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ABSTRACT Source localization based on the hybrid time-difference-of-arrival (TDOA) and frequency-
difference-of-arrival (FDOA) measurements from distributed sensors is an essential problem in wireless
sensor networks (WSNs). In this paper, we mainly study the optimal sensor deployment and velocity
configuration of UAV swarms mounted with TDOA and FDOA based sensors. Explicit solutions of optimal
sensor deployment and velocity configuration are acquired in both static and movable source scenarios based
on the Fisher information matrix (FIM). Both centralized and decentralized localization are explored to meet
different types of localization methods. Path planning problem of UAV swarms in TDOA/FDOA localization
is also studied with constraints. Simulations verify its efficiency with path planning in TDOA and FDOA
localization.

INDEX TERMS Time-difference-of-arrival (TDOA), frequency-difference-of-arrival (FDOA), sensor
deployment, fisher information matrix, path planning.

I. INTRODUCTION
Localization of a radio frequency (RF) with static and mov-
able sensors has received significant interest in both civil and
defense applications, such as search, rescue, and surveillance.
The measurements from spatially distributed sensors are the
efficient way to estimate the location of a non-cooperative
source. Several types of measurements can be used such
as time-difference-of-arrival (TDOA) [1], angle-of-arrival
(AOA) [2], received signal strength (RSS) [3], or a combi-
nation of them. Frequency differences of arrival (FDOA) can
also be applied to improve localization accuracy, when the
source and the sensors are relatively moving. Here, in this
paper, we consider the source localization with hybrid TDOA
and FDOA measurements.

Many TDOA/FDOA localization algorithms have been
studied in the literatures, e.g., two-step weighted least square
(WLS) method, constrained quadratic programming [4],
pseudolinear estimation [5] and the constrained weighted
least squares (CWLS) method [6]. Kalman filters based on
TDOA and FDOA measurements are also applied in [7], [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingchun Chen.

It is well known that the geometric placement of sensors in
the localization can significantly influence the localization
accuracy. Bishop and Jensfelt [9]–[12] firstly studied the
optimal deployment of homogeneous sensors, i.e., AOA, RSS
and TOA (time-of-arrival), respectively. The determinant of
FIM was applied as the optimal criterion to analysis the
different geometries in different types of localization. Yang
[13] and Rui and Ho [14] studied the optimal deployment of
TDOA localization by minimizing the trace of Cramer-Rao
low bound (CRLB). Zhao et al. [15] cast the optimal homoge-
neous sensor deployment problem into parameter optimiza-
tion problem and frame theory was applied to solve it.

Recently, placement of the heterogeneous sensors has
drawn a considerable amount of attention. Yang et al. [16]
preliminarily considered the two-group and paired strate-
gies in heterogeneous sensor localization, which was also
based on the FIM in hybrid TOA and AOA localization.
Lee et al. [17] studied the hybrid AOA and TOA localiza-
tion on unmanned aerial vehicle (UAV) platforms. Meng
et al. [18] studied explicit characterizations of the optimal
geometries in hybrid TOA, AOA and TDOA localization.
Liang and Jia [19] proposed the optimal placements of
TOA/AOA/RSS sensors with distance-dependent noise and
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constrained regions were studied based on the Cramer-Rao
low bound (CRLB). Moreover, other types of hybrid local-
ization i.e., hybrid AOA/RSS [20], AOA/FDOA [21] are also
discussed.

Unlike other types of localization methods, FDOA allows
for estimating the velocity of a moving source. Geometric
dilution of precision (GDOP) is another criterion considered
in a number of papers. In hybrid TDOA/FDOA localization,
Guo et al. [22] studied the optimal deployment of a dual
satellite system through geometric dilution of precision
(GDOP). The performances of satellite altitude, satel-
lite distance as well as velocities are considered. Kim
et. al. [23], [24] studied the relationship between the linear
velocity and localization accuracy. Some fixed sensor geome-
tries and manoeuvre strategies are chosen for localization.
Hmam [25] mainly studied the velocity configurations for
sensor pairs to achieve optimal localization of a stationary
source.

In this paper, we extend the two sensors to sensor net-
works. The optimal deployments and velocity configura-
tion of both centralized and decentralized localization are
considered based on FIM in the static source scenario.
Different with the other types of localization methods, source
localization that based on the FDOA measurements needs
more control on the sensor velocities. We find that the
optimal deployment and velocity configuration is related
to both the angular separation and angular velocities with
respect to the source. We also propose preliminary analysis
on the optimal deployment and velocity configuration in
movable source scenario. For a better visibility of sources,
we extend our work on path planning of UAV swarms,
which are mounted with TDOA/FDOA sensors. FIM and
posterior error covariance is adopted as the objective func-
tion for sensor-source geometry and velocity optimization.
And the constrained nonlinear optimization problem is stud-
ied to obtain a sequence of optimized waypoints for UAV
swarms.

The rest of this paper is organized as follows.
Section 2 presents the problem statement in TDOA/FDOA
localization. Section 3 and 4 provide the theoretical analysis
on sensor pair geometries, for both centralized and decen-
tralized localization in static and movable source scenarios,
respectively. In section 5, path planning problem is consid-
ered. Section 6 provides some examples to verify the findings
in Section 3 and 4. Section 7 concludes the paper.

II. PROBLEM STATEMENT
We consider a two-dimensional (2-D) scenario where M
moving sensors are applied to estimate the position xp =[
xp, yp

]T and velocity vp =
[
vpx , vpy

]T of a source using
TDOA and FDOA measurements. The moving sensor posi-
tions xi = [xi, yi]T and velocities vi =

[
vix , viy

]T are
assumed known. Our aim is to obtain a higher localization
and tracking accuracy from TDOA and FDOAmeasurements
through pursuing optimal sensor deployment and velocity
configuration.

For sensor i and j, the TDOA measurement in the range
domain is obtained by:

rij = rti − rtj, i, j ∈ {1, . . . ,M} ∧ j 6= i, (1)

where rti =
∥∥xp − xi

∥∥ is the distance between the source
and TDOA sensor. Let vi be the TOA estimation error, which
is assumed to be Gaussian. Let σ 2

ri denote the measurement
variance of the i-th receiver of the UAV platform, then the
measurement noise vij = vi + vj is composed of the noises at
the two associated receivers and has the covariance σ 2

ri + σ
2
rj.

