IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 10, 2019, accepted July 26, 2019, date of publication August 6, 2019, date of current version August 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933454

Efficient Training Techniques for Multi-Agent
Reinforcement Learning in Combat Tasks

GUANYU ZHANG "1, YUAN LI2, XINHAI XU2, AND HUADONG DAI?

! Computer School, National University of Defense Technology, Changsha 410073, China

2 Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China

Corresponding author: Huadong Dai (hddai@vip.163.com)

This work was supported in part by the National Defense Science and Technology Foundation for Young Scientists of China under Grant
030403, and in part by the National Natural Science Foundation of China under Grant 11801563, Grant 91648204, and Grant 61532007.

ABSTRACT Multi-agent combat scenarios often appear in many real-time strategy games. Efficient learning
for such scenarios is an indispensable step towards general artificial intelligence. Multi-agent reinforcement
learning (MARL) algorithms have attracted much interests, but few of them have been shown effective
for such scenarios. Most of previous research is focused on revising the learning mechanism of MARL
algorithms, for example, trying different types of neural networks. The study of training techniques for
improving the performance of MARL algorithms has not been paid much attention. In this paper we propose
three efficient training techniques for a multi-agent combat problem which is originated from an unmanned
aerial vehicle (UAV) combat scenario. The first one is the scenario-transfer training, which utilizes the
experience obtained in simpler combat tasks to assist the training for complex tasks. The next one is the
self-play training, which can continuously improve the performance by iteratively training agents and their
counterparts. Finally, we consider using combat rules to assist the training, which is named as the rule-
coupled training. We combine the three training techniques with two popular multi-agent reinforcement
learning methods, multi-agent deep g-learning and multi-agent deep deterministic policy gradient (proposed
by Open Al in 2017), respectively. The results show that both the converging speed and the performance of

the two methods are significantly improved through the three training techniques.

INDEX TERMS Scenario-transfer training, self-play training, rule-coupled training.

I. INTRODUCTION

Reinforcement learning has gained great successes in many
single-agent competitive games such as the Go game [1] and
Atari games [2]. However, traditional reinforcement learning
methods, such as Q-learning [3] and Policy Gradient Learn-
ing [4], are poorly suitable for multi-agent environments.
Firstly, with the number of agents increasing, the state-action
space expands exponentially. Secondly, in the multi-agent
environment, all agents learn at the same time. When the
strategy of one agent changes, the optimal strategy of other
agents may also change, which will affect the convergence of
the algorithm [5].

For multi-agent scenarios, reinforcement learning has been
applied in robot control [6], communications [7], traffic light
control [8], etc. However, the application of multi-agent rein-
forcement learning (MARL) in combat tasks is more difficult

The associate editor coordinating the review of this manuscript and
approving it for publication was Bohui Wang.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

since interactions among agents include both cooperative
and competitive behavior. Previous research on multi-agent
reinforcement learning mainly focuses on either cooperative
or competitive behaviors. For cooperative behaviors, MARL
methods are used for multiple agents to cooperatively fin-
ish a joint task such as scheduling, coverage control and
so on [9]-[12]. For competitive behaviors, many problems
like pursuer-invader problems, multi-player online games
and business competition problems have been studied with
MARL methods, see [13]-[15]. There are also some works
studying combat tasks with mixed behaviors. But many of
these works take centralized methods to control all agents,
which are hard to meet the real-time requirements of practical
systems.

In this paper we study a combat task which is originated
from the multi-UAV combat scenario. We define an UAV
as an agent. There are two teams, and the UAVs in one
team (red agents) need to work cooperatively to fight with
UAVs in the other team (green agents). We propose three

109301

https://orcid.org/0000-0001-8093-1574

IEEE Access

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

efficient training techniques: scenario-transfer training, self-
play training and rule-coupled training, which are used pro-
gressively to enhance the performance of MARL methods.
The scenario-transfer training is to start the training from a
simple task, since it is always hard to train a good model from
the scratch. A trained model is in fact a combat policy for an
agent. With an initial trained model, the self-play training is a
way of improving the model by iteratively training the agent
and its counterpart. The idea of the rule-coupled training is
to incorporate some combat rules to reduce the exploration
space of the problem. The three methods work in different
aspects and can in fact be used in any combination for the
training of MARL methods for some other tasks.

