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ABSTRACT Near infrared (NIR) images have clear textures but do not contain color. In this paper, we pro-
pose NIR to RGB domain translation using asymmetric cycle generative adversarial networks (ACGANs).
The RGB image (3 channels) has richer information than the NIR image (1 channel), whichmakes NIR-RGB
domain translation asymmetric in information.We adopt asymmetric cycle GANs that have different network
capacities according to the translation direction. We combine UNet and ResNet in generator and use the
feature pyramid networks (FPNs) in discriminator. With the help of a 128 × 128 large receptive field,
we capture rich spatial context information with a multiscale architecture. Experimental results show that
the proposed method achieves natural looking NIR colorization results with high generalization ability,
i.e. feasible in category unaware cases, and outperforms state-of-the-art ones in realistic colorization and
resistance to unregistration.

INDEX TERMS NIR colorization, asymmetric cycle GAN, domain translation, feature pyramid networks,
ResNet, UNet.

I. INTRODUCTION
In low light condition, color (RGB) cameras capture noisy
images with loss of color and texture. Near infrared (NIR)
cameras are commonly equipped in public to consider the
low light condition. NIR images contain details and textures
even in low light condition. Thanks to this property, NIR
images are usually used in nighttime for object detection
systems [1]–[3] or human assistant systems [4]. NIR images
are also used as an important cue for RGB color correction,
detail enhancement and haze removal by fusion [5]–[13].
However, NIR images are of one channel (no color infor-
mation), and are much different from human visual percep-
tion. Meanwhile, color information is not always available
especially in low light condition. Therefore, NIR to RGB
domain translation is required. NIR to RGB domain transla-
tion, also called NIR colorization, is an ill-posed problem that
projects a single channel NIR image into a three channel RGB
image. This projection is difficult because the RGB domain
distribution is too complex and hard to be constrained by a
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certain rule. In this work, we address the NIR to RGB domain
translation problem and generate plausible RGB images from
only NIR images. The generated RGB images are not nec-
essary to be exactly the same as common truth. However,
the textures in the NIR domain should be transferred to the
RGB domain, and colors of the translated RGB image should
be natural looking.

A. RELATED WORK
The NIR colorization is similar to gray image colorization,
but it has some significant differences from it. Although the
NIR colorization is not a spotlight in computer vision yet,
gray image colorization has already received much attention
in recent years [15]–[22]. In early image colorization work,
the color domain ambiguity problem is not effectively han-
dled. Thus, human interactions or reference color images are
necessary [20]–[22]. Example basedmethod is also presented
in [23], which is similar to the input reference color image.
With the introduction of deep learning, convolutional neural
networks (CNNs) are successfully applied to the single gray
image based colorization [16], [19], [24], [25]. In general,
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spatial context is the main cue for the learning based image
translation approaches. Image pairs in two domains are sup-
posed to have the same distribution in edges and textures.
According to the local spatial context information, color esti-
mation is conducted by a deep neural network. In recent years,
generative adversarial networks (GANs) play an important
role in this area because the cross domain translation is an ill-
posed problem [26]. Themapping target is highly ambiguous,
that one input can be registered to multi-probable targets.
Generation based methods are proven to be effective in this
situation because GANs approximate an unknown distribu-
tion with generator instead of learning a sample-wise rela-
tionship. GANs have a discriminator D which discriminates
the real and fake samples, and have a generator G to generate
a fake sample with a random input trying to fool the descrim-
inator.G andD have an adversarial training objective defined
by (1) in [26], and are trained alternately. Furthermore, GANs
are extended to a conditional style to control the generator
output [27].

