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ABSTRACT State estimation has been widely used in power system energy management systems. However,
the application of state estimation for integrated electrical and heating networks (IEHNs) remains in a
preliminary stage. This paper addresses this issue by proposing a robust state estimation method for IEHNs
based on the weighted least absolute value in conjunction with equality constraints. The robust performance
of the proposed estimator resolves the disadvantages of existing combined state estimators. A heating load
pseudo-measurement model based on an artificial neural network and real-time measurements is developed
to suppress the negative effects of measurements that contain bad data, and thereby ensure an adequate basis
for accurate state estimation and guarantee the observability of the heating network. The effectiveness of
the proposed state estimation method and its robustness to bad data are verified by comparison with the
performance of the conventional largest normalized residual test based on the equality-constrained weighted
least squares state estimation of IEHNs in numerical simulations employing a simple IEHN and/or the Barry
Island IEHN as case studies.

INDEX TERMS Integrated electrical and heating network, state estimation, weighted least squares absolute
value, pseudo-measurement model, bad data identification.

NUMENCLATURE
A. INDICES AND PARAMETERS
[λ] overall heat transfer coefficient per unit

length W/(m·K)
[η] circulation pump efficiency
[g] gravitational acceleration (kg·m/s2)
[cm] heat-to-power ratio
[Cp] specific heat of water (J/(kg·K))
[L] pipe length (m)
[Y ] node admittance matrix
[Z ] ratio describing the trade-off between heat

supplied to a site and electrical power

B. VARIABLES
[m] mass flow rates within each pipe (kg/s)
[mq] mass flow through each node injected from

a source or discharged to a load (kg/s)

The associate editor coordinating the review of this manuscript and
approving it for publication was Salvatore Favuzza.

[mout ] mass flow rate within a pipe leaving a
node (kg/s)

[min] mass flow rate within a pipe entering a
node (kg/s)

[Ts] supply temperature (◦C)
[Tr ] return temperature (◦C)
[To] outlet temperature prior to mixing in the the

return network (◦C)
[Ta] ambient temperature (◦C)
[Tout ] mixture temperature of a node (◦C)
[Tin] temperature of flow at the end of an incom-

ing pipe (◦C)
[Tn] temperature at each node in a supply and

return network (◦C)
[Tbt ] temperature prior to mixture at the end of

each pipe (◦C)
[h] pressure head (m)
[hf ] head losses within a pipe (m)
[hpuc ] pump head of the heating network (m)
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[Hn] pressure head at each node in a supply and
return network (m)

[Vi] the voltage at busbar i (p.u.)
[8i] the heat power at node i (MW)
[8CHP] useful heat output of CHP units (MW)
[PCHP] electrical power output (MW)
[PCon] electrical power generation of an extraction

unit in full condensing mode (MW)
[Ppu] electrical power consumed (MW)
[ze] measurement vector in the electrical

network
[zh] measurement vector in the heating network
[εe] measurement vector error in the electrical

network
[εh] measurement vector error in the heating

network

C. CONSTANTS AND SETS
[npipe] number of pipes in a heating network
[nloop] number of loops in a heating network
[nGd ] number of nodes in a heating network except

the source node
[Inode] set of nodes in a heating network
[Ipipe] set of pipes in a heating network
[I loop] set of loops in a heating network
[ISd ] set of source nodes in a heating network
[I load ] set of load nodes and load nodes in a heating

network
[IGd ] set of nodes in a heating network except the

source node
[IId ] set of intermediate nodes in a heating

network
[N zero] set of zero-injection nodes in an electrical

network

I. INTRODUCTION
Increasing energy constraints and environmental degradation
have generated intense interest in improving the energy effi-
ciency and increasing the penetration of renewable energy
sources in energy networks. This has promoted the rapid
development of integrated energy systems (IESs), which are
also denoted as multi-energy systems [1]. Such systems gen-
erally combine at least two distinct energy networks, such
as electrical and heating networks. For example, integrated
electrical and heating networks (IEHNs) coupling combined
heat and power (CHP) units, heat pumps, and boilers have
been demonstrated to improve the economic performances
of the two energy systems while meeting the general energy
demands of end users with reduced environmental costs [2].
Furthermore, optimizing the supply of electrical power in
terms of individual units also increases the flexibility of
IEHNs for managing fluctuations in power supply arising
from renewable energy sources.
Current research focused on IESs and IEHNs cen-

