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ABSTRACT Arrhythmia is a disease that threatens human life. Therefore, timely diagnosis of arrhythmia
is of great significance in preventing heart disease and sudden cardiac death. The BiLSTM-Attention neural
network model with heartbeat activity’s global sequence features can effectively improve the accuracy of
heartbeat classification. Firstly, the noise is removed by the continuous wavelet transformmethod. Secondly,
the peak of the R wave is detected by the tagged database, and then the P-QRS-T wave morphology
and the RR interval are extracted. This feature set is heartbeat activity’s global sequence features, which
combines single heartbeat morphology and 21 consecutive RR intervals. Finally, the Bi-LSTM algorithm
and the BiLSTM-Attention algorithm are used to identify heartbeat category respectively, and the MIT-BIH
arrhythmia database is used to verify the algorithm. The results show that the BiLSTM-Attention model
combined with heartbeat activity’s global sequence features has higher interpretability than other methods
discussed in this paper.

INDEX TERMS Heartbeat activity’s global sequence features, BiLSTM-attention neural network, inter-
pretability, heartbeat classification.

I. INTRODUCTION
In recent years, with the improvement of people’s living stan-
dards, the prevalence of cardiovascular diseases has increased
significantly. The number of deaths caused by cardiovascular
diseases has also increased year by year. As an important
organ of the human body, the heart plays an important role
in the function of the human body. Arrhythmia is a disorder
of heart rate or a rhythm conduction and it is a critical mani-
festation of ECG abnormalities [1], [2]. Other heart diseases
always come in hand with arrhythmia, such as myocardial
infarction and heart failure. Therefore, accurate detection of
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the patients’ arrhythmia plays an important role in preventing
heart disease and sudden cardiac death. Electrocardiography
is an important basis for preliminary diagnosis of arrhythmia
[3]. Electrocardiography can be used to judge whether the
arrhythmia is sinus or ectopic. By analyzing the nature and
source of the early or delayed heartbeats one by one, ECG
intelligent analysis can help doctors diagnose the nature of
patients’ arrhythmia. However, patients have to wear holter
for a long time tomonitor health and safety, because abnormal
ECG signal is difficult to capture during some arrhythmic
events.

The dynamic electrocardiogram record during arrhythmia
attack is an important basis for the diagnosis of arrhythmia.
Although sometimes patients have done a routine resting
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ECG, it is necessary to analyze the ECG record obtained by
the 24-hour holter monitor according to different condition
of patient. The dynamic electrocardiogram can continuously
record about 100,000 heartbeats signal in 24 hours. 24-hour
continuous ECG records make the diagnosis more accurate.
Howeverčthe traditional dynamic ECG analysis is done man-
ually. In this situation, the medical staff commonly observe
the patient’s ECG signal and then make a final diagnosis
based on relevant rules and personal experience. Due to the
large amount of ECG data and the shortage of medical staff,
doctors who have been engaged in ECG classification and
identification for a long time will inevitably have fatigue.
In this case, mistakes, missed inspections or misdetections
are easily occur. It is very troublesome for the doctor to judge
and identify a large number of ECG one by one. Therefore,
automated intelligent diagnosis is important in dailymedicine
[4]. It can help individuals make better judgments on the
symptoms of arrhythmia. In addition, it can provide good
health care in areas where medical resources are scarce.

In this paper, a new explanatory deep learning method is
used for heartbeat classification, which based on heartbeat
activity’s sequence features and BiLSTM-Attention neural
network. This method improves the accuracy of heartbeat
classification. The contributions of this work are as follows:

1.In the case of unbalanced ECG data set, a novel neu-
ral network learning algorithm based on BiLSTM-Attention
model is proposed for heartbeat classification.

2. Heartbeat activity’s global sequence features proposed
in this paper demonstrate the heartbeat category information
more comprehensively.

3. The BiLSTM-Attention deep neural network model and
heartbeat activity’s global sequence features are used to clas-
sify various kinds of arrhythmias of different patients.

4. According to the heartbeat classification process, a gen-
eral supervised learning framework that has high ability of
automatic feature extraction and scalability is designed.

The rest of this paper is organized as follows: Section II
gives a brief introduction to related works. Section III intro-
duces the formation of the problem. Section IV introduces
ECG signal preprocessing and heartbeat features extraction.
Section V introduces the BiLSTM-Attention deep neural
networkmodel in detail. The electrocardiogram classification
experiment is performed in Section VI. Section VII summa-
rizes the full text and discusses the future work.

II. RELATED WORK
Traditionally, the diagnosis of early arrhythmia mainly
depends on doctors’ analysis of the ECG waveform. How-
ever, this method mainly relies on doctor’s experience. At the
same time, due to the diversity of arrhythmia and the com-
plexity of the corresponding ECGwaveform,manual analysis
can not meet the needs of patients. With the development
of artificial intelligence, the use of intelligent processing
technology to classify arrhythmia has become a hot topic in
recent years. However, due to the imbalance of data sets and

individual patient differences, there are still some difficulties
in achieving accurate heartbeat classification.