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1− D(G(z)))] (1)

One of the most remarkable generation based image col-
orization work is Pix2Pix [17]. Pix2Pix used UNet [28] and
L1-norm to enhance the local performance. Although Pix2Pix
performs well in the grayscale colorization, it is not qualified
in the NIR colorization. The NIR colorization has some dif-
ferences from the grayscale colorization. First, the grayscale
colorization is mostly seen as chrominance estimation, and
the luminance between grayscale and RGB images is sup-
posed to be identical. However, for NIR imaging, the light
source is totally different from RGB imaging. The wave-
length for NIR imaging ranges [780nm, 1000nm], while the
wavelength for RGB imaging ranges [380nm, 780nm].More-
over, the difference is not only from the wavelength but also
from additional active light sources. These differences break
the pixel-wise consistency in textures between two domains.
Up to the present, there are several researches to deal with
the NIR colorization problem [29], [30]. Dong et al. [30]
proposed an end-to-end network for NIR colorization based
on UNet. Suarez et al. [31] proposed a triplet deep convo-
lutional GAN (DCGAN) model [32] and improved its col-
orization performance by the validation on training loss [33].
In addition to the light source difference, capturing RGB-NIR
pairs in the same view point simultaneously is a difficult
task. The existing open datasets often fail in pixel-wise reg-
istration. Some approaches solve this problem by remov-
ing the unregistered outliers [30], [31], [33]. However, data
cleaning is labour intensive, and data reduction is undesir-
able for deep learning. Fortunately, the cycle GAN [14],
which is designed for training GANs with unpaired sam-
ples, has a good resistance against unregistration. Fig. 1
illustrates the cycle GAN framework. The cycle GAN cal-
culates the cyclic loss L(A,F(G(A))) instead of single direc-
tional loss L(G(A),B) to gain a resistance against unregisterd

sample pairs. However, the cyclic loss can not guarantee
a high resolution result. To gain a plausible result with
high resolution, Liu et al. presented unsupervised image
to image translation networks (UNIT) [34] based on the
shared latent space assumption [35]. The shared latent space
assumption supposes that a pair of corresponding images in
different domains can be mapped to the same latent represen-
tation in a shared-latent space. UNIT uses variational autoen-
coder (VAE) to learn the projection from the sample space
to the latent space, and utilizes generator to learn the inverse
projection. By sharing the parameters in the ending layers of
VAE and beginning layers of generator, UNIT forces the sam-
ples in different domains projected in the same shared latent
space. Inspired by UNIT, bicycle GAN [36] and DRIT [37]
achieve better results by using additional projection modules.
With respect to the subjective assessment in DRIT, the present
shared latent space based methods yield more diverse and
plausible results compared with cycle GAN. However, cycle
GAN still wins reality in the domain translation.

B. CONTRIBUTIONS
To achieve realistic colorization and resistance to unregis-
tration, we use a cycle GAN based framework. Different
from traditional cycle GAN, we build an asymmetric model
which has different architectures according to the translation
direction.Most of image to image translationmethods such as
cycleGANsUNIT andDRIT are designed for general domain
translations. In their methodology, two translation directions
are modeled by the same architecture and the projections
are preferred to be invertible. However, in NIR coloriza-
tion, the RGB domain has more information than the NIR
domain. The RGB toNIR projection is a much easier problem
than the inverse projection. Hence, we propose an asymmetric
model architecture which has different complexities in two
projection directions.

Compared with existing methods, the main contributions
of this paper are as follows:
• We adopt cycle GANs for the NIR to RGB domain trans-
lation to deal with the unregistration problem between
two domains.

• We utilize an asymmetric structure to consider different
network capacities according to translation direction.

• We combine UNet and ResNet in generator to increase
the network depth, while we use FPN in discriminator to
capture spatial context information.

The rest of this paper is organized as follows: In Section II,
we introduce the proposed networks for generator and dis-
criminator including their architectures and training proce-
dures. In Section III, we perform several experiments to prove
the proposed method. Section III.A compares the proposed
method with state-of-the-art ones in both NIR colorization
and image to image translation under scene type aware and
unaware conditions, and shows both the quantitative and
visual comparison results. In Section III.B, we make ablation
experiments to discuss the contributions of each component.
At last, we conclude this work in Section IV.
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FIGURE 1. NIR to RGB domain translation using asymmetric cycle GAN, redrawn from [14]. Single directional model often calculates L1 norm
L(fake B, real B) as training loss. When real A is not registered with real B, the training loss is confused by unregistration but the cyclic loss
L(real A, F (G(real A))) is unaffected by unregistration.