For the considered multi-UAV combat task, we adopt two
popular MARL methods, i.e., multi-agent deep Q-learning
(MADQN) and multi-agent deep deterministic policy gra-
dient (MADDPG), which are extended for DQN and
DDPG (famous single-agent reinforcement learning meth-
ods) respectively. The two methods and their variants have
been used in many other problems [16]-[18]. The main idea
of MADQN is to train each agent with DQN by setting the
input as all observations of all agents. MADDPG is proposed
by OpenAl researchers in 2017 [19], which extends DDPG
by setting the input for the actor network as its own observa-
tions and the input for the critic network as observations of
all agents. It realizes centralized learning and decentralized
execution in multi-agent environments.

With MADQN and MADDPG as baselines, we make com-
prehensive experiments to illustrate the effectiveness of the
proposed training techniques. The scenario-transfer training
reuses the experience learned in the scenario when green
agents do not move to train red agents for the scenario when
green agents move randomly. The convergence speed of the
two methods are all accelerated by around 50%. Conse-
quently, with the self-play training, the win rate for both
methods are improved by around 10%. Further, we equip
the green agents with a fighting rule and find that red
agents with previous trained model do not perform well.
We use the rule-coupled training, for which the action of
each red agent is chosen by a simpler rule (compared to
that of green agents) under some cases while by the rein-
forcement learning otherwise. The win rate of red agents
is greatly improved on both MADQN and MADDPG. It is
surprising to see that red agents could get around 70%
win rate when fight with the green agents equipped with
combat rules. Besides, we find that MADDPG performs
much better than MADQN for this kind of combat task
through experiments, which is a useful conclusion for future
studies.

The main novelties of this paper are summarized below:

o We formulate the multi-UAV combat task as a multi-
agent reinforcement learning problem and adopt state-
of-the-art MARL method to solve it.

« We propose three efficient training techniques which
have greatly enhanced the performance of both
MADQN and MADDPG on the multi-UAV combat task.

109302

o We are the first to comprehensively study the training
techniques for multi-agent reinforcement learning meth-
ods, which could be used for other scenarios.

The source code of this paper and combat videos of agents
have been uploaded to Github. !

Il. RELATED WORK

Multi-UAV combat tasks have been mainly studied with
hand-crafted algorithms and non-learning strategies [20].
Reinforcement learning, which develops rapidly in recent
years, brings new solutions to multi-UAV combat tasks [21].
With the emergence of deep reinforcement learning (DRL),
artificial intelligence has surpassed humans in some areas.
In 2015, Mnih et al. [2] proposed deep Q-network (DQN),
which has the professional performance in 49 Atari games
[22]. In 2016, AlphaGo, a Go-game agent created by Deep-
Mind, won top professional players [23]. DRL also per-
forms well in 3D maze games [24] and MuJuCo control
problems [25].

Multi-UAV combat tasks are essentially multi-agent deci-
sion problems. In multi-agent systems, each agent not only
acts individually but also cooperates with each other to
get better joint rewards. For multi-agent decision problems,
the direct strategy is to apply independent learning mecha-
nism (e.g. Q-learning [26]) to each agent and consider other
agents as a part of the environment. Tampuu et al. [14] used
DQN to replace the Q-learning algorithm to train each agent
individually, and proposed a DRL model that can cooperate
and compete with each other by adjusting the reward dynam-
ically according to different goals. The problem is that the
policy of other agents is always changing, which results in
a non-stationary environment. Some other researchers try to
solve this problem by inputting other agent’s policy param-
eters to the Q function [27], explicitly adding the iteration
index to the replay buffer, or using importance sampling [28].
But the performance is not improved too much.