Therefore, the TDOA measurement vector at the time k is
given by:

r̂ =
[
r̂21, r̂31, . . . , r̂M1

]T
= r(xp)+ wr , (2)

wherewr = [v12, v13, . . . , v1M ]T with covariance matrix6r .
By taking the time derivative, the range rate of the i-th

sensor and the source can be written as

ṙi =

(
vp − vi

)T (xp − xi
)

ri
=
(
vp − vi

)T ui, (3)

where ui is a unit vector of the radius vector. Thus the
Doppler-shift measurement is

fi =
f0
c

(
vp − vi

)T ui. (4)

Therefore, the FDOA measurement between the i-th and
the j-th sensor is

fij = fi − fj =
f0
c

((
vp − vi

)T ui −
(
vp − vj

)T uj
)
, (5)

where f0 is the carrier frequency of the signal, c is the speed
of the signal propagation.

Similarly, we assume that the FDOAmeasurements follow
a Gaussian distribution. Then the FDOAmeasurement vector
is given by

f̂ =
[
f̂21, f̂31, . . . , f̂M1

]T
= f(xp)+ wf , (6)

where, wf is the measurement error with covariance
matrix 6f .

Combining the observed TDOA and FDOAmeasurements,
the total measurements vector is given by

ẑ = z+ w =
[
r
f

]
+

[
wr
wf

]
. (7)

The corresponding measurement noise vector is

6 = E
[
wwT

]
= E

[[
wT
r wT

f

]T [
wT
r wT

f

]]
=

[
6r 0
0 6f

]
.

(8)

III. OPTIMAL DEPLOYMENT AND VELOCITY
CONFIGURATION FOR TDOA/FDOA LOCALIZATION
OF A STATIC SOURCE
A. CENTRALIZED LOCALIZATION
Centralized localization is commonly used in the existing
localization systemwith a common reference sensor to obtain
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the TDOA measurements. For the centralized sensor pairing,
let the i-th receiver be the reference receiver and the others as
auxiliary receivers, then the TDOA and FDOAmeasurements
are r = [r21, r31, · · · rM1], f = [f21, f31, · · · fM1], the variance
matrix of measurement matrix ẑ consisting of M − 1 mea-
surements can be represented as [26]:

6r = 0.5σ 2
r

[
I+ 11T

]
, (9)

6f = 0.5σ 2
f

[
I+ 11T

]
, (10)

where 1 ∈ RM−1 is the vector with all entries equal to 1.
As pointed out in [27], arbitrarily selecting a reference

sensor does not change the FIM for TDOA-based source
localization. Here, we extend it to the FDOA model. Let
Corollary 1: Given the positions of the receivers and

source, i.e. given distance ri and bearing angle φi ∈ [0, 2π),
the selection of reference receiver have no impact on the FIM
of the FDOA.

Proof: Without loss of generality, assume that
receiver 1 and 2 are taken as the reference receivers, respec-
tively. Then the FDOAmeasurements with different reference
receivers can be represented as

ẑf 1 =
[
ẑf 21 ẑf 31 · · · ẑfM1

]T
= T1

[
ẑf 1 ẑf 2 · · · ẑfM

]T
, (11)

ẑf 2 =
[
ẑf 12 ẑf 32 · · · ẑfM2

]T
= T2

[
ẑf 1 ẑf 2 · · · ẑfM

]T
, (12)

where T1 and T2 are transformation matrices and are all of
dimension (M − 1)×M . And T1 and T2 can be represented
as

T1 =


−1 1 0 · · · 0

−1 0
. . .

. . .
...

...
...

. . .
. . . 0

−1 0 · · · 0 1

,

T2 =


1 −1 0 · · · 0

0 −1 1 0
...

...
... 0

. . . 0
0 −1 0 0 1

.
We can see that through an element transformation matrix,

T2 can be transformed into T1, i.e.,

T2 = U21T1, (13)

where, U21 is an (M − 1)× (M − 1) elementary transforma-
tion matrix.

Let6f 1,6f 2 denote the covariancewith different reference
receivers. It is easy to obtain that

∂zf 2
∂xp
=
∂zf 1
∂xp

UT
21, (14)

6f 2 = U216f 1UT
21. (15)

FIGURE 1. Geometry and vector notations for moving source location.

Then Jf 2 can be written as

Jf 2 =
∂zf 2
∂xp

6−1f 2

(
∂zf 2
∂xp

)T
=
∂zf 1
∂xp

UT
21

(
U216f 1UT

21

)−1 (∂zf 1
∂xp

UT
21

)T
=
∂zf 1
∂xp

(
UT
21

(
UT
21

)−1)
6−1f 1

((
UT
21

)−1
UT
21

)(
∂zf 1
∂xp

)T
=
∂zf 1
∂xp

6−1f 1

(
∂zf 1
∂xp

)T
= Jf 1. (16)

Therefore, the selection of reference receiver has no impact
on the FIM of the FDOA. For convenience, in this paper,
the 1-st receiver is the reference receiver. In static source
scenario, i.e. vp = [0, 0]T , then the FDOA measurement is
given by

fi1 =
f0
c

(
vTi ui − vT1 u1

)
=

f0
c
(vi cosφi − v1 cosφ1) , i = 2, · · ·M . (17)

The partial derivative ∂fi1/∂xp can be written as

∂fi1
∂xp
=

f0
c

((
yp − yi

) ((
yi − yp

)
vix +

(
xp − xi

)
viy
)∥∥xp − xi

∥∥3
−

(
yp − y1

) ((
y1 − yp

)
v1x + (px − p1x) v1y

)∥∥xp − x1
∥∥3

)

=
f0
c

(
v1x sin2 φ1 − v1y sinφ1 cosφ1

r1

−
vix sin2 φi − viy sinφi cosφi

ri

)

=
f0
c

(
v1x sinφ1 − v1y cosφ1

r1
sinφ1

−
vix sinφi − viy cosφi

ri
sinφi

)
=

f0
c
(ωi sinφi − ω1 sinφ1), (18)

where ωi =
vix sinφi−viy cosφi

ri
is the angular velocity of the i-th

sensor with respect to the source. From Fig. 1, it is obvious
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that when ωi > 0, the sensor is in anti-clockwise rotation.
When ωi < 0, the sensor is in clockwise rotation. Similarly,
we have

∂fi1
∂py
=
f0
c
(ω1 cosφ1 − ωi cosφi). (19)

Then the FIM of FDOA is given by

JF_static = G6−1f GT , (20)

with

G =
[
gij, . . .

