and width of the
processed image. The diffusion process stops automatically
when the value of MAE is smaller than a preset threshold ε.

The overall ASNDF algorithm is implemented based on
the flowchart in Fig. 4.

FIGURE 4. Flowchart of the proposed ASNDF algorithm.

FIGURE 5. Simulated phantom and sinogram data. (a) Simulated
phantom image, (b) simulated noise-free sinogram and (c) SDCT image
reconstructed from (b).

III. EXPERIMENTAL DESIGN AND RESULTS
In order to evaluate the performance of the proposed ASNDF
algorithm, we conducted it on several simulated data, clinical
abdomen data and rat data. For comparison study, we com-
pared it with PM model, the IPM model in [40], and the
fractional-order differentiation model named FPMTV in [45]
which has shown good artifact suppression.

A. DATA SOURCE
1) SIMULATED DATA
The simulation experiment was conducted by using a numer-
ical phantomwhich is designed based on the ‘‘Shepp-Logan’’
phantom and imitates the bones and soft tissues in a real
abdominal CT image [18]. The phantom is size of 512 ×
512 and is shown in Fig. 5(a). As to this phantom, a CT
model with fan-beam geometry configuration was simulated.
The distances of X-ray source to the center of rotation and
the detector arrays are 541mm and 949mm, respectively. The
detector cell spacing is set to 1 mm. 984 angular samples are
acquired on a circular orbit of 360◦ and the number of bins for
each projection view is 731. The simulated sinogram is shown
in Fig. 5(b). Fig. 5(c) shows the standard dose CT (SDCT)
image reconstructed by FBP from the noise-free projection
data in Fig.5 (b). To simulate a LDCT sinogram by a low-
dose protocol, we generated a noisy sinogram by adding
signal-dependent Gaussian noise to the noise-free projection
data, according to the noise model in (15). This noise model
was presented by Li et al. [10] and Wang et al. [52] with
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the content that the projection data after system calibration
and logarithm transformation was approximately Gaussian
distributed, the relation between sample mean and variance
being

σ 2
ps = f exp

(
p̄s
/
η
)
, (15)

where p̄s and σ 2
ps is the mean and variance of the projection

data at detector bin s. η and f are parameters determined by
system settings. For the simulation, the noise level can be
controlled by these two parameters.

2) CLINICAL DATA
We used two sets of clinical abdomen data, provided by
the Mayo Clinic (USA), to validate the clinical performance
of ASNDF processing. The first data is from one person
with hemangioma tumor and the second data is from another
person with liver cancer. LDCT images with a dose level
corresponding to 25% of the full dose were conducted by
inserting Poisson noise into the projection data for each
case in the library [53]. Each case contains 1mm thickness
512× 512 CT images.

3) RAT DATA
The proposed ASNDF processing was also validated using
in-vitro rat data with a circular cone-beam geometry. Two
acquisitions with different dose were performed on an
in-vitro rat. The image size is 892 × 892 with pixel size of
0.05mm × 0.05mm.

B. PARAMETER SETTING
The ASNDF method involved three parameters to set,
namely: time step1t in (12), standard variance σ in (11) and
stopping threshold ε.We compare ourmethodwith other non-
linear diffusion algorithms using the same stopping criterion.
We also practically found that the parameter setting could be
fixed when processing the LDCT images with the same scan
protocol. Parameter settings of different methods for different
data are listed in Table 2.

TABLE 2. Parameter setting for different methods.

C. PHANTOM DATA STUDY
1) VISUAL ASSESSMENT
In this study, we generated four LDCT projection data by
adding signal-dependent Gaussian noise following (15) to
the noise-free sinogram as shown in Fig. 5(b). η was fixed
to 22,000, and f was respectively set to 100, 200, 300, and
400 to simulate four LDCT projection data with different
radiation dose. The corresponding FBP reconstructed LDCT

images with these four dose level are denoted as Recon100,
Recon200, Recon300, Recon400, respectively, and are illus-
trated in the first column (a1, a2, a3, a4) in Fig. 6. We can
observe that the LDCT images are severely degraded by the
mottle noise and streak artifacts, and a higher f corresponds
to a lower radiation and a worse reconstruction with more
obvious noise and streak artifacts.

