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ABSTRACT This article introduces a new attempt of utilizing the sunflower optimization (SFO) algorithm
in solving the problem of optimal power flow (OPF) in the field of power systems. The principle target is to
optimize the generating units’ fuel cost under the system constraints. At initial stage, the objective function
is solved to find the optimal siting of Distributed Generation (DG) units within the system under study.
Then, different scenarios are performed to solve the OPF problem including and excluding DG units. The
generators’ real output power defines the exploration field for the OPF problem. The SFO algorithm is used
to minimize the fitness function and yields the best solutions of the problem. More than one electric grid
is tested to check the validity of the proposed algorithm such as the IEEE 14-bus, and 30-bus networks.
Simulations included different scenarios are implemented in these two networks. To obtain a realistic result,
real daily load curve is considered in this study. The results of simulations are investigated and analyzed.
Results confirm the flexibility, validation, and applicability of the introduced SFO-based OPF methodology
when compared with the genetic algorithm.

INDEX TERMS Optimal power flow, optimization, power systems, renewable energy.

I. INTRODUCTION
Power systems are considered as complex dynamic systems.
They cover wide areas including many companies that are
concernedwith the power grids. Power grids have certain lim-
its on the transmitted power and buses’ voltages. These limits
stem from temperature, voltage, and stability concerns [1].
Economic Dispatch (ED) neglects these limits. The OPF
problem combines ED and power flow constraints to analyze
electric power grids’ performance [2]. The problem of OPF
is a heavy nonlinear optimization problem, whose main tar-
get is to select the best solution of the control variables of
the network or the grid, which satisfy the minimum value
of the objective function taking the system constraints into
consideration. Researchers can set the real output power of
generators, the voltage of generators, tap-settings of the trans-
formers, or reactive power compensation devices as control
variables. The OPF objective functions, in general, may be
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classified into single objective functions in which, one goal is
achieved, or multi-objective functions in which, many targets
are reached simultaneously. These objectives can be the fuel
cost of the generators, the emission rate of the generators,
power losses in an electric network, and the security index
of the voltage.

More than one conventional method has been proposed
in the literature survey to handle the OPF problem such
as Newton–Raphson (NR) [3], linear programming [4],
quadratic programming [5], interior point method [6], and
a semi-definite programming [7]. The previously used NR
method has a drawback which is the need for a solu-
tion to a new linear system at every individual itera-
tion [8]. Consequently, it consumes a long time to process.
Acceleration can be done to avoid this disadvantage, but
the convergence can be missed because of this accelera-
tion [9]. On the other hand, quadratic programming has a
disadvantage, which is the dependency on a convergedACPF.
Moreover, the best solution is strongly affected by the initial
guess of the problem. Due to the vicinity of assuming an
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initial solution to the problem, the AC-QP algorithm is
exposed to a risk while running. It can lose the con-
vergence [10]. Generally, traditional methods have several
demerits. They are strongly affected by the initial guess of
the problem which relies on the type of differential equation
solver. Also, they can be stuck in a local minimum instead of a
global minimum due to the nonlinearity of the OPF problem.
In addition, mathematical assumptions must be defined to
simplify the problem. Hereafter, it is important to find com-
petent optimization methods to get over these disadvantages
and obstacles.

Various innovative metaheuristic-based techniques were
then applied to solve the OPF problem. These techniques
managed to get rid of the obstacles of the mathemati-
cal conventional methods. Tabu search [11], genetic algo-
rithm (GA) [12]–[14], particle swarm optimization (PSO)
[15]–[17], biogeography-based optimization [18], [19], arti-
ficial bee colony (ABC) [20], harmony search algorithm
(HSA) [21], teaching-learning based optimization [22], grey
wolf optimization and differential evolution (DE) [23], shuf-
fle frog leaping algorithm[24], gravitational search algorithm
(GSA) [25], tree seed algorithm (TSA) [26], Sine-Cosine
algorithm [27], and salp swarm algorithm [28] are all exam-
ples of the innovative metaheuristic-based techniques. These
algorithms are inspired by nature and basically divided into
swarm-based and population-based techniques. They indi-
vidually have their own advantages as well as disadvan-
tages [29]–[31]. In this regard, these optimizers are employed
to reach the solution of the problem whether the goal is a
single objective function or multi-objective function. These
metaheuristic-based techniques initialize haphazard solutions
of the agents and can reach the best solution according to their
process.