]
{i,j}∈Ic , (21)

gij = gi − gj, (22)

gi =
[
ωi sinφi
−ωi cosφi

]
, (23)

where Ic = [{2, 1} , {3, 1} , . . . , {M , 1}]. Thus the explicit
expression of FIM of FDOA can be written as

JTF_static

=
2

σ 2
f


M∑
i=1

ω2
i sin

2(φi)−
1
M

(
M∑
i=1

ωi sinφi

)2

1
M

M∑
i=1

ωi cosφi
M∑
i=1

ωi sinφi−
M∑
i=1

ω2
i cos(φi) sin(φi)

1
M

M∑
i=1

ωi cosφi
M∑
i=1

ωi sinφi −
M∑
i=1

ω2
i cos(φi) sin(φi)

M∑
i=1

ω2
i cos

2(φi)−
1
M

(
M∑
i=1

ωi cosφi

)2

.
(24)

Given the TDOA/FDOA measurement vector ẑ, the FIM,
i.e., JTF_static, for hybrid TDOA/FDOA-based localization of
a static source is given by (25), as shown at the top of the next
page, where ∇xpr(xp)

T6−1r ∇xpr(xp) is the FIM of TDOA
measurement which appears in [28] by Lui et.al.

When M = 2, the FIM can be simplified into (26), as
shown at the top of the next page.
Corollary 2: Consider the centralized source localization

with hybrid TDOA and FDOA measurements with two sen-
sor platforms. ω1, ω2 denote the angular velocities, whose
magnitude is ωmax. φ1, φ2 denote the bearing angles. Then
the optimal deployment and the velocity configuration is

φ1 − φ2 = ±π, ω1ω2 > 0. (27)

Proof:According to (26), the determinant of FIM can be
written as

det(JTF_static) = (ω1 + ω2)
2 (cos (φ1 − φ2)− 1)2 /σ 2

r σ
2
f .

(28)

Then using the D-optimality criterion, we obtain the fol-
lowing optimization problem

argmax
ω1,ω2,φ1,φ2

(ω1 + ω2)
2 (cos (φ1 − φ2)− 1)2 , (29)

FIGURE 2. Optimal deployment and velocity configuration for centralized
localization with two sensors.

which impliesφ1−φ2 = π ,ω1ω2 > 0. Therefore, the optimal
deployment is a 180◦ bearing angle separation between the
two platforms. And the angular velocities ω1, ω2 should be
in the same direction of rotation. It is clear that as the angular
velocity increases, the localization accuracy improves.
Example 1: Combining the optimal deployment and the

angular velocity, a stable deployment is obtained when ω1 =

ω2 = ωmax. Fig. 2 provides an illustration of the optimal
sensor deployment, it is important to note that the optimal
deployment of two platforms do not depend on the angular
velocities, i.e., ω1, ω2. However, when M > 2, the problem
becomes more complicated and we will show that the optimal
sensor angular separations are related to the angular veloci-
ties.
Corollary 3: Consider the centralized source local-

ization with hybrid TDOA and FDOA measurements
with M sensor platforms. Given the angular velocities,
i.e., ω1, ω2, · · · , ωM , the determinant is upper bounded by(
M2
/
σ 2
r +

M∑
i=1
ω2
i

/
σ 2
f

)2

, which is achieved if and only if

M∑
i=1

cosφi =
M∑
i=1

sinφi =
M∑
i=1

sin(2φi)

=

M∑
i=1

cos(2φi) = 0,

M∑
i=1

ωi cosφi =
M∑
i=1

ωi sinφi =
M∑
i=1

ω2
i cos 2φi

=

M∑
i=1

ω2
i sin 2φi = 0. (30)

From the upper bound and the optimal conditions, the opti-
mal deployment and velocity of sensors are related to the
angular separations and the angular velocities. For the sensors
with fixed velocity, the angular velocities vary with the veloc-
ity direction and the range between the sensor and the source.
For given velocities of UAVs, ω1 = ω2 = . . . ,= ωmax can
be acquired with minimum distance between sensors and the
source.
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JTF_static
= ∇xpr(xp)

T6−1r ∇xpr(xp)+∇xp f(xp)
T6−1f ∇xp f(xp)

= 2


1
σ 2
r

M∑
i=1

cos2(φi)−
1

Mσ 2
r

(
M∑
i=1

cosφi

)2

+
1

σ 2
f

M∑
i=1

ω2
i sin

2(φi)−
1

Mσ 2
f

(
M∑
i=1

ωi sinφi

)2

1
σ 2
r

M∑
i=1

cos(φi) sin(φi)−
1

Mσ 2
r

M∑
i=1

cosφi
M∑
i=1

sinφi +
1

Mσ 2
f

M∑
i=1

ωi cosφi
M∑
i=1

ωi sinφi −
1

σ 2
f

M∑
i=1

ω2
i cos(φi) sin(φi)

1
σ 2
r

M∑
i=1

cos(φi) sin(φi)−
1

Mσ 2
r

M∑
i=1

cosφi
M∑
i=1

sinφi +
1

Mσ 2
f

M∑
i=1

ωi cosφi
M∑
i=1

ωi sinφi −
1

σ 2
f

M∑
i=1

ω2
i cos(φi) sin(φi)

1
σ 2
r

M∑
i=1

sin2(φi)−
1

Mσ 2
r

(
M∑
i=1

sinφi

)2

+
1

σ 2
f

M∑
i=1

ω2
i cos

2(φi)−
1

Mσ 2
f

(
M∑
i=1

ωi cosφi

)2

,
(25)

JTF_static =


1
σ 2
r
(cosφ1 − cosφ2)2 +

1

σ 2
f

(ω1 sinφ1 − ω2 sinφ2)2

1
σ 2
r
(cosφ1 − cosφ2) (sinφ1 − sinφ2)−

1

σ 2
f

(ω1 cosφ1 − ω2 cosφ2) (ω1 sinφ1 − ω2 sinφ2)