ters largely around system modeling, planning, scheduling,

optimization, and evaluation [3]–[11]. Liu et al. [4] conducted
foundational system modeling work by developing a model
for IEHNs, and proposing a method for solving the com-
bined heat and electrical power flow equations. Pan et al. [5]
developed an economic dispatching scheme that considered
the dynamic characteristics of IEHNs and the serviced build-
ings over time. Ren and Gao [9] developed a mixed-integer
linear programming (MILP) model for the integrated plan-
ning and evaluation of distributed energy systems. However,
online dispatch and control strategies depend on complete
and reliable real-time data, which is generally rather lim-
ited in scope and unavoidably subject to bad data due to
economic and technical reasons. This issue has been widely
addressed in conventional electrical power systems by sub-
jecting real-time measurements to a filtering process, and
then applying state estimation (SE) to obtain the states of
the entire system [12]–[16]. To this end, the weighted least
absolute value (WLAV) state estimator has been often applied
because of its excellent robust performance [17]–[19]. How-
ever, the application of SE for IEHNs remains in a prelim-
inary stage. Among the available studies on this subject,
an SE method focused on calculating heat loss was pro-
posed in [20]. Dong et al. [21] proposed an SE approach for
IEHNs, and applied the classic weighted least squares (WLS)
method as the minimization function in the state estimator
and the largest normal residual (LNR) for conducting bad
data identification. However, the constraints of the heating
network were not fully considered in the adopted steady-
state IEHNs model. Sheng et al. [22] proposed an extended
IEHN model that also considered the dynamics of pipelines,
and applied a two-stage SE approach to solve the model.
Zhang et al. [23] developed a decentralized algorithm based
on the asynchronous alternating direction method of mul-
tipliers for integrated heat and power networks, in which
the measurement information because the two networks is
not shared. These studies demonstrated that, compared with
applying SE to the individual systems independently, con-
ducting SE for the combined systems of an IEHN provides
higher SE accuracy by satisfying the constraints of the IEHN
components coupling the two systems. In addition, it must
be noted that SE requires that system measurements have an
appropriate degree of redundancy. However, district heating
networks generally lack real-time heat power measurement
equipment. This has led to an intense interest in predicting
the cold and heat power loads of IESs [24], [25]. For exam-
ple, Shahaboddin et al. [25] constructed an adaptive neuro-
fuzzy inference system to predict the heat loads of individual
consumers in a district heating network. However, pure heat
load forecasting methods must consider many factors, and
the process is not closely related to existing real-time mea-
surement data. Consequently, the accuracy of the SE based
exclusively on heat load forecasting is limited, and more
intelligent methods of estimating heat loads based on real-
time measurements are required.

Although the advantages of conducting SE for the com-
bined systems of an IEHN over that applied to the individual
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systems independently have been demonstrated by the above-
discussed studies, this approach suffers from the following
significant disadvantages.
(1) Heating network constraints have not been fully

considered in the IEHN model.
(2) The existence of bad data in the electrical network

will affect the SE results of the heating network, and
vice versa. Furthermore, the probability of obtaining
bad data in heating network measurements is often
greater than that in the electrical network because of
the working environment and the automation level of
thermal meters. Therefore, the combined SE of IEHNs
requires robust performance.

(3) The lack of a full array of direct heat power measure-
ments in the heating network makes many of the exist-
ing measurements in an IEHN critical, and the loss of
any such critical measurement from the measurement
set can make the IEHN unobservable.

The present work seeks to address these research gaps by
making the following contributions.
(1) We apply robust WLAV-based SE to a steady-state

model of an IEHN that considers the complete equal-
ity constraints, and compare the results with equality-
constrained (EC) WLS in a simple IEHN and the
Barry Island IEHN as numerical simulation test case
studies.

(2) An artificial neural network (ANN) heating load
pseudo-measurement model based on real-time mea-
surements is developed to reduce the number of critical
measurements in the heating network and guarantee the
observability of the system. The accuracy of the model
is verified by comparisons with the load profiles of an
actual heating network.

(3) The robustness of the proposed method is verified by
comparing its performance with that of the conven-
tional LNR test based on the EC-WLS in numerical
simulations of the Barry Island IEHN.

The remainder of this paper is organized as follows. The
IEHN model is presented in Section II. The SE model is
introduced in Section III. The proposed WLAV-based SE
method and the results of the case studies are presented in
detail in Sections IV and V, respectively. Section VI presents
the conclusions and directions for future work.

II. INTEGRATED ENERGY SYSTEM MODEL
The application scenarios of IEHN are mainly the coupling
of district electricity systems (DESs) and district heating
systems (DHSs). Fig. 1 presents a schematic illustrating
the structure of an IEHN. Models for the DES are rela-
tively mature, and this paper adopts the three-phase model
described elsewhere [14]. Existing heating network mod-
els include the static model, quasi-dynamic model, and full
dynamic model [26]. The present work employs the static
model for the heating network in accordance with the time
scales of the networks considered.

FIGURE 1. Schematic illustrating the structure of an IEHN.

FIGURE 2. Structure of a simple heating network (case study 1).