A novel sunflower optimization (SFO) algorithm is used to
handle the (OPF) scenarios in this study. The growth of soft
computation procedures is the inspiration for using the SFO
to deal with the optimization problems. The SFO algorithm
is inspired from the nature behavior and it is classified as an
iterative population-based metaheuristic optimization tech-
nique for multidimensional problems. Optimization using the
proposed SFO algorithm is able to find a global optimal
professionally [32]. Moreover, it does not get stuck in a
local optimal. The advantage of the SFO algorithm is that
it does not need derivatives when evaluating the objective
function. The inspiration of SFO algorithm comes from sun-
flowers’ movement to absorb the sun radiation. The cycle
of a sunflower is that every morning, they rouse and follow
the sun. At evening, they move in the reverse route and wait
for the following morning. In this algorithm, a population
of flowers is produced. They are oriented and take random
steps towards the sun based on their locations. One of them
will be transformed into the sun based on the assessment of
each flower. For simplicity, each flower is assumed to emit
one pollen gamete and it duplicates individually [33]. The
simulation results made it obvious that the newly developed
SFO algorithm provided better results when it was applied

to solve benchmark test functions. Compared to the other
optimization methods, the SFO algorithm can converge to the
optimal solution efficiently in spite of the unrefined parame-
ters. This verified its respectable performance. The algorithm
obtained a healthier performance than the well-known GA
and the PSO.

Due to the growth of innovative metaheuristic techniques,
(OPF) problem is still active and continues with the employ-
ment of these techniques. The (OPF) problem has different
objective functions. They can be solved in parallel and/or in
series. The greatest well-known objective is the generators’
fuel cost minimization. In this paper, the SFO is employed to
handle the OPF problem. The algorithm is set to optimize a
single objective function within the network limitations and
restrictions. Actually, the new contributions of this study are
as follows: (1) Evaluation of the effectiveness and perfor-
mance of the newly published SFO algorithm in handling the
OPF problems in power systems compared to the GA and the
PSO, (2) Optimal siting of two Distributed Generation (DG)
units using the SFO algorithm, and (3) Investigation of the
effect of adding the DG units on the overall cost of fuel
using the SFO, the PSO, and the GA in the OPF problem.
The target is the fuel cost minimization. The introduced
algorithm is used to decide the best values of the design
control variables. The generators’ real output power is the
search space for the OPF problem. The SFO is selected
to deal with the previously-mentioned problem for electric
power networks such as IEEE 14- and 30-bus test systems
with various scenarios. To obtain a realistic result, real daily
load curve is considered in this study. Optimization results
are proved using MATLAB software and the received results
show a competition of the SFO with the GA and the PSO to
find the OPF solution.

II. PROBLEM FORMULATION
The first objective of this study is to use the SFO algorithm to
solve a classical OPF problem with the aid of MATPOWER
toolbox and compare the results with the well-known GA and
the PSO. The second objective is to determine the optimal
location at which the DG units can be placed using the previ-
ously introduced SFO algorithm. The third objective is to run
the OPF problem after inserting only the first DG unit, then,
the second unit only. After that, OPF is tested while adding
the both two units simultaneously. The used networks in this
research are the IEEE 14-bus network and the IEEE 30-bus
network. In the standard IEEE 14-bus network, generators at
buses-1, 2 and 3 besides the synchronous condensers at
buses-6 and 8 are the committed generators in the OPF model
while in the standard IEEE 30-bus system, generators at
buses-1, 2, 13, 22, 23, and 27 are the committed ones.

A. CLASSICAL OPF
The problem is a classical OPF problem and it is explained in
detail in the next subsection.
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1) OBJECTIVE FUNCTION
The costs purchased by the electricity suppliers are the gener-
ators running costs (mainly fuel costs) over the 24 hours of the
day. The cost functions are usually represented by a quadratic
function of the generator output active power as shown
in (1) and (2) [34].