1
σ 2
r
(cosφ1 − cosφ2) (sinφ1 − sinφ2)−

1

σ 2
f

(ω1 cosφ1 − ω2 cosφ2) (ω1 sinφ1 − ω2 sinφ2)

1
σ 2
r
(sinφ1 − sinφ2)2 +

1

σ 2
f

(ω1 cosφ1 − ω2 cosφ2)2

. (26)

JTF_static =


M∑
i=1

(
1
σ 2
r
cos2(φi)+

1

σ 2
f

ω2 sin2(φi)

)
−

1
σ 2
r M

(
M∑
i=1

cosφi

)2

−
ω2

σ 2
f M

(
M∑
i=1

sinφi

)2

(
1
σ 2
r
−
ω2

σ 2
f

)
M∑
i=1

cos(φi) sin(φi)−

(
1

σ 2
r M
−

ω2

σ 2
f M

)(
M∑
i=1

cosφi
M∑
i=1

sinφi

)
(

1
σ 2
r
−
ω2

σ 2
f

)
M∑
i=1

cos(φi) sin(φi)−

(
1

σ 2
r M
−

ω2

σ 2
f M

)(
M∑
i=1

cosφi
M∑
i=1

sinφi

)
M∑
i=1

(
1
σ 2
r
sin2(φi)+

1

σ 2
f

ω2 cos2(φi)

)
−

1
σ 2
r M

(
M∑
i=1

sinφi

)2

−
ω2

σ 2
f M

(
M∑
i=1

cosφi

)2

. (31)

When ω1 = ω2 = . . . ,= ωmax, JTF_static can be simpli-
fied as (31), as shown at the top of this page.
Proposition 1: Consider the centralized source localiza-

tion with hybrid TDOA and FDOA measurements with M
sensor platforms. For equal angular velocities, i.e., ω1 =

ωi · · · = ωM = ωmax, the determinant of FIM is given by

M2
(
1/σ 2

r + ω
2/σ 2

f

)2
.

This upper bound is obtained if and only if
M∑
i=1

cosφi = 0,
M∑
i=1

sinφi = 0,

M∑
i=1

sin(2φi) = 0,
M∑
i=1

cos(2φi) = 0. (32)

In this scenario, whenM ≥ 3, it is proved that the receiver
distribution with uniform angular arrays (UAAs) canmeet the
above conditions [28]:

φi = φ0 + 2π (i− 1)/M , i = 1, 2, . . . ,M , (33)

where, φ0 is any constant given on [0, 2π/M).
Then the minimum value of the determinant is obtained

from the uniform angular arrays, which corresponds to an
optimal sensor placement strategy in static source scenarios.
Example 2: Combine the optimal deployment and the

angular velocity, a stable deployment is obtained with UAAs
distribution and ω1 = ωi · · · = ωM = ωmax. The proposed
geometry is stable because the sensors are moving circu-
larly with the same angular velocities, their motion does not
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FIGURE 3. Optimal deployment and velocity configuration in centralized
localization with M = 3, M = 4, when ri = rj = r0. (a) stable deployment
with M = 3. (b) stable deployment with M = 4. (c) unstable deployment
with M = 4.

change the relative configuration in all time snapshots. Fig 3.
shows the optimal deployment and velocity configuration
for M = 3, M = 4, respectively. When M ≤ 5, UAAs
distribution is the unique solution of formula (32). When
M ≥ 6, even though the optimal deployment is still given by
partitions of appropriate angle each with UAAs distribution,
the UAAs distribution is one of optimal solutions.

If M is a multiple of 4, i.e., M = 4k(k = 1, 2, · · · ), then
another optimal configuration can be acquired with the sensor
angular velocities satisfy [29]:

ω1 = ω2 = · · · = ωM/2 = ωmax, (34)

ωM/2+1 = ωM/2+2 = · · · = ωM = −ωmax. (35)

Fig. 3(c) shows the proposed geometry for the optimal
sensor deployment that satisfying (30). However, this geom-
etry is unstable when the sensors are moving in the practical
application.

B. DECENTRALIZED SENSOR PAIRING
In the centralized localization, communication constraints
between the reference sensor and other sensors should be
strictly adhered. Therefore, great demands are placed on the
communication equipment, especially for large scale sensors.
Decentralized sensor pairing localization can be a practical
way to settle this problem. No common reference sensor
is applied and TDOA/FDOA measurements are collected in
pairs after which source location can be calculated between
the separated pairs.

Given an even numbers of sensors, which are grouped
into N = M/2 sensor pairs. Let I1 = [{i, j} , {k, l} ,
· · · ]I1∈I,i6=j 6=k 6=l , in decentralized sensor localization,
the FIM of TDOA can be given by [30]

JdT_static = G6−1f GT , (36)

with

G =
[
gij, gkl, . . .

]
I1∈I,i 6=j 6=k 6=l , (37)

gij =
[
cosφi
sinφi

]
, (38)

6 = σ 2
r I. (39)

Then the FIM can be written as

JdT_static =
1
σ 2
r


∑
{i,j}∈I1

(
cosφi − cosφj

)2
∑
{i,j}∈I1

(
cosφi − cosφj

) (
sinφi − sinφj

)
∑
{i,j}∈I1

(
cosφi − cosφj

) (
sinφi − sinφj

)
∑
{i,j}∈I1

(
sinφi − sinφj

)2
 .
(40)

Similarly, the FIM of FDOA can be given by

JdF_static

=
1

σ 2
f


∑
{i,j}∈I1

(
ωi sinφi − ωj sinφj

)2
∑
{i,j}∈I1

(
ωi sinφi − ωj sinφj

) (
ωj cosφj − ωi cosφi

)
∑
{i,j}∈I1

(
ωi sinφi − ωj sinφj

) (
ωj cosφj − ωi cosφi

)
∑
{i,j}∈I1

(
ωi cosφi − ωj cosφj

)2
 .
(41)