In the past few decades, several researches were devel-
oped to produce automatic ECG signal intelligent analysis.
Researchers have proposed various methods for heartbeat
classification, which can be divided into two categories: fea-
ture extraction and deep learning based methods.

A. HEARTBEAT CLASSIFICATION METHODS BASED
ON FEATURE EXTRACTION
Feature extraction phase is the key to successful classification
of arrhythmic heartbeat. Any information extracted from the
heartbeat can be regarded as a feature as long as it can
identify ECG heartbeat classification. Researchers design
various features based on ECG signals and input them into
machine learning models for decision making. The qual-
ity design of the feature depends on doctors and experts’
clinical experience. Proposed features include morphological
features [5], [6], temporal features [5]–[7], hermite basis
function(HBF) [8], higher order statistics(HOS) [8], [9], and
personalized features [10]. Many literatures of arrhythmia
classification had been developed by using machine learn-
ing algorithms, such as k-nearest neighbor [11], support
vector machine [8]–[11], conditional random fields [12].
Those machine learning models had been used to learn the
difference between different heartbeats and to achieve the
automatic classification of heartbeat [1], [13].

The features of manual designs mainly depend on the
designer’s prior knowledge, and it is difficult to take advan-
tage of big data. Although these effective features can greatly
improve the performance of the arrhythmia recognition sys-
tem, these analysis methods are confined to the doctor’s
clinical experience. In clinical data, arrhythmia has many
categories, great variability, and complex waveforms, which
makes it difficult to accurately detect and locate waveforms
and set classification features.

B. HEARTBEAT CLASSIFICATION METHODS BASED
ON END-TO-END MANNER
The biggest difference between deep learning and traditional
feature extraction method is that deep learning automatically
learns the characteristics of ECG big data through multi-
layer nonlinear transformation, and it replaces the features
of manual design. Deep learning can quickly learn from
training data and automatically obtain valid features, min-
ing the information hidden behind ECG big data. Various
hidden factors are often associated with complex non-linear
approaches, but deep learning can separate these factors. The
deep structure of deep learning makes it highly expressive
and learning. It is especially good at extracting complex
global features and making heartbeat classification simple
and effective. Recently, some researchers [14]–[18] ana-
lyzed the application of deep learning methods of heartbeat
classification to improve the accuracy. For example, some
works [19]–[23] used convolutional neural networks to detect
abnormal ECG signals. Zubair et al. [20] introduced an
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ECG beat classification system using convolutional neural
networks. By using a small and patient-specific training data,
the classification system efficiently classified ECG beats
into five different classes. Acharya et al. [23] developed a
9-layer deep convolutional neural network to automatically
identify five different categories of heartbeats in ECG signals.
Kiranyaz et al. [24] used an one-dimensional convolutional
neural network to classify ECG signals. Hannun et al. [25]
developed a deep neural network that consisted of 33 con-
volutional layers followed by a linear output layer into a
softmax.

A few works [26]–[28] used recurrent neural net-
work (RNN) model to classify heartbeat. On the basis
of morphological information and temporal information,
Wang et al. [26] applied a single RNN for automatic feature
learning and classification. Zhang et al. [27] proposed a novel
patient-specific ECG classification algorithm based on recur-
rent neural network and density clustering technique. Hochre-
iter and Schmidhuber [29] proposed a long-term short-term
memory (LSTM) recurrent neural network model, which can
effectively alleviate the long-distance dependence on RNN.
Literature [30] used recurrent neural network (RNN), gated
recurrent unit (GRU) and long short-term memory (LSTM)
neural networks to classify heartbeat, and concluded that
LSTM has better performance than RNN and GRU in
detecting arrhythmia.

ECG diagnosis algorithm based on deep learning can iden-
tify and judge the arrhythmia event more effectively. It is
important for modern medical treatment. It can better assist
the medical staff to make a diagnosis and treatment program,
effectively prevent the damage or even death caused by the
heart disease, and improve the quality of patients’ health.
An important issue in ECG intelligent diagnosis is the accu-
rate classification of each heartbeat, which directly affects the
performance of the analysis system. Therefore, accurate clas-
sification of heartbeat is one of the important contents of ECG
intelligent diagnosis, especially supraventricular ectopic beat
and ventricular ectopic beat. In order to improve the accuracy
of heartbeat classification, It is necessary to establish an inter-
pretable and automated deep learning algorithm framework.