Many researches focus on the cooperation of multiple
agents, see Panait er al. [29] for a review about coopera-
tive multi-agent learning. Gupta et al. [30] extended three
classes of single-agent RL algorithms based on policy gra-
dient, temporal-difference error, and actor-critic methods for
cooperative multi-agent problems. Sukhbaatar et al. [31]
designed a communication neural network that allows agents
to learn continuous communication dynamically along with
their policies for fully cooperative tasks. For mixed coopera-
tive and competitive problems, Shao ef al. [13] raised a cur-
riculum transfer RL method to control multiple units in Star
Craft micro-management. Peng et al. [7] introduced a multi-
agent bidirectionally-coordinated network with a vectored
extension of actor-critic formulation, which can learn various
types of cooperative and competitive strategies for the battle
scenario of the Star Craft game. However these methods use a

ICode and videos of this paper can be found here in
https://github.com/sanjinzhi/multiagent-confrontation.git.

VOLUME 7, 2019

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

IEEE Access

single centralized critic network for all agents, differing with
our method, which learns a critic network for each agent.

To improve the performance of reinforcement learning,
people also study some methods to assist the learning process.
Chen et al. [32] introduced a method that can transfer the
weights of one neural network to another neural network,
which can accelerate the training of the new neural network.
Bianchi [33] et al. proposed a heuristic Q-learning method,
which uses a heuristic function to help the agent to select
actions. It can accelerate the convergence speed but does not
help to improve the converged results. Busoniu et al. [34]
used prior knowledge to accelerate the RL algorithm called
online least-squares policy iteration(LSPI). The LSPI with
prior knowledge learns much faster and more reliable than
the original algorithm. Cutler ef al. [35] proposed a method
that uses simulator to generate simulated data as the prior
knowledge for the learning algorithm that acts directly on the
real-world robot platform. These methods are mainly used
in robot control, which has not been applied to multi-agent
reinforcement learning for combat tasks. Silver et al. [1]
proposed AlphaZero, in which self-play is adopted in the
reinforcement learning, which can achieve a superhuman
performance in Go game. Heinrich and Silver [36] combined
self-play with DRL, and developed a scalable end-to-end
approach to learn approximate Nash equilibria without prior
domain knowledge. These methods mainly focus on single-
agent scenarios and the application for multi-agent scenarios
remains to be explored.

llIl. PRELIMINARY

A. PROBLEM DESCRIPTION

In this paper we construct a multi-agent combat environ-
ment based on a multi-UAV combat scenario. In this combat
scenario, red team and green team fight against with each
other. The team that destroys more vehicles in the other team
will win the game. Each agent (UAV) can be described with
4 properties: speed (v, vy), attacking zone 01, unprotected
zone 60, and position (x, y). The attacking zone is in front
of the vehicle, covering a sector of #1. The unprotected zone
is a 6, sector behind the agent.

At any time instance ¢, the relation of any attacker-
target pair (i,j) can be characterized by a quaternion,
[wij(1), dij(2), ¥ij (1), 8,j(t)]T. Fig.1 shows the relative relation
between the attacker (red) and the target (green). The coor-
dinate of the attacker i is (x;, y;), and that of the target is
(xj, yj). wjj(t) is a distance vector between the two agents.
The speed of the attacker i is (v;‘, vly), and that of the target
is (v]’-‘ , v])). djj(?) is the Euclidean distance between the two
agents. ;(¢) is the attacking angle of attacker i relative to
target j and §;;(¢) is unprotected angle of target j relative to
attacker i. Each element of the quaternion is computed by
formulations (1).

w;i(t) = (1), (1) = (G = xi,y; =y (la)

di(t) =\ — 3 + (o — yi)? (1b)

VOLUME 7, 2019

FIGURE 1. An illustration of an attacker-target pair.

i) PLOi0 ey (1
;j(t) = argcos c
(v +4)°
Vol + Ve
8;i(t) = argcos Gy v ey (1d)

dy(D) v + v

In the considered scenario, each agent has the same size of
attacking zone, unprotected zone, and attacking distance. An
attacker i can destroy a target j if and only if the following
three conditions are satisfied: a) the distance between the
attacker and the target is smaller than the attacking range
danack; b) the target is in the attacking zone of the attacker;
c) the attacker is located in the unprotected area of the target.
These conditions can be formulated as (2).