Minimize J =
24∑
h=1

NG∑
i=1

Ci,h
(
PGi,h

)
(1)

ci,h
(
PGi,h

)
= ai ∗ P2Gi,h + bi ∗ PGi,h + ci (2)

where: J is the total costs purchased by the electricity sup-
plier, NG is the total number of generators, and PGi,h is the
active power generated at generator bus i and hour h. The
simulation is performed 96 times (every 15 minutes) for each
scenario and each test system such that the step of ‘h’ (hour
counter) is 0.25.

2) CONSTRAINTS
The constraints of the OPF problem can be written mathemat-
ically by the following Equations:

Pinjk,h −
N∑
l=1

Vk,h ∗ Vl,h∗
[
Gkl ∗ cos

(
δl,h − δk,h

)
+Bkl ∗ sin

(
δl,h − δk,h

)]
= 0 (3)

Qinjk,h −
N∑
l=1

Vk,h ∗ Vl,h ∗
[
Gkl ∗ sin

(
δl,h − δk,h

)
+Bkl ∗ cos

(
δl,h − δk,h

)]
= 0 (4)

where: P injk,h is the total active power injected into the
system at bus k and hour h, Qinjk,h is the total reactive power
injected into the system at bus k and hour h, Vk,h and V l,h
are the magnitudes of the voltages at buses k and l at hour h
respectively,Gkl and Bkl is the conductance and susceptance
of the admittance Ykl , and δl,h and δk,h are the voltage angles
at buses k and l at hour h respectively.

PGmin≤ PGi,h ≤ PGmax , i = 1, 2, . . . ,NG

and h = 1, 2, . . . , 24 (5)

QGmin≤ QGi,h ≤ QGmax , i = 1, 2, . . . ,NG

and h = 1, 2, . . . , 24 (6)

Vimin≤ V i,h ≤ Vimax , i = 1, 2, . . . ,NG

and h = 1, 2, . . . , 24 (7)

Vk,h ∗ Vl,h ∗
[
Gkl ∗ cos

(
δl,h−δk,h

)
+Bkl ∗ sin

(
δl,h−δk,h

)]
≤Plimkl, k, l=1, 2, . . . ,N (8)

where Plimkl is the power flow limit of the line connecting bus
k and bus l.

B. OPTIMAL SITING OF THE DG UNITS
The OPF is run while trying to add the first DG unit starting
from bus 2 to bus N , one at a time, where N is the number
of buses of the system under study [35], [36]. The optimal
selected bus at which the first unit is added is the bus which

results in the minimum cost through a typical day. Simi-
larly, the OPF is re-run to optimally allocate the second one
starting from bus 2 to bus N assuming that the first unit is
already installed at the previously selected bus. The previous
sequence in inserting the DG units to the networks under
study is named ‘‘arrangement 1’’. Moreover, the DG units
are then inserted into the networks in a reverse sequence.
DG unit ‘2’ is inserted first, the optimal bus is obtained and
then, the OPF is re-run to optimally allocate the DG unit ‘1’
assuming that DG unit ‘2’ is already installed at the previ-
ously selected bus. This sequence is named arrangement 2.
The difference in results of optimal allocation between the
two sequences of insertion of the DG units is then observed.
It’s assumed that the maximum capacities of the twoDG units
connected to the systems under study are 15MW and 30MW
respectively.

C. OPF WITH THE DG UNITS
In reality, the renewable energy sources are intermittent and
the generated power from these sources is not constant [37].
It differs according to many factors such as the season,
the weather, the site [38]. For example, the output power
from a wind turbine varies according to the wind speed at the
site [39]. Given a wind regime, the available power output
from a wind turbine can be used according to its operational
characteristics [40], [41] and [42] introduce methods to han-
dle the uncertainty issue. In this study, the uncertainty of the
power generation from the DG units is neglected for simplic-
ity and constant models of the DG units are used instead as a
sample of a typical winter day. The variable output powers
generated from the first and the second DG units through
a typical winter day are shown in Fig. 1 and Fig. 2. The
modelling data of the DG units and the power generation
from them can be found in [34]. After allocating the DG
units, different scenarios of the OPF problem are tested to
study the effect of adding these DG units on the total costs
incurred. The OPF is firstly run with adding only DG unit ‘1’
then, OPF is run after adding only DG unit ‘2’. Finally,
The OPF is run after adding the both DG units and the