III. HEARTBEAT CLASSIFICATION PROBLEM
FORMULATION
The heart has four physiological functions: self-discipline,
excitability, conductivity, and contractility. Arrhythmia is
caused by the self-discipline, excitability and abnormal con-
duction of the myocardium. In view of the continuous
change of heart beat waveform, the computer can read ECG
accurately and effectively, and gradually give the diagnosis
results. Heartbeat classification results are the first level of
computer intelligence diagnosis.

A. PROBLEM STATEMENT AND FORMULATION
The ECG heartbeat classification is a sequence of tasks that
sort inputs that are ECG signals B = [b1,b2,. . . ,bn] and out-
puts a sequence of labels C = [c1,c2,. . . ,c5], each of which

can take one of C different heartbeat classes. This problem is
solved through designing a new neural network model in an
end-to-endmanner in the supervised learning framework. The
loss function is the cross-entropy error of the ECG heartbeat
classification, it can be expressed as (1). Where B is the
training data, C is the number of ECG heartbeat categories,
b means a beat, pc (b) is the probability of predicting b as
class c given by the softmax layer, and p̂c(b) indicates whether
class c is the correct ECG heartbeat category, whose value
is 1 or 0.

Loss = −
∑
b∈B

C∑
c=1

∧
pc(b) · log(pc(b)) (1)

B. ARRHYTHMIA DATABASE AND CLASSIFICATION
CRITERIA
The MIT-BIH arrhythmia database is a recognized authori-
tative ECG database for ECG heartbeat classification algo-
rithms [35]. This paper evaluates the performance of the
proposed ECG classification algorithm by using MIT-BIH
arrhythmia database. Each record includes a half-hour 2-lead
dynamic ECG segment with a sampling rate of 360 Hz. In this
paper, non-redundant 2-lead ECG signals are used to learn
different characteristics from different leads.

The ANSI/AAMI EC57: 2012 specific taxonomy devel-
oped by the Association for the Advancement of Medical
Instruments (AAMI), which stipulates that ECG waveforms
can be divided into five categories: N (normal or bundle
branch block), S (supraventricular ectopic beat), V (ventric-
ular ectopic beat), F (fusion beat) and Q (unassigned beat)
[36]. As there are kinds of arrhythmia diseases, the computer
can read ECG accurately and effectively and provide the
diagnosis results, which needs to be carried out step by step.
The classification result is the first step of computer intelli-
gent diagnosis. However, the categories of ECG beat that are
prescribed by AAMI and those annotated by the MIT-BIH
arrhythmia database are two clinically relevant and differen-
tiated classification methods. There are fifteen recommended
classes for arrhythmia that are classified into five super
classes. Based on this, the pathological changes of different
heart parts of a wide variety of cardiovascular diseases can
be judged, and it can help doctors in making specific clinical
decisions on the next step. The ECG beat categories standard
conversion relationship is shown in Table 1. Fig.1 shows
annotation(L,V) in a MIT-BIH arrhythmia database. The
common heartbeat category example is shown in Fig.2.

FIGURE 1. Example of annotation (L,V) in a MIT-BIH arrhythmia database
record 109 (10 sec).
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TABLE 1. MIT database arrhythmia annotation and N, S, V, F, Q
correspondence.

FIGURE 2. Common heartbeat category example.

IV. ECG SIGNAL PREPROCESSING AND HEARTBEAT
FEATURES EXTRACTION
Each record of MIT-BIH arrhythmia database contains two
leads, one of which (lead A) is lead II and the other lead
(lead B) is lead V1. However, in some records, lead B is
known to be V2, V5 or V4. In the process of collecting
ECG signals, noise signals such as myoelectric interference
and baseline drift are often mixed, which affects the analysis
of ECG signals. In this paper, the optimal processing of
ECG signal noise is realized based on continuous wavelet
transform.Generally, leadA is used to detect heartbeats, since
the QRS complex is more prominent in this lead. Lead B
favors the arrhythmic classification of the types S and V [1].
According to the literature [1], [45], the prior knowledge
extracted by combined with lead A and lead B.

A. ECG SIGNAL DENOISING
Wavelet transform is amethod of time-frequency analysis of a
signal [37]. Its biggest feature is the nature ofmulti-resolution
analysis. It is a time-frequency localization analysis method

FIGURE 3. The example of continuous wavelet transform decomposition
(S is the original signal, A1, A2, A3 are the first order, second order, third
order approximation signal, D1, D2, D3 are the first order, second order
and third order).

in which the window size is fixed. However its shape can
be changed, and both the time window and the frequency
window can be changed. That is to say, the method of wavelet
analysis has the ability to have higher time resolution and
lower frequency resolution to the high frequency part, higher
frequency resolution and lower time resolution to the low
frequency part. Therefore, wavelet transforms is also known
as a mathematical microscope for analyzing signals. This
characteristic makes the wavelet transform has adaptability
to the signal and has its unique superiority in the time-
varying signal. In this paper, the function of time-frequency
local analysis and the multi-resolution analysis of wavelet
transform are used to remove the noise of ECG signals.