II. PROPOSED METHOD
Different from the original cycle GAN, the proposed cycle
GAN follows an asymmetric style. Since the NIR coloriza-
tion is a mapping problem from single-channel to multi-
channel, NIR→RGB has larger complexity and ambiguity
than RGB→NIR. However, the original cycle GAN was
designed for general image domain translation, and it is
symmetric. In NIR colorization, the RGB domain has more
information than the NIR domain. RGB to NIR projection
is a much easier problem than the inverse projection. It is
inefficient to use the same complex architecture in the inverse
direction. Hence, we propose an asymmetric model archi-
tecture which has different complexities in two projectional
directions. Thus, we specialize traditional cycle GAN into an
asymmetric style as shown in Fig. 2. We assign different net-
work architectures to generator and discriminator according
to mapping directions.

A. ASYMMETRIC GENERATORS
Generators in both directions use UNet modules because
UNet effectively preserves low level and high resolution
features. In NIR colorization, we regard the textures as low
semantic level features. UNet can effectively preserve the
edges and textures. Thus, it is powerful enough for the
RGB→NIR translation. However, the colorization according

FIGURE 2. Asymmetric network architecture for the proposed cycle GAN.

to context is a high level semantic work. It is implicit to
understand the scene at the object level and assign color to
it. The standard UNet is not enough to model this problem,
and thus we add a ResNet block in the UNet architecture for
GAB to enlarge its capacity. The ResNet blocks are embedded
in the innermost layer of UNet because this style spends
more capacities in capturing high level features. The detailed
architecture ofGAB is shown in Fig. 3. Besides, pooling layers
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FIGURE 3. Network architecture of the generator. We combine UNet and
ResNet into the generator.

FIGURE 4. Training process and loss calculations. A: Real NIR. A’: Fake
NIR. B: Real RGB. B’: Fake RGB.

are substituted by dilated convolutions [38], and dropout lay-
ers [39] follow upsampling convolution instead of the random
input. It makes the generator a fully convolutional style as
illustrated in Fig. 3.

B. ASYMMETRIC DISCRIMINATORS
The discriminator also follows the asymmetric style. The
RGB to grayscale domain translation is a relatively easy task.
Grayscale image colorization can even bemodeled by a linear
mapping. Similar to RGB→grayscale, RGB→NIR is not a
very complex task. Thus, CNN is enough for DBA. In DAB,
we use the feature pyramid network (FPN) strategy for a
better discrimination. FPN successfully captures both seman-
tics and scales from convolutions. During the convolutional
process, the semantic level increases as the receptive field
increases. Objects are difficult to find the proper scale and

FIGURE 5. Domain translation results in the category aware dataset.
In each block, the left column is the original patch and the right column is
the zoomed patch (4 times).

semantic level, especially for small objects. FPN has top-
down and bottom-up paths. The bottom-up path is a general
CNN forward process. In the top-down path, high level fea-
tures are upsampled and added to the low level ones. This
procedure brings high level semantic information to a small
scale feature map. FPN is proved to be effective in local
context based applications such as object detection, object
recognition, and segmentation [40]. The NIR colorization
is a local context based application, and thus it benefits
from FPN.

C. MODEL TRAINING
The training process of the proposed cycle GAN is illustrated
in Fig. 4. Total loss consists of two directional GAN loss and
reconstruction loss as follows:

Total_loss = min
G

max
D
{LGAN (GAB,DB,A,B)

+ λ1LGAN (GBA,DA,A,B)

+ λ2Lrec(GAB,GBA,A,B)}, (2)

The main difference from the original cycle GAN loss is L1
norm between the original and fake images. LGAN is defined
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TABLE 1. Performance comparison in terms of angular error (AE) and structural similarity (SSIM).

TABLE 2. Performance comparison in terms of the training time and stability to unregistration.