FIGURE 1. PV panel output power of a typical winter day.
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FIGURE 2. Wind turbine output power of a typical winter day.

best solution is saved for each scenario. The independent
design control variable, which is the generators’ active output
power, is kept within its limits by the introduced SFO as
presented in (5). The equality constraints are expressed in (3),
(4) and (6) and they are successfully fulfilled using the full
Newton-Raphson power flow with the help of MATPOWER
toolbox [43] in MATLAB [44] environment. Regarding the
other dependent variables, they are limited by adding penal-
ties to the objective function which must be respected during
optimizing the required objective. These penalties make the
optimization process eliminate any infeasible solution. The
specified penalties are explained in Eq.(9).

Penalties=Kv
∑N

i=1

[
max

(
0,Vi−Vmax

i
)
+max

(
0,Vmin

i −

Vi
)]
+Kl

∑nbr

j=1

[
max

(
0, Sj − Sratedj

)]
(9)

where Kv and Kl are very large positive numbers.

III. THE SFO ALGORITHM
The new SFO algorithm is used to handle the OPF various
scenarios. The evolution of soft computation optimization
algorithms is the main drive for employing the SFO algorithm
to solve such optimization problems.

The inspiration of this algorithm comes from the nature.
The idea of the SFO algorithm is that it simulates the sunflow-
ers’ movement to catch the sun radiation. The behavior of a
sun flower is to seek the best orientation to the sun. The cycle
of a sunflower is repetitive every morning. They start the day
with waking up and following the sun. At the end of the day,
they move in the opposite direction waiting again for the next
sunrise. The inverse square law radiation is important here.
As the sunflower is close to the sun, it receives much more
amount of heat than the distant one and it tends to calm in
this area. On the other hand, the distant sunflower gets lower
amount of heat and takes greater steps to move as close as
possible to the global optimum -sun- [45]. Eq.(10) describes
the amount of heat received by every individual population.

Qi =
P

4πr2i
(10)

where P is the source power and ri is the distance between
the current best and population i. The pollination in this
algorithm is random through the minimum distance between
the flower i and the flower i + 1. In reality, one flower
patch emits enormous amount of pollen gametes. However,
for simplicity of the algorithm, it is assumed that every single
sunflower generates a single pollen gamete and it is solo
copied. The orientation of the sunflowers towards the sun can
be expressed in Eq. (11):

Esi =
X∗ − Xi
||X∗ − Xi||

, i = 1, 2, . . . , np. (11)

Eq. (12) presents the sunflowers’ step towards ‘‘s’’:

di = λ× Pi (Xi + Xi−1)× ||Xi + Xi−1|| , (12)

where λ is a constant that defines an ‘‘inertial’’ displacement
of the plants, P i(||X i+X i−1||) is the pollination probability.
The sunflower i pollinates with another near sunflower to
produce a new one which is in an updated position. This new
position differs according to the distance between the flowers.
The closer individuals to the sun take fewer steps to find a
local improvement. The further populations move normally.
There is a restriction on these steps to prevent individuals
from violating the search spacewhich is presented in Eq. (13):

dmax =
‖Xmax − Xmin‖

2× Npop
(13)

where Xmax and Xmin are the maximum and minimum limits,
and Npop is the number of populations.

The new plantation will be:

EXi+1 = EXi + di × Esi (14)

Fig. 3 illustrates the steps of the introduced algorithm.
Fig. 4. to Fig. 6. show some concepts about the sunflower
optimization algorithm. The algorithm begins with the pro-
duction of a population which may be random or even. The
population with the highest evaluation among all is the one
to be transformed to the sun. Then, these individuals orient
themselves towards the sun and take haphazard steps towards
a definite direction. This is simply the SFO algorithm.

IV. SIMULATION RESULTS
This paper introduces the solution of OPF problem handled
by the SFO. The codes are written by using the MATLAB
software. The standard IEEE 14-bus and 30-bus networks
are used to examine the validity and success of the proposed
SFO-based OPF problem. The core features of the two stan-
dard test systems are specified in Table 1.

The design control variables of the OPF problem is the real
power output of generators. Simulations are performed on an
Intel(R) Core (TM) i7-8550U CPU @ 1.8 GHz Processor,
8 GB RAM, 64-bit operating system, PC. The objective
function is performed sequentially through the following sub-
sections and scenarios:
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FIGURE 3. SFO Algorithm.