dij(t) = dattacking (2a)
3;j(t) < 62/2 (2b)
Vij(t) < 61/2 (20)

B. SYSTEM MODEL

We consider modeling the combat scenario mentioned above
as a multi-agent reinforcement learning problem. Each agent
is modelled by an actor-critic framework, which includes
an actor network and a critic network. The whole system
is shown in Fig.2. The actor network is used to compute
the action of the agent based on the observed state. The
critic network is used to evaluate the action computed by
the actor network, which helps to improve its performance.
The experience replay buffer is used to collect experiences
obtained from the environment. During the training, the input
for the actor network of an agent is only the observation
belonged to it. For the critic network, the input includes not
only the observation of the corresponding agent but also the
observations of all other agents. The critic network computes
the Q value for the state-action pair of the actor network,
which is used to update the parameters in the actor network.
In this way, the actor-critic framework is trained with whole

109303

IEEE Access

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

I —— Swarm
Confrontation
Environment
1
a S an Sn
actor network actor network
a Qi Agent2 AgentN-7
critic network critic network
Sl Sail
Agent1 AgentNV

(SARS)

“experience
replay
memory

FIGURE 2. The training framework.

information (centralized training) and executed with its own
observation (decentralized execution). Therefore, each actor
network has a god-viewing instructor who can observe all the
information to improve the strategy. With the trained model,
each agent uses the actor network to interact with the envi-
ronment. Even if an agent only has partial state information,
it can still make a proper decision.

This multi-agent combat problem can be expressed as a
Markov decision process of N agents. We define state S as
all possible configurations of all agents, and action A as a
set of actions aj, as, ...ay. The policy of each agent i is
defined by m;, which is used to compute the action based
on the current state s;. After executing the action a;, agent
i obtains its reward r;. Each agent aims to maximize its total
expected return R; = Ztho y'r! where y is a discount factor
and T is the maximal steps executed in an episode.

We use 6 = {6;...6,} to parameterize policy 7 =
{m1, ..., m}. Then the gradient of the expected return for
agent i is expressed by the equation (3), which is used to
update the actor network.

o0
Vo,U0) = Eqror; | Vo, Y _v'r}
t=0
= Eal"‘/ﬂ,‘ [VG,- 1Og ni(ai|si)Qi'T (xv al LERSRA aN)] (3)

Note that in equation (3), Q;.T (x,ay,...ay) is the value
function for agent i with states and actions of all agents as the
input. x includes observations of all agents. This Q-value is
computed by the critic network. Taking experiences from the
experience replay buffer, the critic network is updated based
on the loss function (4).

2
L£6) = Fxarx [(QF ®ar...oan))],
where y=ri+yQF (X,d), ... dy) ia/:n((sj) “
J
IV. EFFICIENT TRAINING TECHNIQUES
A. SCENARIO-TRANSFER TRAINING
Reinforcement learning improves the intelligence of an agent

through trial and error. However, a common problem is that
the agent is hard to get effective rewards when learning

109304

Source Transition Transition Target
scenario scenario 7 | * * < | scenario scenario
Training Transfering scenario Training Loading model

I — Target

Y Basic model)

\\nasc Odi/ . _model _~

FIGURE 3. The schematic diagram of scenario-transfer training.

from scratch in a complex scenario. Inadequate reward accu-
mulation leads to slow convergence of learning and poor
performance [37].

In fact, for the problem in this paper, it is hard to train a
good model directly. We consider training a model for simple
combat scenarios and then transfer the obtained experience to
complex scenarios. We propose a scenario-transfer training
method, for which the procedure is shown in Fig.3. The
training for a scenario can be achieved by the training in
several simple but similar transition scenarios, in which the
first one is called the source scenario and the last one is called
the target scenario. A reinforcement learning model could be
firstly trained in the source scenario, then in several transition
scenarios, and finally in the target scenario. The experience
trained in each scenario is memorized in the model, which is
used as the base model for subsequent training.