FIGURE 6. Domain translation comparison in the category unaware dataset.

as follows:
LGAN (GAB,DB,A,B) = E[logDB(B)]

+ λ3E[log(1− DB(GAB(A)))]
+ λ4||A− GAB(A)||1 (3)

LGAN (GBA,DA,A,B) = E[logDA(A)]

+ λ3E[log(1− DA(GBA(B)))]

+ λ4||B− GBA(B)||1 (4)
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FIGURE 7. Input NIR images.

The reconstruction loss follows the original cycle GAN as
follows:

Lrec(GAB,GBA,A,B) = E[||GBA(GAB(A))− A||1]

+ E[||GAB(GBA(B))− B||1] (5)

Lrec and LGAN are jointly optimized in Total_loss. Due
to the unregistration between RGB and NIR, the two losses
sometimes contradict each other. Parameters λ1 and λ2 con-
trol the trade-off between generation accuracy and robust-
ness to the unregistration. GAN based models are difficult
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FIGURE 8. NIR colorization results of Fig. 7 by the proposed method.

for training. Thus, batch normalization is used to help the
training convergence [41].

III. EXPERIMENTAL RESULTS
We train the proposed asymmetric cycle GAN using a
PC with Intel i7 3.6GHz CPU and one NVIDIA GTX

1080Ti GPU. Training for one epoch in each scene category
takes 3.1 hours in average. We use IVRL RGB-NIR scene
dataset [42], which contains 477 image pairs with resolution
of 1024 × 680 captured from 9 categories of scenes. The
dataset is available at https://ivrl.epfl.ch/research-2/resea-
rch-downloads/supplementary_material-cvpr11-index-html/.
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FIGURE 9. Performance comparison between the proposed asymmetric cycle GAN and Pix2Pix. We use coarsely registered data to show the robustness
to the unregistration.

TABLE 3. Performance comparison in terms of angular error (AE) and structural similarity (SSIM).

Image pairs in this dataset are coarsely registered by [42]
using a global calibration method, and thus the pixelwise
registration are not ensured. We compare the evaluation
results of the proposed method with those of the state-of-
the-art methods: Triplet DCGAN [31], Stacked Conditional
GAN [33], Cycle GAN [14], and UNIT [34]. Reference [33]
randomly crops the dataset into 64 × 64 patches. We crop
the images into 146,8000 patches whose size is 256 ×
256 to fit 128 × 128 receptive field. For a fair comparison,
this sampling ratio is adjusted to 0.0079, i.e. no more than
0.0083 [33].

A. MAIN EXPERIMENTS
We perform two experiments to prove the effectiveness of
the proposed method. Experiment I is performed on a scene
category aware dataset. The models are separately trained
and evaluated for each scene category. In Experiment II,
we perform evaluations in a category unaware dataset. Since
the category is unknown, this experiment verifies general-
ization ability of the proposed method. The different scenes
in [42] are merged into the training dataset of Experiment II.
Data distribution gets randomized without the scene category
constraint. Note that more samples with large diversity lead to

better generalization performance. Experiments I and II have
16 training epochs. The training steps keep consistency in
the first 8 epochs while fading to zero linearly in the second
8 epochs. Since GAN produces plausible results instead of
pixel-wise precise results, quantitative evaluations for the
NIR colorization are difficult. When NIR is unregistered with
RGB, the ground truth is not really true. In this case, pixel-
wise assessment does not make sense. Therefore, we remove
the unregistered pairs in quantitative evaluations. For quanti-
tative evaluations, we use angular error (AE) and structural
similarity (SSIM) [43] as evaluation metrics. It has been
reported that AE is the most similar to the human vision [44].
The parameters defined in Eqs. (2), (3), and (4) are empiri-
cally set, aiming to keep intermediate results (fake A, fake B,
rec A, rec B) by the same step, where λ1 = 1, λ2 = 0.6,
λ3 = 0.6, λ4 = 0.6.