Fig. 2 illustrates the structure of a simple heating network
with two heat sources, two circulation pumps, and three load
nodes denoted as 1, 2, and 3, and five pipelines denoted by the
circled terms with supply pipelines given in black and return
pipelines given in gray. The heating network is mostly tree-
like, but it can include flow loops composed of, e.g., nodes
1, 2, 4, 3, and 5. A heating network is generally divided
into a hydraulic model and a thermal model for analysis.
In the hydraulic model, water or another thermal medium
flows from the head to the end of a pipeline under a pressure
difference created by circulation pumps at the heat sources
that generate a head pressure. In the thermal model, heat is
transferred from heat sources through the flow of the thermal
medium to each load node. Therefore, the hydraulic and
thermal models are coupled via the mass flow rates of the
thermal medium. Changes in the heat load require adjustment
of the heating system parameters. The parameters selected for
adjustment depend on the regulation method adopted. These
methods mainly include quality regulation, where the heat
source outputs are adjusted, quantity regulation, where the
total volume of the thermal medium in the system is adjusted,
and intermittent regulation, where the number of heating
hours is adjusted. At present, quality regulation is generally
adopted for heating networks, and this is also applied in the
present study. Therefore, the total volume of the thermal
medium in the heating network and the number of heating
hours are assumed to be constant. Thus, we assume that the
mass flows in the supply pipelines and the return pipelines
of the heating network are equal but opposite in direction for
facilitating the analysis.
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A. HYDRAULIC MODEL
The hydraulic model depicts the relationship between the
mass flow rate and head pressure at different nodes. This
relationship is governed by the following basic rules.

(1) The continuity of mass flow: the mass flow that enters
into a node minus the mass flow that leaves the node is equal
to the flow consumption at the node.∑

min −
∑

mout = mq (1)

(2) Head loss equation: As the thermalmediumflows along
a pipe, the pressure drops due to friction. Thus, the relation
between the flow and the head losses along each pipe is

hf = Km |m| (2)

where pipe resistance coefficient K is mainly determined by
the mass flow rate and the pipe parameters [4].

(3) Loop pressure equation: the sum of head losses around
a closed loop must equal to zero.∑

hf = 0 (3)

B. THERMAL MODEL
The thermalmodel depicts the relationships amongmass flow
rates, temperature, and heat power. The heat power at the
ith bus is calculated using the following equation.

8i = Cpmq,i(Ts,i − To,i) (4)

The relationship between the temperatures at both ends
(i, j) of a pipeline (k) is calculated as follows.

Tj = (Ti − Ta)e
−

λLk
Cpmk + Ta (5)

The temperature mixing equation is given as follows.

(
∑
mout )Tout =

∑
(minTin) (6)

As discussed, m provides the coupling between the
hydraulic and thermal models. Meanwhile,m also has a direct
relationshipwith the heat power of a CHP,which couples with
the electrical network.

C. COUPLING COMPONENT MODEL
The coupling units considered include the CHP units and
circulation pumps, which can be modeled as follows:

cm = 8CHP/PCHP (7)

Z =
8CHP

− 0
PCon − PCHP

(8)

Ppu =
mghpuc
η

. (9)

The electric boilers and heat pumps are modeled as
coupling components elsewhere [4].

III. STATE ESTIMATION
The measurements in an IEHN are expressed as follows.{

ze = he(xe)+ εe

zh = hh(xh)+ εh
(10)

Here, xe and he(xe), xh and hh(xh) are the state vari-
ables and measurement functions in the electrical and heat-
ing networks, respectively. The mathematical model of the
WLAV-based SE for an IEHN with equality constraints
c(xe, xh) is given as follows.

min J (xe, xh) = weT |εe| + whT |εh|

s.t εe = ze − hx(xe)

εh = zh − hh(xh)

c(xe, xh) = 0. (11)

Here, we and wh are weighting vectors of the electrical and
heating networks, respectively. In the following subsections,
the SE of an IEHN is defined in detail by introducing state
variables and measurement equations.

A. CHOICE OF IEHN STATES
The measurements in an electrical network can be expressed
by voltage phasor in the form of polar coordinates. However,
one of three possible combinations of state variables can be
employed in a heating network [4], [20], and each has the
distinct advantages and disadvantages listed in Table 1.

TABLE 1. Comparision of three state variable choices for heating
networks.

According to the characteristics listed in Table 1, describ-
ing the state of the entire network via mass flow makes
more intuitive sense. Furthermore, measurement redundancy
is more important for conducting SE. Therefore, the state
variables of the heating network in this paper are expressed
by (m,Ts,Tr ).