The scenario-transfer training is described in Algorithm 1.
For clarification, a model is in fact a neural network model
that is used to decide the next action that an agent should
take. The training of a model is to update its parameters.
Suppose there are N red agents in the combat task. We firstly
initialize the parameters of all models randomly. Then we
train the model for a set of pre-designed scenarios one by one.
The parameters of the models will be updated through these
training.

Algorithm 1 Scenario-Transfer Training

Input: A set of pre-designed scenarios.

Output: Generated models: M, M, ..., My

1: Initialize models My, M>, ..., My for all red agents
2: for each pre-designed scenario do

3: Train the model for this scenario

4 Update parameters of models My, M>, ..., My
5: end for

B. SELF-PLAY TRAINING

With the scenario-transfer training, we could obtain basic
trained models. It is hard to further improve the ability of the
models since it is difficult to design good transition scenarios.
Here we consider another training technique, self-play train-
ing, which has been successfully applied in as Go game, chess
and shogi game [1]. The main idea of the self-play training
is to copy the trained model for one agent to its opponent
and then train the agent to fight with the opponent iteratively
to improve the model. The scenario-transfer training and the
self-play training are complementary. The former one could

VOLUME 7, 2019

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

IEEE Access

provide an initial model while the latter one could continu-
ously improve the model.

Previously, the self-play training is mainly used in single-
agent environments. In this paper, we propose a self-play
training method for multi-agent problems, and it is described
in Algorithm 2.

Algorithm 2 Self-Play Training
Input: Initial red models: M, M, ..
tion number: K

., My, self-play itera-

Output: Generated model: MK, M¥X, ME

i M'=M;,i=1,....,N

2. fork=1;k<=K;k++do

3: fori=1;i <=N;i+ +do

4 Load Mik to red agent i

5 Load M lk to green agent i

6: end for

7 while training not finished do

8 for steps in each episode do

9 fori <= N do
10: Get observations S for all agents
11: For each red agent i, compute action q;
12: according to Mik
13: end for
14: Take the joint action A = [ay, az, .. ., ax]
15: Execute action A in the environment
16: Get observation of next time S” and reward R
17: Store (S,A,R,S") in experience buffer G
18: Sample a minibatch of experiences from G
19: Update parameters of M¥, Mé‘, ey M}f,
20: end for
21: end while
2 M =MFi=1,... N
23: end for

The input is the initial models for red agents and the output
is the improved models. K is the number of self-play training
times. We first load the initial model Mll, M21, e, M]{, for
both red and green agents and start one training. From the
multi-agent combat environment, we could get the observa-
tions of red agents and green agents. For each red agent i,
we compute its next action a; based on its observation s; with
the model. We execute the joint actionA = [ay, a2, . .., a,]in
the environment, and get the reward R and the next state S’.
We store the experience (S,A,R,S’) to the experience replay
buffer. The models are updated with a sample of experiences
from the experience replay buffer G. After the first round of
training, we obtain updated models. Then we reload the new
trained models and start a training round again.

C. RULE-COUPLED TRAINING

Combing rules into the training is another way of improving
the models. Reinforcement learning is essentially learned by
trial and error, which needs to explore in a large solution
space. For agents in combat tasks, it is always very slow to

VOLUME 7, 2019

learn a good combat strategy. A natural idea is to incorporate
some priori knowledge into the learning process, which can
reduce the ineffective exploration. The priori knowledge can
be organized as a set of rules. At any time, if there is any
state that satisfies the rules, the training will choose the
corresponding action, rather than try other actions. In this
way, the training will work efficiently to find good models.

Based on this idea, we propose a rule-coupled multi-
agent reinforcement learning training technique, and its pro-
cedure is shown in Algorithm 3. The input for the rule-
coupled training is a set of pre-defined rules, and the output
is a set of trained models. With a set of initialized models
My, M>, ..., My, the algorithm starts to interact with the
environment, i.e., stating an episode. At each step of an
episode, all agents get observations from the environment.
For each agent, if a rule in the rule set is satisfied, its next-
step action is computed by this rule. Otherwise, its action is
computed by the reinforcement learning model. Then repeat
the same steps as in Algorithm 2, and update parameters of all
models. The algorithm will be stopped after training enough
number of episodes.