ψa,τ (t) = a−
1
2ψ

(
t − b
a

)
, a > 0, τ ∈ R. (2)

Wf (a, τ ) = a−
1
2

∫
+∞

−∞

f (t)ψ(
t − b
a

)dt (3)

The basic definitions of wavelet basis functions and con-
tinuous wavelet transform are shown in (2) and (3). Here, a
is the scale factor, b is the transformation factor. Because a
and b are continuously transformed values [38]. The original
signal continuously passes through the filter bank. The filter
bank hasmultiple levels, and each level obtain a set of wavelet
components. The next layer filter to get the next layer of
coefficients, the signal stratified filtering and the spectrum
is divide into two equal segments: the low-pass and the high-
pass. High-pass part contains only a small amount of signal
details to be retained, the low-pass part still contains a lot of
information details to continue filtering subdivision, and each
level of output sampling rate can be further halved.

In this paper, continuous wavelet transform is used to
denoise ECG signals. Firstly, noise signals is decomposed
into multi-scale components, and threshold functions are set
on small and high scales. Secondly, wavelet coefficients that
smaller than threshold functions on minimum and maxi-
mum scales are removed. Finally, in order to remove the
noise, the remaining wavelet coefficients are used to recon-
struct the ECG signal. Fig.3 shows the example of continu-
ous wavelet transform decomposition. Fig.4 shows the ECG
record before denoise. Fig.5 shows the ECG record after
denoise.
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FIGURE 4. Record mitdb/100 (0-800): ECG signal with baseline drift and
myoelectric interference.

FIGURE 5. Record mitdb/100 (0-800): ECG signal after denoise.

B. HEARTBEAT ACTIVITY’S GLOBAL SEQUENCE FEATURES
This paper uses the position of R peak that is determined in
the annotation file to extract 235 points near R peak from
ECG records according to the position of R peak [44]. There
are 90 sampling points in front of R peak and 144 sampling
points after R peak. If there are less than 235 sampling
points before and after the first or last QRS complex wave
detected in the ECG record file, the corresponding heartbeat
is ignored. On this basis, the 235 sample points extracted as
single heartbeat morphology features.

RR interval is a time interval between two consecutive R
peaks. The normal distance from the RR interval is 0.6 to
1.0 seconds. The corresponding ventricular rate is 60 to
100 beats per minute. RR interval generally fluctuates in a
certain range. Its sequence not only reflects the situation of
heart rate variability, but also the fluctuation of abnormal
interval can characterize some arrhythmic diseases. RR inter-
vals are usually different in patients with arrhythmia, which
are common in sinus arrhythmia, atrial premature beats, ven-
tricular premature beats and atrioventricular block. There-
fore, the RR interval is one of the important characteristics
of the response to cardiac activity.

FIGURE 6. Heartbeat RR interval position diagram.

The physiological activities of cardiovascular system are
regulated by autonomic nervous system. When the ability of
autonomic nervous system to regulate the heart decreases,
the malignant arrhythmia will occur. Literature [46] showed
that the nature of malignant arrhythmia in patients with car-
diovascular disease is the imbalance of sympathetic-vagus
nerve. In 2012, the literature [47] proposed heart rate deceler-
ations(DRs) based on the heart rate deceleration of the auto-
nomic nerve monitoring method. If there are 2 to 10 cardiac
cycles with sustained slow beats, the prognosis of patients is
better. Based on this clinical conclusion, more comprehensive
boundary factors are considered in the experiment. Therefore,
using the 10 RR cycles before and after the current RR
interval, a total of 21 consecutive RR cycles are selected.
In summary, the 21 consecutive RR intervals extracted as
continuous heartbeat interval activity features.

Heartbeat activity’s global sequence features contain
both intra-cardiac and inter-cardiac features, which are sin-
gle heartbeat morphology and 21 consecutive RR inter-
vals. Fig.6 shows heartbeat RR interval position diagram.
Fig.7 shows RR interval time series.

V. BILSTM-ATTENTION NEURAL NETWORK
MODEL DESCRIPTION
The processing of time-series tasks is important in the field
of natural language processing and speech recognition. To
accommodate this need, a new recurrent neural network
learning architecture is proposed, which can increases the
temporal structure of the structure [39]. The output can be
directly applied to itself at the next time stamp. RNN can be
regarded as a deep neural network that passes through in time.
Its depth is the length of time. As the time interval increases,
the gradient of the RNN unit disappears and only short-term
memory can be maintained. LSTM unit combines short-term
memory with long-termmemory by introducing memory unit
and gate control unit, which solves the problem of gradient
disappearance to a certain extent. Therefore, literature [29]
proposes a Long Short-Term Memory that implements tem-
poral memory through a gate switch that selectively passes
information and prevents gradients from disappearing. LSTM
is a time recurrent neural network that effectively preserves
historical information and analyzes sequence data [32], [40].
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FIGURE 7. Record mitdb/100 (1-2273 numbers): RR interval time series.