Fig. 6 also depicts the processed results for LDCT images
Recon100, Recon200, Recon300 and Recon400 with differ-
ent methods. From the left to right, the columns correspond to
the PM processed images (b1, b2, b3, b4), the IPM processed
images (c1, c2, c3, c4), the FPMTVprocessed images (d1, d2,
d3, d4), and our ASNDF processed images (e1, e2, e3, e4).
The zoomed regions of interest (ROI) are also illustrated
aside. We can observe that the PM method appears effective
in removing noise/artifacts and has a good visual effect, yet
leading to ‘‘staircase effect’’ with a higher f (see zoomed
details in b4). We also see that in (c1, c2, c3, c4) that the
IPM method only eliminates a part of artifacts, but enhances
the residual artifacts to some extent due to its denoising
limitation, especially when processing LDCT images with
lower radiation dose (see zoomed details in the third column).
The FPMTV method can not only reduce noise/artifacts, but
also preserve strong structure like object A, however it tends
to introduce ambiguity at weak edges (refer to the red arrows
in zoomed details in the fourth column). In contrast, the pro-
posed ASNDF method significantly improves the quality of
images (e1, e2, e3, e4) without introducing extra artifacts and
structure ambiguity. The edges and the small object A are
very clear (see the red arrows in the zoomed region in the last
column) and the processed result is closest to the phantom
image no matter what the dose level of LDCT image is.

Fig. 7 draws the intensity profile along the red dotted line
indicated in Fig. 6(a1) for the original phantom image and the
processed LDCT images in different cases. We also enlarged
the profiles in the same smooth region which is indicated by
the black rectangle in Fig. 7. The zoomed profile is displayed
in the left-upper corner in each sub-figure. We can observe
that all methods have good performances on smoothing and
edge preserving when processing Recon100. However, with
the decrease of dose, these competing methods obviously
do not have good performances on edge preserving and
noise removing in the homogenous regions, especially for
Recon400. In comparison, the ASNDF method has a much
better match to the phantom image for each dose level, it can
not only give the best restoration of the homogenous region,
but also the edge regions.

2) QUANTITATIVE ASSESSMENT
To evaluate the performance of the proposed method, we cal-
culate two image quality indices with respect to the phantom
image: peak signal-to-noise (PSNR) and structural similarity
index measurement (SSIM). The PSNR and SSIM repre-
sent overall considerations of noise suppression and feature
preservation, respectively. The definitions of PSNR, MSE,
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FIGURE 6. Simulated LDCT sinogram data and FBP reconstructed images for the phantom. Images in the first column are the FBP reconstructed
images from the simulated LDCT sinogram with different f , tagged as Recon100, Recon200, Recon300, and Recon400, respectively. Images in
the second column are PM processed LDCT images. Images in the third column are IPM processed LDCT images. Images in the fourth column are
FPMTV processed LDCT images. Images in the last column are ASNDF processed LDCT images.

and SSIM are given in (16)-(18).

PSNR = 10 log10

(
MAX2

I

MSE

)
, (16)

MSE =
1
MN

i=M ,j=N∑
i=1,j=1

(I (i, j)− S (i, j))2, (17)

SSIM =
(2µSµI + c1)(2σSI + c2)(

(µ2
S + µ

2
I + c1)(σ

2
S + σ

2
I + c2)

) , (18)

where S and µS denote the reference phantom and its mean
intensity, I and µI denotes the processed LDCT image and
its mean intensity. σ 2

S and σ 2
I are the standard deviations of

images S and I .MAXI is themaximumvalue of image I . σSI is
the covariance between images S and I . c1 and c2 are two
constants and more details can be found in [54].

The PSNR and SSIM indices of LDCT images and
processed images of different methods are tagged in the

right-upper corners in the images in Fig. 6.We can see that the
proposedASNDFmethod performs better than the competing
methods in terms of the two metrics. The PSNR and SSIM
values of the processed images are summarized in Table 3.
From this table, we can see that the PSNR and SSIM values of
the ASNDF processed images are higher than those of other
methods, especially the SSIM values are much higher even
in the case of lowest radiation dose. This clearly reflects that
our proposed method is capable of structure preservation and
consistency with the phantom.

