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ABSTRACT This research work reports a double-wing chaotic system with a line of equilibrium points
and constructs an electronic circuit via MultiSIM for practical implementation. Explicitly, the new chaotic
system has a total of six terms with two quadratic nonlinearities and absolute function nonlinearity. Using
the phase plots in MATLAB, we demonstrate that the new chaotic system has double-wing chaotic attractor.
We describe the Lyapunov exponents and the Kaplan-Yorke fractal dimension of the new chaotic system.
A novel feature of the new chaotic system is that the system has rest points located on the z-axis as well as
two rest points not on the z-axis. Thus, the new system has infinite number of rest points and hidden attractor.
We also exhibit that the new double-wing chaotic system has multi-stability and we illustrate the coexistence
of attractors for two different sets of initial conditions. Some interesting dynamical properties such as offset
boosting are also presented. Finally, we build an electronic circuit of the new chaotic system and show that
the theoretical model has practical feasibility for implementation.

INDEX TERMS Chaos, chaotic systems, line equilibrium, circuit design.

I. INTRODUCTION

Many fields of science and engineering feature applications
of chaos theory and chaotic dynamical systems [1]. Non-
linear dynamical systems showing chaos are studied in sev-
eral fields such as chemical reactors [2], steganography [3],
encryption [4], secure communication [5], [6], etc. Recently,
many dynamical systems with double-wing chaotic attractors
have been studied by scientists such as Liu-Yang system [7],
Lu-Xiao system [8], etc.

A new double-wing chaotic system (1) with double-wing
attractor is introduced in this work. The new double-wing
chaotic system (1) has a novel feature, viz. the rest points of
the system (1) consist of the entire z-axis in R3 and two points
in the x-y plane symmetric about the z-axis.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hassan Ouakad.
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In the recent years, significant studies have been done
which focus on chaotic systems possessing infinitely
many rest points on curves such as line [9], [10],
square [11], cloud [12], circle [13], heart [14], axe [15],
boomerang [16], etc.

Recent research has also focused upon finding chaotic
systems with no equilibrium points [17]-[19] and chaotic
systems with stable equilibrium points [20]. These special
chaotic systems belong to the family of chaotic systems
with hidden attractors [21], whose basins of attraction do
not intersect with small neighborhoods of any equilibrium
points. Chaotic systems with hidden attractors have received
considerable attention in recent years [22]-[25].

Multi-stability in chaotic systems refers to the existence
of multiple coexisting attractors for different initial condi-
tions [1]. Chaotic systems with coexisting attractors have
received significant attention in recent years [26]-[30].
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TABLE 1. Number of equilibrium points of multi-wing systems.

Number of
Chaotic Attractor Multi-Wing Type Equilibrium
Points

Rucklidge [31] Two-wing system 3
Liu [32] Two-wing system 4
Vaidyanathan [33] Two-wing system 2
Lien et al. [34] Two-wing system 3
Zhang et al. [35] Three-wing system 5
Dadras et al. [36] Three-wing system 5
Grassi et al. [37] Four-wing system 9
Folifack Signing et al. [38]  Four-wing system 5
Volos et al. [39] Four-wing system 1
This work Two-wing system oc

In the chaos literature, there is significant interest in
finding multi-wing chaotic systems such as two-wing sys-
tems [31]-[34], three-wing systems [35], [36], four-wing sys-
tems [37]—-[39], etc. The multi-wing chaotic systems reported
in [31]-[39] have a finite number of unstable equilibrium
points and such chaotic systems belong to the family of
chaotic systems with self-excited attractors [1]. Table 1 gives
the number of equilibrium points of the multi-wing chaotic
systems reported in [31]-[39].

In this research work, we introduce a new chaotic system
with double-wring attractor and a line equilibrium. A novel
feature of our chaotic system is that the system possesses rest
points located on the z-axis as well as two rest points not on
the z-axis. In comparison with the multi-wing chaotic systems
having a finite number of equilibrium points (see Table 1),
our new chaotic system has a line equilibrium with an infinite
number of equilibrium points. Thus, it belongs to the family
of chaotic systems with hidden attractors.

We also exhibit that the new chaotic system has
multi-stability and we illustrate the coexistence of attractors
for two different sets of initial conditions. Next, we build
an electronic circuit of the new chaotic system via Multi-
SIM. Finally, we build an experimental design of the new
double-wing chaotic system with a real hardware circuit.
Thus, we demonstrate that the theoretical chaotic model with
an experimental hardware design has practical feasibility for
implementation [39], [40].