A. BILSTM NEURAL NETWORK STRUCTURE
LSTM consists of three gates (input gate, forget gate and
output gate) and a cell unit. It aims at achieving the historical
information updates and reservations. It can add and delete
information on cells through the gate unit. The input gate
decides how much new information to add to the state, forget
gate determines the information that needs to be retained
and discarded, and the output gate determines which part
of the information will be output. The gate can selectively
determine whether the information passes, it has a sigmoid
neural network layer and a pairwise multiplication opera-
tion. The structure of bidirectional LSTM (Bi-LSTM) model
provides complete past and future context information for
each point in the output layer input sequence. Among them,
Ct−1 and Ct respectively represent the state value of the
memory unit at the previous moment and the current time,
C t represents the current heartbeat state candidate value, ht−1
and ht respectively represent the output of the previous time
and the current LSTM network, and xt represents the current
input, ft , it , and ot denotes the forget gate, the input gate and
the output gate, respectively, µ denotes the sigmoid function,
and denotes the hyperbolic tangent function. Fig.8 shows the
LSTM cell structure.

The LSTM cell calculation process is shown in the follow-
ing formula. At times t , the input gate is input according to
the output result ht−1 of the cell at the previous moment. The
input xt at the current moment, determines whether to update
the current information into the cell through calculation. For-
get gate based on the last moment hidden layer output ht−1
and the current time input as input to decide the need to retain
and discard the information to achieve the storage of histori-
cal information. The current candidate memory cell value is
determined by the current input data xt and the output result
ht−1 of the LSTM hidden layer cell at the previous moment.
In the current moment, the memory cell state value Ct is
adjusted by both the current candidate cell C t and its own
stateCt−1 and input gate and forget gate. Calculate the output

FIGURE 8. The LSTM cell structure.

gate ot , the output used to control the memory cell status
value. The output of the last cell is ht , which can be expressed
as (9). Character ∗ is the element-wise matrix multiplica-
tion, while character · denotes point multiplication. W is the
weight, and b is the bias of neuron, where W and b are both
obtained through training. (4)-(9) refer to the literature [40].

it = sigmoid(Wi · [ht−1, xt ]+ bi) (4)

ft = sigmoid(Wf · [ht−1, xt ]+ bf ) (5)

C t = tanh(Wc · [ht−1, xt ]+ bc) (6)

Ct = ft ∗ ct−1 + it ∗ ct (7)

ot = sigmoid(Wo · [ht−1, xt ]+ bo) (8)

ht = ot ∗ tanh(ct ) (9)

If the algorithmic model can access the future contexts
as it did the past context information, it has far-reaching
implications for sequence learning. The standard LSTM cell
is used to process sequence data. Since data is processed in
time series, it often ignores future context information. The
basic idea of the Bi-LSTM is that each training sequence con-
sists of forward and backward LSTM neural network layers.
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The forward LSTM layer encodes the heartbeat from begin-
ning to end, and the backward LSTM layer encodes the oppo-
site direction. Therefore, the hidden layer state of BiLSTM at
times t is obtained by weighted summation of the forward
hidden layer state

−→
ht and the backward hidden layer state

←−
ht ,

and the specific formula is as follows:
−→
ht = LSTM (xt ,

−−→
ht−1) (10)

←−
ht = LSTM (xt ,

←−−
ht−1) (11)

Ht = wt
−→
ht + vt

←−
ht + bt (12)

wt , vt respectively represent the weights corresponding to
the forward hidden layer state

−→
ht and the backward hidden

layer state
←−
ht corresponding to the BiLSTM hidden layer

state, and bt represents the bias corresponding to the hidden
layer state at time t .

B. BI-DIRECTIONAL LSTM BASED ON ATTENTION
MECHANISM NEURAL NETWORK MODEL
Mnih et al. [31] proposed a model simulates the mechanism
of human brain attention. It highlights key inputs by weight
and thus optimizes the traditional model. The principle is
to selectively focus on the corresponding information about
the input when the model is output. The method using the
attention mechanism is widely used in time series classifi-
cation [32], which includes automatic text generation [33],
text summarization [34], and so on. The attention mecha-
nism breaks the limitation of the traditional encoder-decoder
structure that relies on a fixed-length vector internally during
encoding and decoding. It is implemented by retaining the
intermediate output of the input sequence by the Bi-LSTM
encoder, and then training a model to selectively learn these
inputs. The attention mechanism simulates the characteristics
of human brain attention. The core idea is to assign more
attention to what it considers important and less attention to
other parts. The input of the attention mechanism layer is the
output vector of the upper layer activated by the Bi-LSTM
neural network layer. (13)-(15) refer to the literature [40],
the formula for the attention mechanism layer is as follows:

ut = tanh(WwHt + bw) (13)

at =
exp uTt uw∑
t
exp uTt uw

(14)

vt =
∑

t
atHt (15)

where Ht is the output vector of the upper layer of the Bi-
LSTMneural network layers,Ww is the weight coefficient, bw
is the bias coefficient, and ut is the energy value determined
byHt . The at is the weighting coefficient of the specific grav-
ity of each hidden layer state in the new hidden layer state.
The uw is an attention matrix indicating random initialization,
which is continuously learned during the training process.
The vt is output vector through the attention mechanism.
After the weight coefficient is calculated by the attention
layer, the vector vt is output to the dense layer, and the dense

layer is received and processed by the rectified linear unit
(Relu) function [41]. Because the linear model has insuffi-
cient expressive power, the activation function is used to add
nonlinear factors. The Relu function is the most commonly
used activation function in neural networks. The Relu func-
tion causes the output of some neurons to be 0, whose results
in the sparseness of the network and the interdependence of
parameters are reduced, which alleviates the occurrence of
over-fitting and reduces the training time of deep networks.
Finally, the input is calculated by the softmax function, and
the final result are output.

In the Bi-LSTM model, the output vector of the last time
series is usually used as the feature vector for the next
layer and then input to the classified softmax function. How-
ever, this method of feature extraction method only uses
the features of the last step, discarding other feature infor-
mation. Therefore, the BiLSTM-Attention model is used in
this experiment. The model adds the attention layer to the
Bi-LSTM model. The attention mechanism first calculates
the weight of each time series, then weights the vectors of
all time series, and then inputs the weighted average vec-
tor as a new feature vector into the softmax function for
classification. The BiLSTM-Attention deep neural network
hybridmodel designed in this paper considers the information
above and below the heartbeat and the key position of the
heartbeat. The Bi-directional LSTMmodel based on attention
mechanism is shown in Fig.9.

VI. EXPERIMENTS AND RESULTS
ECG signals are crucial to the treatment of patients. This
paper focus on the three main steps: preprocessed data,
P-QRS-T wave group extraction, RR interval calculation,
and heartbeat classification. Every heartbeat is categorized
into N (Normal or bundle branch block), S (Supraventricular
abnormal beat), V (Ventricular abnormal beat), F (Fusion
beat), Q (Unclassified beat) according to ANSI / AAMI
EC 57. Therefore, this classification result can be used as
preliminary results of computer diagnosis developed by the
American Medical Instrument Promotion Association. Based
on this, it is better to help doctors make the next specific
clinical decision for this part. The framework of the heartbeat
classification algorithm in Fig.10.

A. EXPERIMENTAL DATA
As can be seen from Table 2, 109,454 heartbeats in the MIT-
BIH arrhythmia database are classified. This paper randomly
used 90% of the data for the training dataset and 10% of
the data for the testing dataset. 90,595 are recorded by the
experts as N category heartbeat, among them, 81,560 heart-
beats are used for training dataset and 9,035 heartbeats are
used for testing dataset. 2,781 heartbeats are recorded as S
category, among them, 2,528 heartbeats are used for train-
ing dataset and 253 heartbeats are used for testing dataset.
7,235 heartbeats are recorded as V category, among them,
6,450 heartbeats are used for training and 785 heartbeats
are used for testing. Only 802 heartbeats are recorded as
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FIGURE 9. Bi-directional LSTM model based on attention mechanism.

TABLE 2. Experimental data statistics.

F category, among them, 723 heartbeats are for training
and 79 heartbeats are for testing. And 8,041 heartbeats are
recorded as Q category, among them, 7,248 heartbeats are
used for training and 793 heartbeats are used for testing.
It can be seen that the experiments are carried out under an
unbalanced ECG dataset.

B. MODEL TRAINING AND PARAMETERS SELECTION
The experiment is trained as a PC workstation with an
i7-7700K processor and 32GB of RAM. The algorithm is
developed in tensorflow-gpu V1.11.0, keras V2.2.4 and mat-
lab@R2018b software platform. In order to get a better
model, the selection of model parameters is very important.
Literature [43] analyzed the effects of parameters on model
performance and suggestd that other scholars refer to the
values are given by them.

In the model proposed in this paper, according to the
experience of setting the same parameters in the deep learning
algorithm, the learning rate, batch size, cell size and epoch
parameters are initialized. Table 3 shows all parameters
that are used in the BiLSTM-Attention model. The training
process of the neural network model is performed by a

FIGURE 10. The framework of the heartbeat classification algorithm.