FIGURE 4. Initial population of flowers identification of the sun.

A. CLASSICAL OPTIMAL POWER FLOW PROBLEM
In this section, the study is to perform the classical OPF
problem on the standard IEEE 14-bus system without adding
any DG units to the network. Then the simulation is repeated
for the standard IEEE 30-bus system. The limits of the design
control variables of the IEEE 14-bus and 30-bus systems
are expressed in [23]. Also, the fuel cost coefficients of the
generating units can be found in [23]. The population size and

FIGURE 5. Orientation of sunflowers and towards the sun.

FIGURE 6. Best flowers pollinate around the sun.

TABLE 1. Main characteristics of the IEEE 14-bus and 30-bus networks.

the number of iterations are adjusted to achieve a good perfor-
mance of the developed SFO. The selection of SFO method
controlling parameters is like any metaheuristic optimization
technique. These controlling parameters are set according
to the trial and error method over many independent trials
and checking the algorithm performance. The stopping cri-
teria are set as a limit for function evaluations. The studied
objective function is the fuel cost. A comparison between
the algorithms, the SFO, the PSO, and the GA, providing
the problem constraints, number of iterations, population size
and the computational time of the simulation is presented
in Table 2.

Table 3 and Table 4 show the best control variables and
best solutions to the objective function of the 14-bus and
30-bus systems respectively. The trials have been repeated
more than once to verify the robustness of the SFO.
Fig. 7 and Fig. 8 show a comparison between the convergence
of the objective function using the SFO, the PSO, and GA
applied on 14-bus and 30-bus systems respectively. It is
seen that the objective function converged fast, smoothly
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TABLE 2. Summary of simulation parameters between parameters of
SFO, PSO, and GA.

TABLE 3. Optimal control variables for the classical OPF for 14-bus
system.

TABLE 4. Optimal control variables for the classical OPF for 30-bus
system.

and stably, providing a better optimization performance to
achieve the best solution with the SFO algorithm.

B. OPTIMAL SITING OF THE DG UNITS
Before performing an OPF problem with the DG units added
to the system, an optimal siting is introduced with the purpose
of minimizing the fuel cost with the DG units. SFO is used to
optimally allocate the DG units. The simulation is done twice

FIGURE 7. Convergence of the objective function using the SFO vs the
PSO, and the GA for 14-bus system.

FIGURE 8. Convergence of the objective function using the SFO vs the
PSO, and the GA for 30-bus system.

with different arrangement of insertion of the DG unit ‘1’ and
the DG unit ‘2’. The arrangement is to add the DG unit ‘1’
first then, insert the DG unit ’2’ considering the existence of
the DG unit ‘1’. The second test is to begin with optimal siting
of the DG unit ‘2’ then, insert the DG unit ‘1’ considering the
DG unit ‘2’ is already installed. Table 5 shows the best bus
at which DG unit ‘1’ and DG unit ‘2’ can be allocated. The
simulations resulted in different optimal locations when the
arrangement of inserting the DG units is reversed.

TABLE 5. Optimal buses for DG unit ‘1’ and DG unit ‘2’.

C. OPF WITH THE DG UNITS
In this scenario, Different cases of the OPF problem are
performed. They are tested with variable load curves of the
IEEE 14-bus and 30-bus systems. The load curve of the
IEEE 14-bus system can be found in [34] and the load curve
of the IEEE 30-bus system is extracted from [47]. Initially,
the OPF problem is solved without adding any DG units.
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Then, DG unit ‘1’ is added on the previously specified buses
in Table 5. Similarly, DG unit ‘2’ is then added to the sys-
tems under study. Finally, the OPF problem is tested on a
network which contains DG unit ‘1’ and DG unit ‘2’ together.
These different cases are summarized in Table 6. Fig. 9 and
Fig. 10 show the load curves for IEEE 14-bus and 30-bus
Systems, respectively. The simulation of all these cases is
performed using the SFO algorithm as well as GA and the
PSO. The results are then compared.

TABLE 6. Cases of OPF tested in this study.