Il. ANEW DOUBLE-WING DYNAMICAL SYSTEM
EXHIBITING CHAOS AND A LINE OF REST POINTS
In this work, we propose a new 3-D dynamical system
given by
X =yz
y=x-—y 1)
z = alx| — bx?
In(1),X = (x,y, z) is the state and a, b are constant param-
eters. The dynamical system (1) has two quadratic nonlinear
terms (yz and x2) and an absolute function nonlinearity (|x|).

It is shown in this work that the system (1) is chaotic for
(a,b) =(,2).
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FIGURE 1. 2-D phase plot of the double-wing chaotic system (1) in the
(x, y)-plane for Xy = (0.2, 0.2, 0.2) and (a, b) = (5, 2).

FIGURE 2. 2-D phase plot of the double-wing chaotic system (1) in the
(v, z)-plane for Xy = (0.2, 0.2, 0.2) and (a, b) = (5, 2).

For the choice of initial state Xy = (0.2,0.2,0.2) and
(a,b) = (5,2). we estimate the Lyapunov exponents spec-
trum of the double-wing chaotic system (1) for 7 = 1ES sec-
onds in MATLAB as

LE; = 0.1425, LE, =0, LE; = —1.1425 2)

Since the Lyapunov exponents in (2) have the signs
(+, 0, —), it follows that the dynamical system (1) exhibits
chaotic behaviour. Also, the Kaplan-Yorke dimension of the
system (1) is found as

LE| + LE,
|LE3]|

In this work, we used the classical fourth-order Runge-
Kutta method with step-size & = 0.001 in MATLAB to plot
the numerical simulations of the dynamical system (1).

MATLAB planar plots of the double-wing chaotic sys-
tem (1) are exhibited in Figures 1-3.

The dynamical system (1) is found to be invariant when
coordinates are transformed as

Dxy =2+ = 2.1247 3)

S:(x,y, 2 (=x,—y,2) @
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FIGURE 3. 2-D phase plot of the double-wing chaotic system (1) in the (x,
z)-plane for Xy = (0.2, 0.2, 0.2) and (a, b) = (5, 2).

This pinpoints that the dynamical system (1) has symmetry
of rotation about the z-axis.

The rest points of the dynamical system (1) are found by
determining roots of the following:

yz=20 (5a)
x—y=0 (5b)
5x| —2x2 =0 (5¢)

From (5b), x = y. Thus, the calculations amount to solving
the following set of two equations in x and z.

x2=0 (62)
5x]—2x2 =0 (6b)

There are two cases to consider:

Case A: Whenx = 0,y = x = 0. Also, both equations (6a)
and (6b) are satisfied. Thus, the z-axis in R consists of rest
points of the system (1).

Case B: When x # 0, we get z = 0 from Eq. (6a). Solving
the equation (6b), we get two solutions x = 2.5 and x =
—2.5. We also note that y = x from Eq. (5b).

Combining Cases A and B, the rest points of the system (1)
consist of the entire z-axis in R> as well as the two points,
Ey =(2.5,2.5,0)and E; = (—2.5, =2.5,0).

The origin Ey = (0, 0, 0) on the z-axis is also a rest point
of the system (1).

Next, we undertake a stability analysis of the rest points
Ey, E1, E> and non-zero points on the z-axis. Let J(X) denote
the linearization matrix of the system (1) at X = (x, y, 2).

We take (a, b) = (5, 2).

J(Ep) is calculated using MATLAB as

0 0 0
JE)=|1 -1 0 7
0 0 0

The matrix J(Ep) has the spectral values A; = A, = 0 and
A= —1.
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FIGURE 4. Bifurcation plot of the system (1) versus a for b =2 and Xy =
(0.2, 0.2, 0.2).
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FIGURE 5. Lyapunov spectrum of the system (1) when varying a for b = 2
and Xp = (0.2, 0.2, 0.2).

Thus, Ey is a non-hyperbolic rest point of (1) and its stabil-
ity is at a critical state. We cannot conclude the stability type
of Ey from the spectral values of J(Ep) by the first method of
Lyapunov. Using phase plots, we see that Ey is unstable.

Next, the matrix J(E1) was found using MATLAB as

0 0 2.5
J(E)) = 1 —1 0 ®)
-5 0 0

which has the spectral values A1 = 0 and A 3 = £3.5355i.
Thus, Ej is a non-hyperbolic rest point of (1) and its stability
is at a critical state. We cannot conclude the stability type of
E from the spectral values of J(E) by the direct method
of Lyapunov. Using phase plots, we find that E7 is locally
asymptotically stable.

Also, the matrix J(E,) was found using MATLAB as

0 0 -—25
JE)=|1 =1 0 ©)
5 0 0
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FIGURE 6. Bifurcation plot of the system (1) versus b for a = 5 and
Xo = (02,02, 0.2).