1) SCENE CATEGORY AWARE
We crop 5000 patches for visual evaluations, while we crop
another 5000 correctly matched patches for quantitative eval-
uations. Fig. 5 shows some NIR colorization results in Exper-
iment I. Some contradictions between ground truth RGB and
NIR images appear. We provide performance comparison
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FIGURE 10. Performance comparison under different receptive field sizes.

in Table 1. The proposed model is trained in an unregistered
dataset. Small translative distortions often appear in fake
RGB images. The human eyes are not very sensitive to the
translative distortion in NIR colorization. Since the MSE is
sensitive to the translative distortion, we do not report the
MSE evaluations. Table 2 shows performance comparisons
in terms of the training time per epoch and stability to
unregisteration.

2) SCENE CATEGORY UNAWARE
RGB images of the category unaware dataset have larger
ambiguity than those of the category aware dataset. Artifi-
cial object scenes are more difficult in the NIR colorization
than natural scenes due to their ambiguity. Fig. 6 shows
a visual comparison among the proposed method, Cycle
GAN [14], and UNIT [34]. The main difference between
Cycle GAN and the proposed method is the asymmetric
strategy. Since conventional quantitative measurements are
not very effective in the coarsely registered and unregistered
data, we provide more NIR images and their colorization
results in Figs. 7 and 8.

B. ABLATION STUDIES
We conduct three ablation studies to analyze the contribu-
tion of each component. The ablations are carried on the

same dataset as the main experiments. The training dataset
is coarsely registered by [42], i.e. the pixelwise registration is
not guaranteed. All quantitative measurement are performed
on the manually registered subset whose pixels are precisely
registered.

1) COMPARISON WITH Pix2Pix
We compare the visual performance with Pix2Pix [17] on
the mountain subset. Since the mountain subset is not well
registered compared with other categories, the comparison
verifies the effectiveness of a cyclic loss in solving the
pixelwise unregistration problem. The proposed asymmet-
ric cycle GAN jointly estimate the image translation by
GAB and GBA, but Pix2Pix has only unilateral projection. For
a fair comparison, we make Gpix2pix the same network depth
asGCycleAB + GCycleBA by additional ResNet blocks. As men-
tioned before, the quantitativemeasurements are not available
in the unregistered case. The results are shown in Fig. 9.
The results show that Pix2Pix is confused by unregistration
especially in sharp regions. However, our asymmetric cycle
GAN produces natural looking results in this case.

2) FPN vs CONVOLUTION
We use FPN in the RGB domain discriminator. To prove the
contribution of FPN, we perform both visual and quantitative
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comparison between FPN discriminator and fully convo-
lutional discriminator without a multiscale solution. The
quantitative comparison is found in Table 3 (see the first
and second rows). As a result, FPN discriminator achieves
2.6 degree gain in average AE and 0.9 gain in average SSIM
over fully convolutional discriminator. The visual compari-
son is demonstrated in Fig. 10. Note that all networks are
trained on the scene category unaware dataset [42].

3) RECEPTIVE FIELD SIZE
It is intuitively supposed that a larger receptive field cap-
tures richer context information. We expect that the NIR
colorization can benefit from a large receptive field. To this
end, we narrow the receptive field size by 128→64→32
(a larger receptive field than 128× 128 is not supported by the
current amount of data), and compare their performances on
the scene category unaware dataset. The visual comparison
is shown in Fig. 10. The experimental results shows that
the colorization performance declines as the receptive field
size decreases. Moreover, the scene category unaware NIR
colorization is difficult by a 32 × 32 receptive field.

IV. CONCLUSION
In this paper, we have proposed a novel asymmetric cycle
GAN for the NIR to RGB domain translation. Since the
RGB image with three channels has richer information than
the NIR image with one channel, we have built cycle GAN
in an asymmetric manner. Thus, the proposed asymmetric
cycle GAN is very robust to the data unregistration caused
by luminance difference between RGB and NIR. Experimen-
tal results demonstrate that the proposed method achieves
competitive performance to state-of-the-art methods in both
category aware and unaware datasets. Moreover, the pro-
posed method has a good generalization by adapting to the
scene category unaware case. Thus, it can be enhanced by
increasing a larger receptive field and the amount of data.
FPN also contributes to the improvement of the NIR coloriza-
tion performance by effectively considering spatial context
information.
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