Combine (40) and (41), the hybrid FIM of TDOA and
FDOA localization in decentralized sensor pairing can be
shown as:
Corollary 4:Consider the decentralized source localization

with hybrid TDOA and FDOA measurements with N sensor
pairs. For equal angular velocities, i.e., ω1 = ωi · · · = ωM =

ω0, the determinant of FIM is given by N 2(1/σ 2
r +ω

2
max/σ

2
f ),

which is attained if and only if

φi − φj = ±π, ∀ {i, j} ∈ I1,∑
{i,j}∈I

sin 2φi = 0,
∑
{i,j}∈I

cos 2φi = 0,

∑
{i,j}∈I

sin2 φi =
∑
{i,j}∈I

cos2 φi = N/2. (43)

Proof: The proof is similar to Theorem 2 and is omitted
here.
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JdTF_static =


1
σ 2
r

∑
{i,j}∈I1

(
cosφi − cosφj

)2
+

1

σ 2
f

∑
{i,j}∈I1

(
ωi sinφi − ωj sinφj

)2
1
σ 2
r

∑
{i,j}∈I1

(
cosφi − cosφj

) (
sinφi − sinφj

)
+

1

σ 2
f

∑
{i,j}∈I1

(
ωi sinφi − ωj sinφj

) (
ωj cosφj − ωi cosφi

)
1
σ 2
r

∑
{i,j}∈I1

(
cosφi − cosφj

) (
sinφi − sinφj

)
+

1

σ 2
f

∑
{i,j}∈I1

(
ωi sinφi − ωj sinφj

) (
ωj cosφj − ωi cosφi

)
1
σ 2
r

∑
{i,j}∈I1

(
sinφi − sinφj

)2
+

1

σ 2
f

∑
{i,j}∈I1

(
ωi cosφi − ωj cosφj

)2
. (42)

Example 3: Consider the two sensor pairs in source local-
ization, i.e., {1, 2} and {3, 4}. For two sensor pairs, it is
obvious that the best choice of the intersection angle is π /2.
Combing the optimal deployment and the angular velocity,
a stable deployment is also obtained with UAAs distribution,
which is shown in Fig 4.

FIGURE 4. Optimal deployment and velocity configuration in
decentralized localization with two sensor pairs.

Compared with the centralized localization, the optimal
deployment sensor in decentralized localization depends on
both the subtended angle by sensor pair {i, j} and the angular
separation between the sensor pairs based on (42), as shown
at the top of this page.

IV. PRELIMINARY ANALYSIS ON OPTIMAL
DEPLOYMENT AND VELOCITY CONFIGURATION FOR
LOCALIZATION OF A MOVING SOURCE
For moving source localization, the estimated parameters
consist of both the source position and velocity. Therefore,
the total FIM of both position and velocity in TDOA/FDOA
localization is given by

JTF_movable = HT6H =

[
HT

rx HT
fx

HT
rv HT

fv

]
6−1

[
Hrx Hrv
Hfx Hfv

]
=

[
Jrx + Jfx Jfxv

Jfvx Jfv

]
, (44)

where, Hrx = ∂r/∂p, Hrv = ∂r/∂ṗ, Hfp = ∂f/∂p,
Hfv = ∂f/∂ṗ. The FIM of source position is the sum of the
matrices Jrx and Jfx. Jrx = HT

rx6
−1
r Hrx is an FIM of TDOA

measurements for the source position. Jfx = HT
fx6
−1
f Hfx and

Jfv = HT
fv6
−1
f Hfv are FIMs of FDOA measurements for

the source position and velocity, respectively. As shown in
(2), TDOAs only depend on the positions of the source and
sensors, therefore, TDOAs do not include any information
for estimating the source velocity. Jfvx = Jfxv are the cross
FIMs of FDOA measurements between the source position
and velocity.

Inmovable source scenario, the FDOAbetween the sensors
i and 1 are related as follows:

fi1 =
f0
c

((
vp − vi

)T ui −
(
vp − v1

)T u1
)
, (45)

then the partial derivative ∂fi1/∂px can be written as

∂fi1
∂px
==

f0
c

((
vpx−vix

)
sinφi−

(
vpy−viy

)
cosφi

ri
sinφi

−

(
vpx−v1x

)
v1x sinφ1−

(
vpy−v1y

)
cosφ1

r1
sinφ1

)
=
f0
c
(ω̃1 sinφ1−ω̃i sinφi), (46)

with ω̃1 =
(vpx−vix) sinφi−(vpy−viy) cosφi

ri
. ω̃i is the relative

angular velocity of the i-th sensor with respect to the source

ω̃i =

(
vpx − vix

)
sinφi −

(
vpy − viy

)
cosφi

ri

=
vpx sinφi − vpy cosφi

ri
−
vix sinφi − viy cosφi

ri

= ve
cosφp sinφi − sinφp cosφi

ri
− ωi

= ωpi − ωi. (47)

Similarly, we can obtain
∂fi1
∂py
=

f0
c
(ω̃i cosφi − ω̃1 cosφ1) , (48)

g̃ij = g̃i − g̃j, (49)

g̃i =
[
ω̃i sinφi −ω̃i cosφi

]
, (50)

G̃ =
[
g̃ij, . . .

]
{i,j}∈I . (51)

Then JTF_moveable can be rewritten as

JTF_movable =

[
G6−1r GT

+ G̃6−1f G̃T G6−1f G̃T

G6−1f G̃T G6−1f GT

]
.

(52)
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A. OPTIMAL ANGULAR GEOMETRIES AND VELOCITY
CONFIGURATION FOR POSITION ESTIMATION
For the centralized sensor pairing, let the 1-st receiver be
the reference receiver and others as auxiliary receivers, then
the explicit expression of the FIMs for the source position
estimation is given by (53), as shown at the top of the next
page,

To obtain the optimal deployment and velocity con-
figuration, we aim at obtaining the maximum value of
det (Jrx + Jfx), which is corresponding to the position
estimate.