The matrix J(E,) has the spectral values Ay = —1 and
A23 = =£3.1623i. Thus, E, is a non-hyperbolic rest point
of (1) and its stability is at a critical state. We cannot conclude
the stability type of E, from the spectral values of J(E>) by
the direct method of Lyapunov. Using phase plots, we find
that E» is locally asymptotically stable.

For any non-zero rest point X = (0, 0, k) on the z-axis, the
matrix J(X) was calculated as

0 k O
JX)=|1 -1 o0 (10)
0 0 0

The characteristic polynomial of J(X) was found as
00y =21 (3 +h—k) =0, (k#0) (11)

Thus, A = 0 is always a spectral value of J(X).

When £ > 0,X = (0,0, k) is on the positive side of the
z-axis, and A2 + A — k is an unstable quadratic polynomial
with real roots of opposite signs. In this case, X = (0, 0, k) is
a saddle point and unstable.

When k£ < 0,X = (0,0, k) is on the negative side of the
z-axis, and A2 4+ A — k is a Hurwitz quadratic polynomial
with stable roots. In this case, X = (0, 0, k) is a critical rest
point and the first method of Lyapunov does not enable us to
conclude its stability. The rest points X = (0, 0, k), (k < 0)
are non-isolated and hence they cannot be locally asymptot-
ically stable. Using phase plot analysis, we find that X =
(0,0, k), (k < 0) are critically stable.

Finally, we check the dissipativity of (1) by finding VV
along any volume flow of (1).

Indeed, it is seen that

VV=8—X+Q %=—1<0 (12)
ox dy 0z

Thus, the double-wing chaotic system (1) is dissipative.
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FIGURE 7. Lyapunov spectrum of the system (1) when varying b fora =5
and X, = (0.2, 0.2, 0.2).

a

FIGURE 8. Coexisting bifurcation models of the double-wing chaotic
system (1) when increasing the value of a from 0 to 5 for b = 2, where the
blue orbit starts with the I.C. and X = (0.2, 0.2, 0.2) and the red orbit
starts with the I.C. and Y = (0.2, 0.2, 0.2).

Ill. DYNAMIC ANALYSIS OF THE NEW DOUBLE-WING
CHAOTIC SYSTEM

A. BIFURCATION DIAGRAM AND LYAPUNOV EXPONENTS
Bifurcation diagram is a miscellaneous tool to investigate
the dynamics behavior of nonlinear systems [39], [40]. The
bifurcation plot and the spectrum of Lyapunov exponents of
the system (1) by changing a are shown in Figures 4 and 5,
respectively.

The system (1) exhibits periodic and chaotic behavior
when changing the value of a from O to 5. Explicitly, when
a < 2, system (1) exhibits periodic behavior and whena > 2,
system (1) has chaotic behavior.

In addition, it is observed from Figures 6 and 7 that
system (1) displays chaos at the beginning and ultimately
converts into periodic orbits with the increase of the con-
trol parameter b in the range of [1], [S1]. We note that the
bifurcation diagram is consistent well with the corresponding
Lyapunov exponents spectrum.
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FIGURE 9. MATLAB planar plots of various coexisting attractors of the
system (1) in the (y, z) plane: (a) the coexisting periodic attractors for
a = 1.75 (b) the coexisting chaotic attractors for a = 4.5.

5

FIGURE 10. The basin of attraction of the coexisting chaotic attractors
(cyan and red) of the system (1) in the y — z plane for the cross section
x =0.2.

B. COEXISTENCE OF ATTRACTORS
This section explores a study on finding various coexist-
ing attractors for the system (1) in detail. The system (1)
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FIGURE 11. MATLAB planar plots in different planes and different values
of the offset boosting controller k in y — z plane, k = 0 (blue color), k =2
(red color), k = 5 (green color).
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FIGURE 12. The state z with different values of the offset boosting
controller k: k = 0 (blue color); k = 2 (red color); k = 5 (green color).

remains invariant under the transformation S : (x,y,27) —
(—x, —y, z). Thus, any projection of the attractor has rota-
tional symmetry in the z— axis. Thus, (1) may exhibit coex-
isting attractors.

We set b = 2 and choose a as control parameter in [0, 5],
the coexisting bifurcation models of the state variable x are
plotted in Figure 8 in which the blue colored orbit begins
with Xo = (0.2,0.2,0.2) and the red colored orbit begins
with Yo = (—0.2, —0.2, 0.2). As shown in Figure 8, there are
coexisting attractors in system (1).

We set a = 1.75 and b = 2 the system (1) shows coexist-
ing periodic attractors with respect to Xo = (0.2,0.2,0.2)
(blue color) and the initial state (red color) as shown in
Figure 9(a). When we set a = 4.5, the system (1) exhibits
coexisting chaotic and periodic attractors corresponding to
Xo = (0.2,0.2, 0.2) (blue color) and Yy = (—0.2, —0.2, 0.2).
(red color) as shown in Figure 9(b).
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FIGURE 13. The circuit schematic of the double-wing chaotic system (15).