FIGURE 9. Load curves for IEEE 30-bus system.

FIGURE 10. Load curves for IEEE 30-bus system.

In general, the comparison with the PSO showed that the
results are very close together in the 14-bus system case but

SFO shows noticeable better results in case of 30-bus system.
Regarding Case 1, Fig. 11 and Fig. 12 show a fuel cost
comparison using SFO, PSO, and GA which is calculated
every 15 minutes. It can be noticed that the cost decreased
deeply when using the SFO algorithm compared to the GA
in the 14-bus system, but the results were very close to
those obtained by the PSO. Meanwhile, in the 30-bus system,
the reduction in cost is not the same all over the day. There
is a slight reduction in cost from hours 8-11, hours 13-17,
and hours 20-23 when compared to the GA. The reduction is
much more noticeable during these periods when compared
to the PSO.

FIGURE 11. Cost comparison between SFO, PSO, and GA of case 1 for
14-bus system.

FIGURE 12. Cost comparison between SFO, PSO, and GA of case 1 for
30-bus system.

In Case 2, the IEEE 14 bus system is tested with only DG
unit ‘1’ added to bus 5, and to bus 4 in the IEEE 30 bus
system. Compared to the GA, the considerable reduction
in cost is between hours 6-17 in the 14-bus system. The
comparison with the PSO resulted in a very close solution.
In the 30-bus system, using the SFO algorithm resulted in
noticeable cost reduction between hours 0-8, 11-13, 18-19,
and 23-24 when compared to the GA and at the other periods
of the day, the SFO is much better than the PSO as shown in
Fig. 13. and Fig. 14.

Similarly, Case 3 is the case of adding only DG unit ‘2’
to bus 2 in the IEEE 14-bus system, and to bus 21 in the
IEEE 30-bus system. Fig. 15 and Fig. 16 show the fuel cost
comparison. In Case 4, the IEEE 14 bus system is tested
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TABLE 7. Design Control variables of IEEE 14-bus system of case 4 solved by SFO and GA.
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TABLE 7. (Continued.) Design Control variables of IEEE 14-bus system of case 4 solved by SFO and GA.
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FIGURE 13. Cost comparison between SFO, PSO, and GA of case 2 for
14-bus system.

FIGURE 14. Cost comparison between SFO, PSO, and GA of case 2 for
30-bus system.

FIGURE 15. Cost comparison between SFO, PSO, and GA of case 3 for
14-bus system.

with DG unit ‘2’ added to bus 2 and DG unit ‘1’ added to
bus 5. The IEEE 30 bus system is tested with DG unit ‘2’
added to bus 21 and DG unit ‘1’ added to bus 4. Fig. 17 and
Fig. 18 demonstrate the fuel cost comparison and it is seen
that the reduction in the fuel cost reached its maximum when
both DG unit ‘1’ and DG unit ‘2’ are simultaneously added
to the system.

Table 6 is shown as a sample for the detailed comparison
of results of a typical day. It illustrates the design control
variables’ results when tested on the IEEE 14-bus system

FIGURE 16. Cost comparison between SFO, PSO, and GA of case 3 for
30-bus system.

FIGURE 17. Cost comparison between SFO, PSO, and GA of case 4 for
14-bus system.

FIGURE 18. Cost comparison between SFO, PSO, and GA of case 4 for
30-bus system.

using the SFO, and GA under inclusion of both DG unit ‘2’
and DG unit ‘1’ to the system.

V. CONCLUSION
This paper has proposed a novel meta-heuristic SFO algo-
rithm for solving the OPF problem in power systems such
as the IEEE 14-bus, and 30-bus networks. Also, the SFO
algorithm is used to optimally siting DG units to these
systems. The OPF problem is then solved using the proposed
algorithm with inclusion of these DG units. The simulation
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results of the OPF problem have proven the validity, accuracy,
feasibility and robustness of the proposed SFO algorithm
over that obtained using the other optimization methods.
This superiority of the SFO comes from its high convergence
speed, simple computational procedure and its proper design.
Hence, when applying the SFO algorithm to solve further
optimization problems, it competes the current optimization
techniques and is effective in rising the quality of optimiza-
tion. Finally, the proposed SFO algorithm can be used to solve
many power system problems including smart grids.
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