B. DESCRIPTION OF MEASUREMENTS
Communication in the electrical and heating networks is
facilitated by a Supervisory Control and Data Acquisi-
tion (SCADA) system. The SCADA system collects all avail-
able real-time measurement data and uploads them to the
energy management system. Along with the development of
the distribution power systems, the measurement equipment
is also increasing in its quantity, types, and precision. In addi-
tion to the branch power and branch current magnitude mea-
surements that are common in distribution power systems,
the node injected power and voltage magnitude can also be
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obtained from smart meters. In the heating network, mass
flow and temperature are the most common types of measure-
ments, and nearly all pipes and nodes are configured for these
measurements. Pressure measurements are also commonly
obtained in a heating network, but the precision of pressure
measurements is greatly affected by the environment. Finally,
real-time heat power measurements are generally configured
only at key nodes, such as heat sources or heat exchange
stations. As such, common heat load nodes typically lack
real-time heat power measurements, and only the total heat
consumption of the network over a single day period is
usually determined.

The measurement functions of the actual measurement
system in a heating network for the hydraulic and thermal
model are given as follows.

mb = mb ∀b ∈ Ipipe (12)

mq,i =
∑

b∈Ipipe
Aibmb ∀i ∈ Inode (13)

hf ,b = Kbmb |mb| ∀b ∈ Ipipe (14)

8i = Cpmq,i(Ts,i − To,i) ∀i ∈ ISd (15)

Ts,i = Ts,i ∀i ∈ I load (16)

Tr,i = Tr,i ∀i ∈ I load (17)

Tr,i = f (m,Tr ) ∀i ∈ ISd (18)

We also include the measurement function

8i = Cpmq,i(Ts,i − To,i) ∀i ∈ I load (19)

if there are real-time heat power measurements or pseudo
measurements in load nodes.

It is noted that to describe the measurement functions in
brief, we use the node-branch incidence matrix A and loop-
branch incidence matrix B in the measurement functions and
the following constraint equations. The detailed explanations
of A and B are shown in Appendix A.

Finally, a standard technique employed in electrical power
systems is extended to the IEHN to avoid numerical problems
such as ill-conditioned matrices [21].

C. PROBLEM STATEMENTS
The description of the above SE model and measurement
functions illustrates that some differences between the heat-
ing and electrical networks lead to some problems. (1)

1) A comparison of measurement functions (12)–(18)
with the thermal model equations (4)–(6) indicates that
(5) cannot be obtained from the available measure-
ments. Hence, the available measurement functions
cannot fully characterize the heating network.

2) A comparison of measurement functions (12)–(15)
with the hydraulic model equations (15)–(18) indicates
that fewer equations exist for Ts and Tr than equations
for m, and only temperature measurement equations
(16)–(17) are available for solving Ts and Tr in most
instances. These factors produce many critical mea-
surements in the heating network, where the loss of

a critical measurement can result in an unobservable
system, which would greatly affect the accuracy of the
state estimator.

These two factors produce many critical measurements in
the heating network, where the loss of a critical measurement
can result in an unobservable system, which would greatly
affect the accuracy of the state estimator. To counter these
problems, the pseudo-measurement model of heat power is
constructed and the equality constraints are added into the SE
model.

IV. PROPOSED METHODOLOGY
The proposed method consists of the pseudo-measurement
model based on an ANN and the WLAV-based state
estimator.

A. PSEUDO-MEASUREMENT MODEL
Numerous factors affect the heat load of a heating network,
such as real-time price, daytime characteristics (weekday/
weekend), historical data, and the production periods of facto-
ries using thermal energy. As a result, heat power predictions
cannot be expressed as an explicit formulation that considers
all of the related factors. Therefore, an ANN is employed
for pseudo-measurement modeling of the heat power at
load nodes. The essence of the method is to approximate a
nonlinear high-dimensional function through back propaga-
tion (BP) networks [27].

The pseudo-measurement model adopts a three-layer feed-
forward ANN that includes an input layer, hidden layer,
and output layer. The hidden layer uses sigmoid transfer
functions, and the output layer uses linear transfer func-
tions. Theoretically, the feedforward ANN can achieve arbi-
trary nonlinear mapping with a single hidden layer by
appropriately selecting the number of neural nodes.

The inputs of the ANN are the real-time correlation mea-
surements of the load nodes and the historical heating net-
work state variables of all the nodes in the heating network,
and the outputs are the real-time heat power of the pseudo-
measurement nodes. The data of the actual heating network
are divided into a training set and several testing sets. In addi-
tion, noise set samples accounting for 10% of the total train-
ing set are added into the training set to improve the output
accuracy of the network when bad data occur in the input.
Here, the presence of bad data in the actual measurement
system is simulated by adding 5% bad data randomly in
the real-time correlation measurement of each sample of the
noise set.