1) TWO SENSORS CASE
For two sensors, the determinant is given by

det(Jrx + Jfx) = (ω̃1 + ω̃2)
2 (cos (φ1 − φ2)− 1)2 /σ 2

r σ
2
f

=
(
ωp1 + ωp2 − ω1 − ω2

)2
× (cos (φ1 − φ2)− 1)2 /σ 2

r σ
2
f . (54)

Different from the static scenario, ω̃i is dependent on the
relative geometry and source velocity. Without loss of gen-
erality, let vp = vp [0, 1]T denote the coordinate reference
and the sensor velocities are v1 = vmax [cos θ1, sin θ1]T and
v2 = vmax [cos θ2, sin θ2]T , respectively. The det(Jrx + Jfx)
can be rewritten as

det(Jrx + Jfx) =
((
vp cos (φ1)+ vmax sin (φ1 − θ1)

)
r2

+
(
vp cos (φ2)+ vmax sin (φ2 − θ2)

)
r1
)2
·

(cos (φ1 − φ2)− 1)2 /r21 r
2
2σ

2
r σ

2
f . (55)

From above, the maximum value of det(Jrx+ Jfx) is deter-
mined by the source velocity vp, sensor velocities vmax, bear-
ing angle of the i-th sensor φi, i ∈ {1, 2}, velocity direction of
the i-th sensor θi, i ∈ {1, 2} as well as the distance between
the i-th sensor and source ri, i ∈ {1, 2}. When r1 = r2 = r ,
then det(Jrx + Jfx) can be simplified as

det(Jrx + Jfx) =
(
vp cos (φ1)+ vmax sin (φ1 − θ1)

+vp cos (φ2)+ vmax sin (φ2 − θ2)
)2

· (cos (φ1 − φ2)− 1)2 /r2σ 2
r σ

2
f , (56)

with some trigonometric calculations, the optimization prob-
lem to be settled is

argmax f = 16 sin4(φ1) (vte cos(φ1)

+ vmax sin(φ1 − θ1))2 /r2σ 2
r σ

2
f

= 16 sin4(φ1)
(
vp cos(φ1)+ vmax

)2
/r2σ 2

r σ
2
f .

(57)
For given vp and vmax, the bearing angle φ1 can be acquired

and then the explicit solutions for other parameters are
obtained.
Example 4: Consider the two sensors in moving source

localization. Let vp = 100m/s,vmax = 100m/s and r =
1000m. Fig. 5 shows the optimal deployment of two sensors
for position estimation, the optimal angular positions satisfy

φ1 = arccos (1/3) , φ2 = − arccos (1/3),

θ1 = arccos (1/3)− π/2, θ2 = − arccos (1/3)− π/2,

FIGURE 5. Optimal deployment of two sensors for position estimation in
movable scenario.

TABLE 1. Optimal angular separation with different source velocities.

or φ1 = π − arccos (1/3) , φ2 = arccos (1/3)− π,

θ1 = arccos (1/3)− π/2, θ2 = arccos (1/3)− π/2.

(58)

Different from the static source scenario, the angular posi-
tion that yields the biggest determinant of the FIM depends on
the specific source velocity and sensor velocity. Table 1 lists
the optimal angular separation with different source and sen-
sor velocities. For given sensor velocity vmax = 100m/s,
we can see that when the sensor velocity vp increases,
the angle subtended at the two sensors, i.e., ϕ12 shown
in Fig. 5, become smaller, which vary from 2 cos−1(

√
3/3) ≈

109.47◦ to 180◦ degrees.

2) ARBITRARY SENSOR CASE
For M ≥ 3, it is difficult to obtain analytic solutions for the
optimal sensor configurations based on A-and D-optimality.
Hence, Jrx + Jfx cannot be made diagonal easily and the
optimal deployment is related to the relative velocity between
the sensor and source. To solve these optimization prob-
lems, some traditional optimization algorithms, e.g., gradi-
ent search method, sequential quadratic programming (SQP)
algorithm and the heuristic algorithms, e.g., differential evo-
lution (DE) algorithm can be applied to obtain a local optima.

B. OPTIMAL DEPLOYMENT FOR VELOCITY ESTIMATION
The explicit expression of FIM of source velocity estimation
is given by (59), as shown at the top of the next page.
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Jrx + Jfx

=


1
σ 2
r

M∑
i=1

cos2(φi)−
1

Mσ 2
r

(
M∑
i=1

cosφi

)2

+
1

σ 2
f

M∑
i=1

ω̃2
i sin

2(φi)−
1

Mσ 2
f

(
M∑
i=1

ω̃i sinφi

)2

1
σ 2
r

M∑
i=1

cos(φi) sin(φi)−
1

Mσ 2
r

M∑
i=1

cosφi
M∑
i=1

sinφi +
1

Mσ 2
f

M∑
i=1

ω̃i cosφi
M∑
i=1

ω̃i sinφi −
1

σ 2
f

M∑
i=1

ω̃2
i cos(φi) sin(φi)

1
σ 2
r

M∑
i=1

cos(φi) sin(φi)−
1

Mσ 2
r

M∑
i=1

cosφi
M∑
i=1

sinφi +
1

Mσ 2
f

M∑
i=1

ω̃i cosφi
M∑
i=1

ω̃i sinφi −
1

σ 2
f

M∑
i=1

ω̃2
i cos(φi) sin(φi)

1
σ 2
r

M∑
i=1

sin2(φi)−
1

Mσ 2
r

(
M∑
i=1

sinφi

)2

+
1

σ 2
f

M∑
i=1

ω̃2
i cos

2(φi)−
1

Mσ 2
f

(
M∑
i=1

ω̃i cosφi

)2

.
(53)

Jfv =
1

σ 2
f


M∑
i=1

cos2(φi)−
1
M

(
M∑
i=1

cosφi

)2 M∑
i=1

cos(φi) sin(φi)−
1
M

M∑
i=1

cosφi
M∑
i=1

sinφi

M∑
i=1

cos(φi) sin(φi)−
1
M

M∑
i=1

cosφi
M∑
i=1

sinφi
M∑
i=1

sin2(φi)−
1
M

(
M∑
i=1

sinφi

)2

 (59)

First we notice that the optimal sensor placement for veloc-
ity estimation is equivalent to the optimal sensor placement
for TDOA localization. Therefore, it is interesting that the
optimal sensor placement for the source velocity estimation
does not depend on the values of both source and sensor
velocities themselves.