TABLE 3. The parameters of model.

back propagation method. Learning rate is one of the most
parameters affecting performance. Adam is an optimization
algorithm used to replace the random gradient in the deep
learning model. The recommended learning rate parameter is
0.001 [42]. The cell size indicates how many LSTM cells are
to be placed in the hidden layer of the network. The experi-
mental results show that the cell size is 128, the accuracy is
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TABLE 4. Parameter cell size selection(batch size = 64, epoch = 20).

TABLE 5. Parameter batch size selection(cell size = 128, epoch = 20).

the highest. The experimental results are shown in Table 4.
The batch size represents the number of pieces trained in
each batch. The experimental results are fairly accurate and
the batch size is 64. The experimental results are shown
in Table 5. The time step is the data of how many time points
to read. The time step of this experiment is 491. The input
size represents the number of reads per row with a value of 1
and the output size represents the length of the classification
result with a value of 5. Epoch represents the number of
iterations. It is experimentally found that the epoch value
is 20 with the highest accuracy, the experimental results are
shown in Fig.11.

Algorithm 1 Training of BiLSTM-Attention Model Based
Classfier
Input: Training set D = (b1,c1), (b2,c2),. . . ,(bn,cn) ;

Base learning algorithm BiLSTM-Attention
model.
Output: The parameters of the model and result.
Process:
1 begin
2 Build the BiLSTM-Attention model with a softmax
output layer
3 while training do
4 begin
5 Calculate the loss on the training set according to (1)
6 Train the BiLSTM-Attention using the adam back
propagation method
7 Evaluate the training loss on training set
8 Record the prediction of classifier on training set
9 if training loss stop decreasing then
10 Store the model and break
11 end
12 end

C. EVALUATION METRICS
As shown in (16)-(19), in order to achieve a category heart-
beat classification results, the following formulas are needed:
N category true positive heartbeat (TPN ), N category false
positive heartbeat (FPN ), N category true negative heart-
beat (TNN ), N category false negative heartbeat (FNN ).
In the same way, the classification results of other cate-
gory are calculated. Table 6 shows the confusion matrix of

FIGURE 11. Epoch value parameter selection.

TABLE 6. The confusion matrix of classification results.

classification results.

TPN = Nn (16)

FNN = Ns+ Nv+ Nf + Nq (17)

TNN = Ss+ Sv+ Sf + Sq+ Vs+ Vv+ Vf + Vq

+Fs+ Fv+ Ff + Fq+ Qs+ Qv+ Qf + Qq

(18)

FPN = Sn+ Vn+ Fn+ Qn (19)

In this paper, sensitivity, specificity, positive predictivity,
and accuracy are used as indicators to evaluate the perfor-
mance of classifiers. Sensitivity (se) refers to the proportion
of actual positive samples that judged to be positive. The
higher the sensitivity, the greater the proportion of correct
prediction. Specificity (sp) refers to the proportion of samples
that are actually negative and are judged to be negative. The
higher the specificity, the more accurate the prediction. Pos-
itive predictivity (+p) is also known as precision. Accuracy
(Acc, also known as efficiency) is the ratio of the sum of true
positives to true negatives to the number of subjects, which
reflects the consistency between test results and actual results.
The calculation formulas for the above four evaluation indi-
cators are as follows:

Se = TP/(TP+ FN ) (20)

Sp = TN/(TN + FP) (21)

+p = TP/(TP+ FP) (22)

Acc = (TP+ TN )/(TP+ TN + FP+ FN ) (23)
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FIGURE 12. Confusion matrix based on classification results of
BiLSTM-Attention model with single heartbeat activity features.

TABLE 7. BiLSTM-attention model with single heartbeat morphology
features of classification results specific category statistics.

D. EXPERIMENTAL RESULTS AND ANALYSIS
In order to compare the differences between the designed
features and to have a better understand of the calcula-
tion process of the BiLSTM-Attention model, the following
four groups of experiments are conducted for comparative
analysis.

Experiment I only collects 235 feature points in a single
heartbeat. The experiment is performed on this single heart-
beat morphology features of the average classification accu-
racy of 99.30%, but the single heartbeat morphology features
have certain locality. The shortcoming of this experimental
method is that the single heartbeat morphology features are
not comprehensive enough. Fig.12, Table 7 and Table 8 show
BiLSTM-Attention model with single heartbeat morphology
features of classification results.

In experiment II, only 21 RR intervals are collects as
continuous heartbeat interval activity features. The classifi-
cation accuracy of N, V, F and Q classes is obviously lower.
The average classification accuracy reached 96.94%. Fig.13,
Table 9 and Table 10 show BiLSTM-Attention model with
continuous heartbeat interval activity features of classifica-
tion results. The shortcoming of this experimental method is
that the continuous heartbeat interval activity features are not
sufficiently specific.