The efficiency of network training is improved by reduc-
ing the dimension of the ANN input via the use of mutual
information, which is derived from the concept of entropy
in information theory to represent the extent to which infor-
mation is shared among multiple variables. As such, mutual
information is often used as a tool for variable selection [26].
This process enables the pseudo-measurement model to
be applied to the real-time state estimator. The mutual
information between discrete random variables X and Y
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is defined as

I(X ,Y ) =
N∑
i=1

M∑
j=1

p(xi, yi)log2(
p(xi,yi)
p(xi)p(yi)

), (20)

where N and M are the number of samples of random vari-
ables X and Y , respectively. Large mutual information values
indicate strong correlations between variables.

The number of nodes in the hidden layer is determined
by comparing the training time employed for the ANN and
the accuracy of the ANN predictions based on experiments.
Overfitting of the ANN is avoided by conducting prediction
error tests for different randomly selected test sets. This
ensures that no large prediction error is obtained when new
measurement data are used as the input.

FIGURE 3. Schematic illustrating the process of ANN training.

The training process of the proposed ANN is illustrated
in Fig. 3. In this work, the ANN is trained via the scaled
conjugate gradient BP optimization method, which is suitable
for large-scale problems. The ANN training process includes
the following steps:
Step 1: generate the training and testing sets by combin-

ing the state information and real-time measure-
ments, and add the noise set samples to the training
samples;

Step 2: reduce the dimension of the ANN input by applying
mutual information;

Step 3: use the heating load data as the target output of
the ANN;

Step 4: train the network and adjust parameters including
the number of neural nodes in the hidden layer
according to the obtained prediction error and train-
ing time;

Step 5: save the difference between the ANN target output
and the ANN actual output for further processing.

B. STATE ESTIMATOR
1) SOLUTION METHODOLOGY OF THE STATE ESTIMATOR
The proposed state estimator is solved using the primal-
dual interior point method (PDIPM) [17]. The PDIPM has
obvious advantages in dealing with large-scale optimiza-
tion problems. A flowchart of SE execution is presented
in Fig. 4. In addition, the following points must be noted in the
combined SE of the IEHN.
(1) The state variables of the electrical and heating net-

works influence each other in the calculation. As a
result, convergence is more rapid, and the impact of bad
data is broader.

FIGURE 4. Flowchart of the proposed state estimation execution.

(2) The mass flow directions of the thermal medium in
the pipelines are determined according to the measured
mass flow data. This yields the node-branch incidence
matrix A and the topology of the heating network. The
incidence of bad data in the mass flow measurements
will require the modification of A and affect the subse-
quent calculations of the constraint equations in the SE.

2) CONSTRAINT EQUATIONS
The constraints in the IEHN can be divided into five
components.

(1) For the zero-injection bus in electrical network, the
following constraints should be satisfied:

c1(x)≡real

(Vi ∑
k∈N bus

(YikVk )∗)

=0 ∀i ∈ N zero (21)

c2(x)≡ imag

(Vi ∑
k∈N bus

(YikVk )∗)

=0 ∀i ∈ N zero. (22)

(2) Based on (5) and (6), we can establish a temperature
constraint between the adjacent nodes in the heating network.
The supply / return temperature mismatches are obtained:

c3(x) ≡
∑
k∈IGd

As,ikT ′s,i − bs,i = 0 ∀i ∈ IGd (23)

c4(x) ≡
∑
k∈IGd

Ar,ikT ′r,i − br,i = 0 ∀i ∈ IGd . (24)

Here, we applied coefficient matrices As and Ar , the vectors
bs and br for brevity. The expression of the temperature
constraints (23–24) are detailed in Appendix B.
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(3) From (2) and (3), we can reach loop pressure constraints
if there are loops in the heating network:

c5(x) ≡
∑

b∈Ipipe
BibKbmb |mb| = 0 ∀i ∈ I loop. (25)

(4) There are also zero-injections mq or 8 constraints in
heating networks:

c6(x) ≡
∑

b∈Ipipe
Aibmb = 0 ∀i ∈ IId . (26)

(5) At the Electrical-Thermal coupling nodes, the coupling
component constraints are given by:

c7(x) ≡ Pi − ζ8i = 0 ∀i ∈ ISd (27)

where ζ is the value of coupling coefficient, determined
according to the parameter of the specific coupling compo-
nents (CHP units, electric boilers, heat pumps, or circulation
pumps).

V. SIMULATION STUDY
The accuracy and robustness of the proposed method were
tested for the simple IEHN shown in Fig. 2 (case 1) and
the Barry Island case (case 2) shown schematically in Fig. 5
which is composed of an IEEE 34-bus electrical network and
32-node heating network. The detailed parameters of the two
cases are presented elsewhere [4].

FIGURE 5. Schematic illustrating the barry island IEHN (case study 2).