C. OPTIMAL ANGULAR GEOMETRIES AND VELOCITY
CONFIGURATION FOR POSITION ESTIMATION
From the analysis in section 4.1 and 4.2, the optimal
deployment and velocity configuration are different for posi-
tion estimation and velocity estimation. In real applications,
the optimization in source position and velocity are both
considered. In 2D scenario, this can be achieved by max-
imizing the determinant of JTF in (6) or the trace of J−1TF .
However, because of the complexity of JTF , it is difficult to
obtain a closed-form expressions. Another way to find the
optimal geometries for both position and velocity estimates
is cast the contribution of det(Jrx + Jfx) and det(Jfv) using a
weighted combination. Hence, such criterion can be used in
practice to balance the estimation between the source position
and velocity. It is obvious that UAAs distribution is not the
optimal deployment in movable source scenario and also the
‘optimal deployment’ is unstable, which may change rapidly
with different source and sensor velocities.

V. PATH PLANNING
Section III and IV give the optimal deployment and velocity
configuration in static and movable source scenarios without
considering the constraints, respectively. In real applications,
if the initial sensor positions present poor geometry, then it

takes some time for some mobile sensors to form a better
geometry [31].

In this section, we extend our work to the path plan-
ning problem [3], [32]–[34]. UAVs are applied in the sim-
ulations as moving sensor platforms of hybrid TDOA and
FDOA localization to confirm the analytical findings in
Section 3 and 4.

Assume the idealized model of a fixed wing UAV dynamic
model is [35]:

Xk+1 = f (Xk ,uk ), k = 1, 2, · · · ,M (60)

where, Xk is the system status value Xk = [x1(k), · · · ,
xM (k)]T at the time k , and uk is the control vector uk =
[u1(k), u2(k), · · · uM (k)] of UAV at each moment. Without
loss of generality, UAV1 is assigned as the reference node,
then the proposed waypoint update equation of the UAV is:

xi(k + 1) =
[
xi(k)
yi(k)

]
+ v0T

[
cos ui(k)
sin ui(k)

]
(61)

where, v0 is the UAV flight speed and T is the time interval
between waypoint updates. The UAVs path can be optimized
by taking the FIM and posterior error covariance as the opti-
mization objective function. Within each time interval, Chan
algorithm and EKF are used to update the source position.{

argmax f (u(k + 1)) = det(Jk+1(ri, θi)), k ≤ 3
argmin f (u(k + 1)) = Tr(Pk+1|k+1 (ri, θi)) k > 3

(62)

s.t. ‖ui(k + 1)− ui(k)‖ ≤ umax (63)

g1ij(uk ) = Rh −
∥∥∥xi(k + 1)−

_xt (k)
∥∥∥ ≥ 0 (64)
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FIGURE 6. Steps of UAV path planning for source localization.

g2ij(uk ) =
∥∥∥xi(k + 1)−

_xt (k)
∥∥∥− Rl ≥ 0 (65)

g3ij(uk ) = ch −
∥∥xi(k + 1)− xj(k + 1)

∥∥ ≥ 0 (66)

g4ij(uk ) =
∥∥xi(k + 1)− xj(k + 1)

∥∥− cl ≥ 0 (67)

where, constraint (48) means the turning rate constraint of
the platform itself. Conditions (49) and (50) respectively
represent the distance constraint from theUAVplatform to the
source. The upper limit of distance Rh is mainly determined
by the receiver signal-to-noise ratio (SNR) and the lower limit
Rl is the safe distance between the UAV platform and source.
The inequality (51) and (52) are the UAV collision avoidance
constraint and communication constraint, respectively.

The optimal sensor placement problems have been formu-
lated as optimal control strategy and parameter optimization
problems [36]. Fig. 6 shows the steps of UAV path plan-
ning for source localization based on FIM. In this figure,
the maximum likelihood (ML) estimator and nonlinear filter
are applied to estimation the state of the source based on
the hybrid measurements acquired by FDOA and TDOA
based sensors. Therefore, the parameters (i.e., φi, ωi, ri, vp)
are acquired, then FIM is also calculated and the control
vector Uk is chosen with corresponding to the maximum
value of FIM. The path optimization problem is usually under
constraints such as turning rate constraint, communication
constraint, and minimum distance constraint from the UAVs
to the source etc. Then the path planning problem is settled
as a nonlinear optimization problem with constraints. Some
optimization algorithm, e.g. quadratic programming (SQP)
and interior point algorithm, can be utilized. In our work,
interior point penalty function method is applied.

VI. SIMULATION RESULTS
The initial source location is xp = [0, 0]T , the initial
states of UAVs are x1(1) = [−8000,−6000]T , x2(1) =
[−10000,−6000]T , x3(1) = [−10000,−8000]T , x4(1) =
[−8000,−8000]T . The initial heading angles for UAVs are
all equal to π/2 (y axis) with constant velocity viy =
100 km/h (i = 1, 2, 3, 4). The sensor noises are σr = 1, σf =
1, respectively. The time interval between measurements is
T = 1s. The turning rate constraint is umax = 15◦, maximum

distance andminimum distance constraint from theUAVplat-
form to the source are Rh = 20 km, Rl = 0.3 km, respectively.
UAV communication distance constraint is ch = 5 km and
collision avoidance constraint is cl = 0.2 km. The root mean
squared error (RMSE) is estimated using 500 Monte Carlo
simulations.

A. TDOA/FDOA HYBRID LOCALIZATION IN STATIC
SOURCE SCENARIO
In this scenario, the optimized paths of static source local-
ization with different types of localization methods, i.e., cen-
tralized localization with and without turning rate constraint,
as well as decentralized localization, are investigated. The red
triangle denotes the true source location and blue circles are
estimations in each time step.

Let UAV1 be the reference station in centralized localiza-
tion. Fig. 7(a) shows the optimized paths without turning rate
constraint, i.e., −π < ui(K ) − Ui(K − 1) ≤ π to ascertain
effect of UAV velocities. During the first several time steps,
UAV2 and UAV4 fly far away from each other to obtain a big-
ger angular separation, where the initial UAV position present
poor configuration. In contrast, UAV1 and UAV3 begin to fly
with the zigzag movement patterns. Zigzag movement helps
UAVs to acquire good angular velocities of the i-th UAV
with respect to the source, which coincides the conclusion
in Section 3. After about 200 time steps, the optimal angular
separation of 90◦ is achieved, it is interesting to note that all
the UAVs fly toward the source with the zigzag movement
patterns.