As we know, basin of attraction is important for the
study of hidden attractors and coexisting attractors and it is
often defined as the set of initial conditions whose moving
orbits converge to the specified attractor, from which much
more information about the coexisting attractors can be

VOLUME 7, 2019
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FIGURE 14. Multisim outputs of the double-wing chaotic system (15) in
(a)x—y plane, (b) y — z plane, (c) x — z plane.

gained [46]-[50]. Therefore, we plot the basin of attraction in
the y(0) — z(0) plane for x(0) = 0.2 of the coexisting chaotic
attractors as shown in Figure 10 from which the cyan colored
orbit starts from Xo = (0.2, 0.2, 0.2) and the red colored orbit
starts from Yy = (—0.2, —0.2, 0.2).
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FIGURE 15. The experimental circuit of the double-wing chaotic
system (15).

C. OFFSET BOOSTING CONTROL
As the state z appears only once in the second equation of (1),
we can control the state z conveniently. The state variable z
is offset-boosted by replacing z with z 4+ k in which k is a
constant.

Thus, we consider the double-wing chaotic system (1) in
the modified form as follows:

x=yz+k)
y=x-y (13)

Z=alx| — bx?

Consequently, the chaotic signal z can be transformed from
a bipolar signal to a unipolar signal when varying the control
parameter k.

We fix a = 5, b = 2 and the initial state and Xy =
(0.2, 0.2, 0.2). Various positions of the phase portraits of the
chaotic attractors depicted in accordance with different values
of the offset boosting controller k for system (13) in the (y, z)
plane is shown in Figure 11. Figure 12 exhibits that as we
change the value of &, the state z is effectively boosted from
a bipolar signal with chaos to a unipolar signal with chaos.
From the above analysis, it is deduced that the double-wing
nonlinear system (1) has potential chaos-based applications
with the choice of the offset boosting control.

IV. CIRCUIT DESIGN OF THE NEW DOUBLE-WING
CHAOTIC SYSTEM
In this section, we present a circuit implementation of the the-
oretical model (1) by using electronic components. The elec-
tronic circuit of the new double-wing chaotic system (1) was
executed in MultiSIM software. The circuit has basic elec-
tronic materials such as 16 resistors, 8 operational amplifiers
(TLO82CD), 2 diodes (1N4148), 2 multipliers (AD633JN)
and 3 capacitors.

In this section, the three states (x, y, z) of (1) have been
rescaled as X = 2x,Y = 2y,Z = 2z. The rescaled

115460

(©)

FIGURE 16. Experimental phase portraits from the implemented circuit in
(a) x —y plane, (b) y — z plane, (c) x — z plane.

double-wing chaotic system (1) is given below:

i
ST 2"
Y=x—y (14)
Z = alx| - 22
=alx| — =
2X
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By the use of Kirchhoff’s circuit laws into the circuit
in Figure 13, its circuital equations are derived as follows:

. 1
X =
CllRlyZ
Y = - 15
CoRy C2R3y (15)
.1 r o,
Z = [x] X

T GRe" T CiRs

In Eq. (15), X, Y and Z correspond to the voltages on the
integrators (U1A, U3A, USA), respectively, while the power
supply is £15 V. We selected Ry = 800 kQ2,R, = R3 =
Rs = 400 k2, R4 = 80k2, Rg = R7 = Rg = Ry =
Ri0 = R11 = Ri2 = Ri3 = Ri4 = Ri5 = Ry = 100 k€2,
Cy =Cy=0C3 = 1nF

The MultiSIM outputs of the double-wing chaotic sys-
tem (15) are displayed in Figure 14 for x-y, x-z and y-z planes
which agree with the MATLAB outputs of the double-wing
chaotic system (1) shown in Figures 1-3.

Figure 15 shows the real circuit design of the double-wing
chaotic system (15). Figure 16 illustrates the experimental
results of the double-wing chaotic system (15) which match
with the Multisim and MATLAB outputs of the same chaotic
system.

V. CONCLUSION

A new double-wing chaotic system with a line of rest points
was proposed and investigated. Dynamic properties were
studied such as rest points and stability, bifurcation dia-
gram, multi-stability, coexistence of attractors and offset
boosting control. As the double-wing chaotic system (1) has
infinitely many equilibrium points, it was shown that it is
a member of the family of hidden chaos attractors. Circuit
implementation for the new double-wing chaotic system (1)
was experimentally designed with a real circuit. The new
double-wing chaotic system has potential applications in
engineering areas such as voice encryption, image encryp-
tion, pseudo-random number generators (PNRG) and secure
communication devices.
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