A. EFFECTIVENESS OF THE PSEUDO-
MEASUREMENT MODEL
The accuracy of the pseudo-measurement model was verified
by its application to real-world data derived from an actual
heating network over a six-month period. The heating load
data for 21 nodes of the actual heating network is brought
into case study 2. Here, it is assumed that all load nodes are
configured with pseudo-measurements, and the heating net-
work data were obtained by the anaysis of heating networks
calculation in MATLAB [4].

The real-time correlation measurements are obtained by
adding random errors to the calculated results, and the his-
torical state variables are obtained by the state estimator. The
target outputs are the heating load data for the 21 nodes.
They were saved as the basis for ANN training and com-
parison. We selected 1200 sets of training samples (200 sets
per month) from the heat load data, and 600 sets of testing
samples (100 sets per month) were used for validation.

FIGURE 6. Day load curve prediction of heat power 83.

TABLE 2. Statistical prediction accuracy of the ANN for the barry island
case.

The day-load prediction value of the pseudo-measurement
model for83 along with its true value and its±σ confidence
bounds are shown in Fig. 6. It can be seen that the proposed
method can track the overall trend of the heat power and the
overall error can be controlled within one standard deviation.
The performance of the pseudo-measurement model was also
quantitatively evaluated based on the average relative error
percentage (AEP) defined as follows:

AEP =
1
n

n∑
i=1

∣∣∣∣8p,i −8true,i

8true,i

∣∣∣∣× 100%, (28)

where n is the number of test samples, 8p,i is the out-
put of the ANN, and 8true,i is the true value of the nodal
heat power from the load profiles. The AEP values of the
ANN output for six one-month periods are listed in Table 2.
It can be seen from the table that the AEP values of the
pseudo-measurements are uniformly less than 5%. Therefore,
we conclude that the accuracy is sufficient for application to
the state estimator.

B. PERFORMANCE OF STATE ESTIMATOR
We first analyze the performances of the EC-WLS-based SE
method and the proposed WLAV-based state estimator from
the perspectives of both the filtering effect and state variable
estimation precision. The results of power flow calculations
of the IEHN are taken as the true values xtrue. The filtering
effect is evaluated as the ratio of the normalized average
estimation error SH to the normalized average measurement
error SM , which are given as follows:

SM =
1
M

M∑
j=1

[
1
N

N∑
i=1

(
zi,t − hi(xtrue)

σi
)
2
]
1
2

SH =
1
M

M∑
j=1

[
1
N

N∑
i=1

(
hi,t (xse)− hi(xtrue)

σi
)
2
]
1
2 . (29)

Here, M is the number of tests, N is the number of mea-
surements, zi,t is generated by adding Gaussian noise with

109996 VOLUME 7, 2019



H. Zang et al.: Robust State Estimator for IEHNs

TABLE 3. Comparison of statistical results for the two SE methods under scenario 1A.

TABLE 4. Comparison of statistical results of two scenarios under the actual measurement configurations.

standard deviations σi in the range of 0.01–0.05 to the true
value in each test, and hi,t (xse) is the estimated value in each
test. Under normal measurement conditions, SM approaches
1 with an increasing number of experiments. The magnitude
of the filtering effect decreases with decreasing SH/SM . The
state variable estimation precision is evaluated by the average
relative error:

ex(%) =
100
M

T∑
j=1

(
1
N

N∑
i=1

∣∣∣∣xi,t − xtruextrue

∣∣∣∣)× 100%. (30)

These values obtained by the SE methods based on the
WLS and WLAV are compared for the two test cases
under idealized measurement system configuration condi-
tions, denoted as scenario 1A. In addition, we compare these
values obtained by the proposedWLAV-based SE method for
case 2 under realistic measurement configuration conditions,
where the state estimator lacks heat load measurements at
all of the load nodes. Here, we consider two scenarios,
which include scenario 2A, where pseudo-measurements
are not available, and scenario 3A, where the state esti-
mator is configured with pseudo-measurements at all load
nodes. The detailed measurement information are provided
in Appendix C. All results were obtained after performing
2000 experiments.

The results of the SE methods based on the WLS and
WLAV for the two cases under full measurement system
configurations are listed in Table 3. The results indicate
that the accuracy of WLAV-based SE is close to that of
WLS-based SE in the absence of bad data. The results of the
proposed WLAV-based SE method for case 2 under realistic
measurement system configurations for the two scenarios are
listed in Table 4. It can be observed that the performance
of the WLAV state estimator is enhanced by the pseudo-
measurements. The number of critical measurements is also
reduced significantly.