In Fig. 7(b), the optimized paths are presented with all
constraint considered in centralized localization. UAV1 and
UAV4 have to keep close to other UAVs within the commu-
nication ranges. We also notice that when the UAVs are close
to the constraint boundaries or the optimal configurations,
they should have changed their flight directions. However,
the UAVs are limited to their turning rate constraints. Zigzag
movement pattern is unable to be realized and all UAVs tend
to fly toward the source until all UAVs fly surround the
source.

Fig. 7(c) shows the decentralized sensor pairing local-
ization. UAV1 and UAV2, UAV3 and UAV4 are paired,
respectively. The UAVs inside the pairs fly away from
each other so that the intersection angles among the sensor
pairs are expanded. Compared with the paths in centralized
localization shown in Fig. 7(b), there are communication
constraints between UAVs, i.e., UAV2 and UAV4, thus in
decentralized localization, UAVs can acquire a wider flight
region.

Fig. 7(d) shows the localization performance in different
types of localization methods, correspondingly. It is clear
that the localization performancewithout constraints has low-
est errors at the initial time steps. The localization perfor-
mance using centralized localization is better than that in
the decentralized localization case. Hence, centralized local-
ization can acquire a higher bound of the determinant of
the FIM, when compared to decentralized localization. For
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FIGURE 7. Static source scenario. (a) Centralized localization without any
constraints. (b) Centralized localization with constraints. (c) Decentralized
localization with constraints. (d) RMSE of the source position.

comparison, source localization without the path optimiza-
tion i.e., straight-line path, is also considered. It is obvious

FIGURE 8. Movable source scenario. (a) Centralized localization with
constraints. (b) Decentralized localization with constraints. (c) RMSE of
the source position. (d) RMSE of the source velocity.

that the localization error without path optimization is large
and unstable..
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B. TDOA/FDOA HYBRID LOCALIZATION IN MOVABLE
SOURCE SCENARIO
In this scenario, the source moves in straight path to the
northeast with Vp = 25m/s. Figs. 8(a) and (b) show the
optimized paths in centralized and decentralized localization,
respectively. In the centralized localization, the reference
UAV (UAV 1) has to keep communication with the other
three UAVs and also they should fly away from each other
to obtain a large angular separation. Compared with the static
source scenario, UAVs begin to fly toward the direction of the
estimated source position after several time steps.

Figs. 8(c) and (d) shows the RMSE of the source position
and source velocity respectively. As shown in Figs. 8(c) and
(d), the localization performance with path optimization is
much better than that in the straight-line path case.

VII. CONCLUSION
In this paper, we have analyzed the sensor deployment and
velocity optimization problem in hybrid TDOA and FDOA
localization. The FIM was applied to be the optimal criterion
of relative sensor-source geometry and velocity. In static
source scenario, the centralized and decentralized sensor
pairing methods were adopted. It showed that the optimal
deployment and velocity configuration were related to both
the angular separation and angular velocities. High g-turns
of sensor platforms with respect to the source were needed
to improve the localization accuracy. In movable source sce-
nario, it was difficult to obtain the optimal deployment and
velocity configuration, which varied with different source
and source velocities. Some optimization algorithms could
be applied to solve the problem when explicit solutions of
FIM were not available. Simulations of UAV swarms path
planning verified the explicit findings in both static and
movable scenarios. Future works will extend the optimal
configurations to the 3D scenario and consider the effect of
the prior information in a Kalman-type filter.

APPENDIX
Proof of Corollary 3: From the meaning of the FIM, the FIM
is always a symmetric positive definite matrix. Let λ1 >

0 and λ2 > 0 be the two eigenvalues of JTF_static, then
the eigenvalues of J−1TF_static are 1/λ1 and 1/λ2, respectively.
According to the Cauchy-Schwarz inequality, we have

[√
λ1

√
λ2
] [√1/λ1√

1/λ2

]
≤
√
(λ1 + λ2) (1/λ1 + 1/λ2)

=

√(
tr
(
JTF_static

)
tr
(
J−1TF_static

))
= 2, (68)

Then we have

tr
(
J−1TF_static

)
≥ 4/tr

(
JTF_static

)
. (69)

The inequality holds when λ1 = λ2 = λ. Since JTF_static
is symmetric positive definite, then it implies that JTF_static

should be diagonal and

JTF_static = λI. (70)

From (25), tr
(
JTF_static

)
is given by

Tr
(
JTF_static

)
= 2

 1

σ 2
t

M∑
i=1

cos2(φi)−
1

Mσ 2
t

(
M∑
i=1

cosφi

)2

+
1

σ 2
f

M∑
i=1

ω2
i sin

2(φi)−
1

Mσ 2
f

(
M∑
i=1

ωi sinφi

)2

+
1

σ 2
t

M∑
i=1

sin2(φi)−
1

Mσ 2
t

(
M∑
i=1

sinφi

)2

+
1

σ 2
f

M∑
i=1

ω2
i cos

2(φi)−
1

Mσ 2
f

(
M∑
i=1

ωi cosφi

)2
= 2

(
M

σ 2
t
+

1

σ 2
f

M∑
i=1

ω2
i −

(
1

σ 2
t M

)

×

( M∑
i=1

cosφi

)2

+

(
M∑
i=1

sinφi

)2
−

1

Mσ 2
f

( M∑
i=1

ωi cosφi

)2

+

(
M∑
i=1

ωi sinφi

)2
≤ 2

(
M

σ 2
t
+

1

σ 2
f

M∑
i=1

ω2
i

)
≤ 2

(
1

σ 2
t
+

1

σ 2
f

M∑
i=1

ω2
max

)
.

(71)

The inequality holds if and only if

M∑
i=1

cosφi = 0,
M∑
i=1

sinφi = 0,

M∑
i=1

sin 2φi = 0,
M∑
i=1

cos 2φi = 0. (72)

Then combine (70) and (72), we can get

M∑
i=1

ωi cosφi = 0,
M∑
i=1

ωi sinφi = 0,

M∑
i=1

ω2
i cos 2φi = 0,

M∑
i=1

ω2
i sin 2φi = 0. (73)
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