3) RESOLUTION ASSESSMENT
Since the modulation transfer function (MTF) is an effective
solution to evaluate the resolution preservation, we analyzed
the spatial resolution by MTF using the object A in Fig. 5(a)
according to [25]. Fig. 8(a)-(d) depicts the MTF curves of
the phantom image and the processed LDCT Recon100,
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FIGURE 7. Comparison of intensity profiles along the red dotted line
indicated in Fig. 6(a1) for the all processed images with different doses.
Images (a)-(d) correspond to Recon100, Recon200, Recon300, and
Recon400.

TABLE 3. PSNR and SSIM values of the original and processed LDCT
images.

FIGURE 8. Comparison of MTF curves from the original phantom image
and the processed images with different dose. Images (a)-(d) correspond
to MTF curves of the processed Recon100, Recon200, Recon300, and
Recon400.

Recon200, Recon300, and Recon400. We observe that the
ASNDF processing leads to the MTF curve most close to that
of the phantom image, whereasMTF curves of other methods

are lower than that of the phantom. This demonstrates that the
ASNDF processing leads to better spatial resolution than the
other methods analyzed the spatial resolution by MTF using
the object A in Fig. 5(a). Fig. 8(a)-(d) depicts the MTF curves
of the phantom image and the processed LDCT Recon100,
Recon200, Recon300, and Recon400. We observe that the
ASNDF processing leads to the MTF curve most close to that
of the phantom image, whereas MTF curves of other methods
are lower than that of the phantom. This demonstrates that the
ASNDF processing leads to better spatial resolution than the
other methods.

D. CLINICAL DATA STUDY
1) VISUAL ASSESSMENT
For Clinical data study, we selected slice #54 and slice #286
for illustration with the display window [80HU, 450HU].
Fig. 9 and Fig. 10 illustrate the processed results for slice #54
and slice #286, respectively. Fig. 9(a1) and Fig. 10(a1) are
the original FBP reconstructed LDCT images. Fig. 9(b1) and
Fig. 10(b1) are the corresponding reference SDCT images
from FBP reconstruction. With the SDCT images as refer-
ence, we can observe that serious mottle noise and streak
artifacts severely degrade the reconstructed images and lower
tissue discrimination. The results of the PM, IPM, FPMTV,
and the proposed ASNDF methods are illustrated in the first
row (c1, d1, e1, f1) in Figs. 9-10, respectively. Three ROIs
containing hemangioma tumor, stomach and spleen tissues,
and bones (specified by white squares in Fig. 9(a1)) are
enlarged to display in the second, third, and fourth rows,
respectively. Also, in Fig. 10, we provide the enlarged ROIs
(specified by white squares in Fig. 10(a)) in the second,
third, and fourth rows, respectively. The three ROIs contain
the information of liver tumor, stomach tissue, and artery
vessels. From the images in the third column (c1, c2, c3, c4)
in Figs. 9-10, we see that although the PM processing reduce
noise/artifacts, but it leads to edge ambiguity (see the yel-
low arrows in c2, c3, and c4 in Fig. 9 and c4 in Fig. 10).
Furthermore, it is not good at preserving small structures,
for example, the small structures depicted by yellow ellipse
in Fig. 9(a1) are almost disappeared in the PM processed
image. As shown in the fourth column in Figs. 9-10, we can
see that the IPM processing works well on edge preserving,
including small structures (see the red arrow in d3 in Fig. 9),
but it cannot remove artifacts effectively. Images in the fifth
column in Figs. 9-10 show that FPMTV processed results are
visually similar to PM processed results, with better perfor-
mance on preserving small structures (see the red arrow in
e3 in Fig. 9) but worse performance on edge preserving (see
the yellow arrows in e2, e3, e4 in Figs. 9-10). In comparison,
the proposed ASNDF can effectively reduce noise/artifacts
without severe blurring edges. The zoomed ROI images in
the last columns in Figs. 9-10 show that our ASNDF method
has a better trade-off between structure/edge preserving (see
arrows in f2, f3, and f4 in Figs. 9-10) and noise/artifacts
reduction.
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FIGURE 9. The slice #54 of the LDCT data from one patient with hemangioma tumor. From left to right, LDCT image, SDCT image, and the
processed images by PM, IPM, FPMTV and ASNDF methods, respectively. From the second row to the bottom, Zoomed ROIs in (a1)-(f1).