C. ROBUSTNESS AGAINST BAD DATA
The robustness of the WLAV-based SE to bad data in IEHN
measurements was tested for case 2 by adding bad data
in accordance with various bad data ratios accounting for
0–10% of the total measurement data. The measurement
configuration is the same as Scenario 3A. Here, bad data
that were set to 130% of the true measurement value were
randomly divided between the electrical network and the
heating network, and 2000 example groups were randomly
constructed for each bad data ratio. The robustness of the
algorithm was evaluated using the mean estimation error
Smean and the maximum estimation error Smax defined as
follows:

Smean =
1
M

M∑
j=1

[
1
I

I∑
i=1

∣∣∣x ise − x itrue∣∣∣]
Smax =

1
M

[
I

max
i=1

∣∣∣x ise − x itrue∣∣∣]. (31)

Here, I is the number of state variables in. The simulation
results of Smean and Smax obtained for the five state variables
(i.e., voltage magnitudes and angles of the electrical network,
and source and return temperatures, andmass flow rates of the
heating network) with respect to the bad data ratio are shown
in Figs. 7–9. Generally, Smean is used to evaluate the influence
of bad data on the overall SE results, and Smax measures the
local influence of bad data on SE results.

The results indicate that the proposed method can con-
trol the mean estimation errors within an order of magni-
tude of 10−3 with an increasing bad data ratio. However,
the mean estimation errors of the mass flow are relatively
large because the accuracy of measurements in the hydraulic
model is low. In addition, the mass flow SE accuracy is
more sensitive to bad data because of its strong correlations
in the hydraulic model. Nonetheless, the proposed method
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FIGURE 7. Values of Smean and Smax of voltage with respect to the bad
data ratio.

FIGURE 8. Values of Smean and Smax for supply and return temperatures
with respect to the bad data ratio.

FIGURE 9. Values of Smean and Smax for mass flow rates with respect to
the bad data ratio.

demonstrates strong robustness to bad data and is therefore
very suitable as a state estimator for the combined IEHN.

Bad data identification is one of the main functions of a
state estimator. A robust state estimator can automatically
identify bad data by comparing the estimation results with the
measurements. Therefore, we conduct bad data identification
after running the SE program, and any identified bad data is
removed or corrected before conducting the next SE.

We compared the bad data identification performance of
the proposed method (denoted as method 3) for case 2 with
those obtained with two other methods. Here, method 1
adopts an WLS estimator, but does not take IEHN con-
straints into account [21]. Method 2 is based on the Lagrange

estimator in conjunction with WLS that considers IEHN
equality constraints (i.e., the EC-WLS estimator). Both meth-
ods 1 and 2 use the LNR sequence rNi to identify bad data.
The Lagrange estimator based on WLS can be rearranged to
obtain the correction equation of the Lagrange estimator as
follows:[

HTWH + ρ∇c(x)T∇c(x)
]
dx

= HTW1z(k) − π∇c(x)T c(x(k)), (32)

whereH is the Jacobianmatrix of themeasurement functions,
W is the weighting matrix, and π is the weighting factor of
the constraint equations, which is much greater than anyWii.
A detailed derivation is presented elsewhere [12], [29]. This
processing allows the LNR method to be applied to the
EC-WLS estimator, and no numerical problems arise in the
iterative process compared with an alternative method that
treats the constraint equations as virtual measurements.

The LNR identification threshold was set to 3 according
to a confidence of 99% [12]. The performances of the three
bad data identification methods were compared using the
following five scenarios.
(1) Three scenarios with a single bad data point

Scenario 1B: 130% of the true active power injection
measurement at node 3 (PA814) is taken as bad data in
the electrical network.
Scenario 2B: 130% of the true pressure measurement
at node 3 (hf ,3 ) is taken as bad data in the heating
network.
Scenario 3B: 130% of the true supply temperature
measurement at node 6 (Ts,6) is taken as bad data in
the heating network (this is a critical measurement).

(2) Two scenarios with multiple bad data points
Scenario 4B: bad data with weak correlation in the
IEHN ( QA814,P

B
816−824,P

A
844,87,820, hf ,1 ) are set to

zero. Scenario 5B: bad data with strong correlation in
the IEHN (m7 and hf ,7) are set to zero.

Table 5 presents the bad data identification results for the
three methods. Method 1 failed in Scenario 3B because the
residuals of critical measurements are always zero. Method 2
avoided this problem by applying the constraint equations.
In addition, both methods 1 and 2 failed to identify the
strongly correlated bad data in Scenario 5B, which occures
often in the case of heating networks owing to the commonly
high correlation between the measurements. The bad data
resulted in the contamination of the residuals in the measure-
ments, as shown in Fig. 10. In conclusion, when interacting
or correlated bad data exists, the state estimator must also rely
on the robust performance of the WLAV.

D. COMPUTATIONAL EFFICIENCY
The computational performance of the proposed state estima-
tor was tested for case study 2 in the following three scenarios.
(1) Scenario 1C: WLS state estimator without bad data

in the actual measurement system as a comparison
benchmark.
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TABLE 5. Bad data identification results for the five scenarios.