Experiment III is the result of heartbeat classification using
Bi-LSTM model without attention mechanism. The experi-
ment collects heartbeat activity’s global sequence features.
Considering the overall time series relationship between
heartbeat and heartbeat, this information is sufficient and
comprehensive enough. The experimental results show that

FIGURE 13. Confusion matrix based on classification results of
BiLSTM-attention model with continuous heartbeat interval activity
features.

TABLE 8. BiLSTM-attention model with single heartbeat morphology
features of classification results.

TABLE 9. BiLSTM-attention model with continuous heartbeat interval
activity features of classification results specific category statistics
(21 consecutive RR intervals).

TABLE 10. BiLSTM-attention model with continuous heartbeat interval
activity features of classification results.

the accuracy of the method is 99.32%, the accuracy of S cat-
egory is 99.70%, the accuracy of V category is 99.71%, and
the accuracy of F category is 99.84%. Fig.14, Table 11 and
Table 12 show Bi-LSTM model with heartbeat activity’s
global sequence features of classification results. In the
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TABLE 11. Bi-LSTM model with heartbeat activity’s global sequence
features of classification results specific category statistics (single
heartbeat morphology and 21 consecutive RR intervals).

TABLE 12. Bi-LSTM model with heartbeat activity’s global sequence
features of classification results.

TABLE 13. BiLSTM-attention model with heartbeat activity’s global
sequence features of classification results specific category statistics
(single heartbeat morphology and 21 consecutive RR intervals).

TABLE 14. BiLSTM-attention model with heartbeat activity’s global
sequence features of classification results.

experiment, the heartbeat activity’s global sequence features
are considered, which is sufficient improves the classification
accuracy of the model.

Experiment IV is the result of heartbeat classification using
the BiLSTM-Attention model, which uses the same features
set as Experiment III. The experimental results verify the fea-
sibility and effectiveness of the proposed model. The average
accuracy of the classification reached 99.49%. The results

TABLE 15. Comparisons of the classification results with the previous
studies.

show that the accuracy of the S category is 99.75%, the accu-
racy of V category is 99.75%, and the accuracy of F cate-
gory is 99.89%. Compared with Experiment III, the overall
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FIGURE 14. Confusion matrix based on classification results of Bi-LSTM
model with heartbeat activity’s global sequence features.

FIGURE 15. Confusion matrix based on classification results of
BiLSTM-attention model with heartbeat activity’s global sequence
features.

accuracy of Experiment IV is increased by 0.17%. Compared
with experiment I and experiment II, it is concluded that
making full use of the prior knowledge of ECG is the key
to further improve the performance of the model. Fig.15,
Table 13 and Table 14 show BiLSTM-Attention model with
heartbeat activity’s sequence features of classification results.

Compared with all the experiments in Table 15, the iden-
tification results of the five categories of heartbeat are rel-
atively stable. Total accuracy of our proposed method for
this scheme is 99.49%. Literature [30] classified normal
and abnormal heartbeats using LSTM model in MIT-BIH
arrhythmia database. However, it does not take into account
the influence of heartbeat activity’s global sequence features
on the category of rhythm. The LSTM model is used to
process sequence data, which often ignoring future contextual
information.

In this paper, BiLSTM-Attention model is used to merge
heartbeat activity’s global sequence features under unbal-
anced samples, which improves the accuracy of heartbeat
classification. The experimental results show that the scheme
has the advantages of distinguishing normal or bundle branch
block, supraventricular abnormal beat, ventricular abnormal
beat, fusion beat. The network connection among neurons is
realized by deep learning algorithm, and then a interpretable,
accurate and objective model for calculating cardiac activity
is established. Therefore, it has obvious clinical significance
and practicability for arrhythmia.

VII. CONCLUSION
This paper proposes a new framework about ECG heart-
beat classification. This framework can simulate the think-
ing process of medical experts in diagnosing diseases, and
automatically learn the characteristics of heartbeat categories.
The significance of this study is to provide better clinical
monitoring, diagnosis and treatment for heart disease patient.

Highlights of this paper are listed as follows:
(1) The BiLSTM-Attention model is used to extract and

describe the feature of ECG automatically to learn the poten-
tial correlation between a individual heartbeat internal data
and the relationship of the different individual heartbeats in
massive ECG data.

(2) The interpretability analysis of the learning content
of the BiLSTM-Attention algorithm model is carried out by
constructing feature sets of different ECG prior knowledge.

(3) The experimental results show that the BiLSTM-
Attention model with heartbeat activity’s global sequence
features can effectively simplify the feature extraction pro-
cedure and improve the accuracy of heartbeat classification.

However, in order to achieve higher accuracy, this method
needs a large amount of ECG data. Because of the complexity
of BiLSTM-Attention model, the time complexity of the
algorithm is greatly increased. To ensure the real-time perfor-
mance of the BiLSTM-Attention algorithm, future research
will focus on cloud computing and parallel programming
technology.
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