2) QUANTITATIVE ASSESSMENT
To evaluate the processed LDCT images, we evaluated the
contrast-to-noise ratio (CNR) over the ROI. The CNR mea-
sures the contrast between a ROI and the background region.
It is generally defined as

CNR = |µR − µB|
/√

σ 2
R + σ

2
B, (19)

where µR and σR are the mean and standard deviation inside
the ROI, µB and σB are the mean and standard deviation (SD)
inside the background region. The SD of ROI and background
region is defined as

SD� =

√√√√ 1
|�| − 1

∑
ij∈�

(Iij − Ī�)2, (20)

where Iij and Ī� denote each point intensity and the mean
intensity value inside �, respectively.

We calculated the CNR and SD of ROIs for all pro-
cessed CT images. For slice #54, we calculated the SD
of hemangioma tumor region (indicated by the blue square
in Fig. 9(a1)) and CNR between the hemangioma tumor
region and its surrounding background region (green square
region). For slice #286, the liver tumor (indicated by the
blue square in Fig. 10(a1)) was chosen as the ROI and the
green square region was selected as the background region.

TABLE 4. CNR / SDS of tumor regions in figs. 9-10.

Table 4 lists the calculated CNR and SD values of the tumor
regions in Figs. 9-10. Table 4 indicates that the ASNDF
processed images get the closest CNR and SD values to those
in SDCT images.

To be specific, we respectively chose anther four regions
(specified by red squares) as ROIs from Fig. 9(a1) and
Fig. 10(a1) and calculated their SD values. Two homoge-
neous regions are marked as ROI1 and ROI2, and two edge
regions are marked as ROI3 and ROI4. Table 5 lists the calcu-
lated SD values for the original LDCT images, the reference
SDCT images, and the processed LDCT images. We can
clearly see in Table 5 that the ASNDF processed images get
closest SD values in homogeneous regions, while the IPM
processed images get closest SD values in edge regions, the
ASNDF processed images are the second. This shows that
the IPM method performs best on edge preserving, however,
it cannot remove artifacts effectively. In contrast, the ASNDF
method has a good trade-off between noise/artifacts reduction
and edge preservation.
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FIGURE 10. The slice #286 of the LDCT data from one patient with liver tumor. From left to right, LDCT image, SDCT image, and the processed
images by PM, IPM, FPMTV and ASNDF methods, respectively. From the second row to the bottom, Zoomed ROIs in (a1)-(f1).

TABLE 5. SDS of ROIS (in the red square in figs. 9-10) for the original
LDCT images, the original SDCT images and the processed LDCT images.

E. RAT DATA STUDY
1) VISUAL ASSESSMENT
Fig. 11 shows the processed results on the slice #31 of a
rat data with display window [250HU, 1300HU]. With the
SDCT image in (b1) as reference, we can see that severe
noise appears in the original LDCT image in (a1). The pro-
cessed LDCT images by using PM, IPM, FPMTV, and the
proposed ASNDF method are displayed in Fig. 11 (c1)-(d1),
respectively. Zoomed images are also given in the second
and third rows. We can observe that IPM method suffers
from artifacts even it can reduce a lot of noise. The FPMTV
processed image in (e1) is not satisfactory both in noise
suppression and edge persevering (see the red arrow in (e2)).
In contrast, PM method and the proposed FPMTV method

seem to provide images with better trade-off between noise
suppression and edge preserving. However, the PM method
tends to introduce ‘‘staircase effective’’ which is visible in
the zoomed image (see the red arrow in (c2)), while we can
see a clearer edge in (f2).