FIGURE 10. Normalized distribution of residuals in scenario 5B.

FIGURE 11. Computational performances under three scenarios.

(2) Scenario 2C: proposed state estimator without bad data
in the actual measurement system.

(3) Scenario 3C: proposed state estimator with 5% bad data
in the actual measurement system.

The results for the three scenarios are presented in Fig. 11.
These results indicate that the computation speed of the
proposed estimator is less than that of the WLS-based esti-
mator, but it still meets the requirements of a real-time
state estimator. In addition, the computational performance
of the proposed estimator is nearly unaffected by bad data.
Therefore, the proposed estimator sacrifices some degree of
computational efficiency to ensure excellent robustness.

VI. CONCLUSION
As basic research in support of IES-SE, this paper pro-
posed a robust SE method for an IEHN based on a pseudo-
measurement model. The proposed method ensures the
observability of the IEHN when the measurement system
of the IEHN includes bad data, and thereby reduces the
number of critical measurements for the heating network and
improves the SE accuracy while satisfying all of the IEHN
constraints compared with SE in the absence of the pseudo-
measurement model. Moreover, good robust performance
was demonstrated when bad data exist in the measurement
system of the IEHN. It must be noted that these characteristics
of the proposed method are essential for ensuring accurate
performance of the energy management system of an IEHN.
Future IEHN-SE-related research will seek to capitalize on
the great practical value of considering the decoupling of
mass flow and temperature estimations in the heating net-
work. Furthermore, the dynamic SE of IEHNs under con-
ditions of heating network state mutation is also a worthy
research subject.

APPENDIX A
INCIDENCE MATRIX
(i) The node-branch incidence matrix A is defined with nnode
rows and npipe columns. Each element of A describes

+1, if the flow in a pipe come into a node;

−1,if the flow in a pipe leaves a node;

0, if no connection from a pipe to a node.

(ii) The loop-branch incidence matrix B is defined with
nloop rows and npipe columns. Each element of B describes

+1, if the flow in a pipe is the same direction

as the definition;

−1, if the flow in a pipe is the opposite direction

as the definition;

0, if a pipe is not part of the loop.

FIGURE 12. Different types of nodes in a return water pipe network.

APPENDIX B
TEMPERATURE CONSTRAINT EQUATIONS
We illustrate the temperature constraints (23) and (24) with
an example based on the return pipeline network shown in
the Fig. 12, where the nodes are numbered and the pipeline
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numbers are placed within circles.The nodes in the heating
network can be divided into the following four types.
(1) Source node: nodes with corresponding heat sources

(nodes 1 and 7), which often represent the starting
points of a heating network.

(2) Load node: nodes with heat loads (nodes 3, 4, 6 and 8),
which often represent the terminal points of a heating
network.

(3) Intermediate node: nodes without heat loads in the
middle of the pipelines in a heating network (node 5).

(4) Load-intermediate node: nodes connected with a heat
load in the middle of a pipeline of a heating network
(node 2 and 9).

By analyzing all the nodes except the source nodes,
nGd temperature constraint equations can be listed respec-
tively. It is noted that there are differences of constraint
equations among the three node types.

(i) Based on (5) and (6), we can express (24) when applied
to load node 4 and intermediate node 5 respectively as
follows.

T ′r4 = T ′o4 (33)

−(m4 + m6)T ′r5 + m5T ′r6ψ5 = 0. (34)

For brevity, we have applied the terms T ′ = T − Ta and

ψ = e
−

λL
Cpm . The terms with and without Tr are placed at the

two sides of the equation, respectively.
(ii) Distinguishingly, the expression of (24) when applied

load and intermediate node 2 is given as:

m1T ′r2 − m2T ′r3ψ2 − m3T ′r4ψ3 − m4T ′r5ψ4

= (m1 − m2 − m3 − m4)T ′o2. (35)

All of the other temperature constraint equations can be
extrapolated from (33)–(35). We can get (23) and (24) by
writing all of the equations in matrix form. The coefficients
of Ts and Tr on the left side of the equations can be written
as As and Ar, which are nGd × nGd coefficient matrices of
temperature variables, and the right side of the equations can
be written as bs and br, which are nGd × 1 vectors.

TABLE 6. The measurement configurations of IEEE 34-bus electrical
network.

APPENDIX C
MEASUREMENT CONFIGURATIONS
The measurement configuration which is listed in Table 6 of
the IEEE 34-bus electrical network does not change in the
simulation, and the measurement redundancy is 1.71. The
measurement configurations of Barry island heating network
under three scenarios are shown in Table 7.

TABLE 7. The measurement configurations of barry island heating
network.
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