2) QUANTITATIVE ASSESSMENT
We calculate SD values upon three tissue ROIs marked by
red square in Fig. 11(a1)), and summarize them in Table 6.
As illustrated in Table 6, SD values obtained by the proposed
ASNDF method are much lower than those obtained by the
other methods, which points out that the proposed ASNDF
method leads to good noise reduction in homogenous regions.
In addition, we can see thatmost SD values (expect for the one
in ROI1) are closer to those of the reference SDCT image.

F. COMPUTATION COST
Compared with the diffusion coefficient function in PM
model, twice computation of variance (image local variance
and residual local variance) in ASNDF involves an increase in
computational complexity. In each iteration, the calculation
of image local variance or the residual local image has the
biggest time complexity. Both of them have the order of
complexity ofO

(
N 2
)
, where N is the number of pixels in the

image. Thus the proposed ASNDF has an order of complexity
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FIGURE 11. Selected axial view for rat data. From left to right, LDCT image, SDCT image, and the processed images by PM, IPM, FPMTV and
ASNDF methods, respectively. Zoomed ROIs are displayed in the second row.

TABLE 6. SD values of ROIS (in the red square in fig.11) for the original
LDCT images, the original SDCT images and the processed LDCT images.

TABLE 7. Running time (in seconds) of different methods.

of O
(
K ∗ N 2

)
, where K is iteration number. The computa-

tional complexity of the proposed ASNDF increases as the
image size and iteration number increase computational com-
plexity. Fortunately, it can be accelerated after GPU based
parallelization.

Table 7 list the running time of different algorithms, all the
algorithms are implemented in MATLAB 2016a and acceler-
ated by GPU using parallel computing toolbox. The computer
is equipped with CPU i7-8700K@3.70 GHz and 16GBRAM
and GPU NVIDIA GeForce GTX 1080Ti. We can observe
that ASNDF is faster than FPMTV, but slower than PM and
IPM. The reason is that the proposed diffusion function in
ASNDF method has three terms, while the diffusion function
in PM method or IPM method only has one. In detail, in one
iteration, PM method takes about 0.015s, IPM method takes
about 0.018s, while the ASNDF method takes about 0.021s.

Although the running time of the ASNDF method is not
the least, it doesn’t calculate much more time than PM and
IPMmethods, and is more suitable to be used for clinical data
given its good performance on noise/artifacts suppression and
edge preserving.

IV. CONCLUSION
This paper described a nonlinear diffusion approach called
ASNDF to improve the quality of LDCT images. Instead of
only utilizing image gradient magnitude as the cue of edge

indicator, the proposed ASNDF approach also incorporates
both image local variance and residual local variance into the
design of diffusion coefficient function.

Since the image local variance can distinguish details and
noisy background, and the local variance of the residual
image can capture lost signals (such as capture weak textures
and fine details) in the diffusion procedure, the ASNDF
processing is effective in preserving edges, details and small
structures. In addition, both the local variance and the residual
local variance are not dominant in noise/artifacts, according
to which the ASNDF processing encourages diffusion in
regions of noise/artifacts. However, the new diffusion factor
function simply averages three terms to calculate the diffu-
sion coefficient, and a more appropriate weight allocation
in (10) may improve the performance of the algorithm. In any
case, the experiments with simulation data, clinical data and
rat data, as well as qualitative and quantitative assessments,
demonstrate that the proposed ASNDF approach can improve
LDCT images. In the future, we will study how the weights
affect algorithm performance.

In addition, although we only show two clinical slices and
one rat slice, in fact, we tested the proposed ASNDF with
the same parameters (as shown in Table 2) on all clinical
slices and all rat slices. All processed results are satisfactory.
Therefore, the parameter setting of the proposed ASNDF
show good robustness in the same scan.

There are also some issues still remain to be addressed.
Some streak artifacts are so severe that they could be
treated as the structure in the diffusion procedure and may
be remained in the final processed LDCT images. So the
discrimination of artifacts and image features could be
incorporated into the diffusion procedure. Methods like dis-
criminative dictionary in [29] can be considered to discrimi-
nate image features and steak artifacts. Additionally, although
the proposed method performs well for the streak artifacts
caused by noise, it is not very effective for the metal artifacts
caused by high-attenuation objects. Finding an effective solu-
tion to suppress metal artifacts will be included in our future
work.
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