Algorithm 3 Rule-Coupled Training

Input: A set of rules k.

Output: Generated model: My, My, ..., My.
1: Initialized models M1, M», ..., My
2: for each episode do

3: Get observations S for all agents

4 for steps in each episode do

5 i=1

6: fori < N do

7: if a rule r € R is matched then

8 Get the action a; according to r
9: else
10: Compute a; based on M;
11: end if
12: end for

13: step 14 - step 18 in Algorithm 1

14: Update parameters of My, M3, ..., My
15: end for

16: end for

In fact, the rules can be learned by the model implicitly
through the rule-coupled training, since the actions delivered
by rules are also used for the training.

V. EXPERIMENTS

We construct a combat scenario described in Section 3 by
extending the multi-agent particle environment developed by
Open Al [19]. There are three red agents and three green
agents in this combat scenario. We combine the three training
techniques with MADQN and MADDPG respectively, and
make comprehensive experiments to illustrate the perfor-
mance of the three techniques.

109305

IEEE Access

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

100

® ‘A\ W“ i NV M

60]"

) J‘LM ~

20 |

LR —— MADQN
™ —— MADDPG
0 -600

win rate
reward

200

300 —— MADQN
— MADDPG
% “
o 150

A
il w N- M V |

\
M WMJJML u!m u“h,m“

100

0 2 4 6 8 10 12 0 2 4
episodes %10%

FIGURE 4. Comparison of MADQN and MADDPG for a simple combat task.

100

. i

\‘ wu |

win rate

M “\ “/“‘ A
TR A A
il \"L‘ A I

—— MADQN
—— MADDPG
—— ST-MADQN
—— ST-MADDPG
1 1.5 2
episodes %10°

4 m
6 8 10 12 12
episodes «10% eplsodes «10%
600
d A A
A M ‘\M sl 'm i
| A
WA\l w
, \'"“ 0

200
° 0
®©
:
= -200 |If
-400
——— MADQN
—— MADDPG
-600 —— ST-MADQN
—— ST-MADDPG
-800
0 0.5 1 15 2
episodes %10°

FIGURE 5. Comparison of scenario-transfer training with MADDPG and MADQN for the random combat task.

A. ENVIRONMENT SETUP

We firstly construct a simple combat task, in which green
agents cannot move and attack. We train red agents with
MADQN and MADDPG respectively. For MADQN, the neu-
ral network for each red agent includes 2 hidden layers. Each
hidden layer contains 50 hidden units with ReLU activations.
For MADDPG, the actor network contains 2 hidden layers
with 50 hidden units each and ReLU activations. The critic
network has the same structure. For the training of the neural
network, we take the Adam optimizer. We set the learning rate
to 0.01, the gamma value to 0.95 and the batch-size to 1024.
During the training, the maximum steps for each episode were
150. The agent getting away from the border will receive a
negative reward —60, and the agent that eliminates an enemy
will receive a positive reward 40. Those parameters will be
used in the following experiments if they are not explicitly
specified.

The result of this experiment is shown in Fig.4. An episode
is a combat round, which is terminated when one team wins
the game, or the simulation step in a round exceeds the
maximum step. The three figures in Fig.4 show the win rate,
the reward and the loss of the two methods for the training
of red agents,respectively. As we can see, both MADQN and

109306

MADDPG are convergent in this simple task. For the first
subfigure, we carry out 100 combat tests every 100 training
episodes, and compute the average win rate. The second sub-
figure shows the averaged reward over all red agents, and each
value is the sum of rewards over all steps in an episode of the
training. We can see that MADDPG outperforms MADQN
both in the win rate (95% vs 85%) and the reward (580 vs
450). In the third subfigure, we can see that the loss value of
MADQN fluctuates more violently than that of MADDPG,
which indicates that the converged policy of MADDPG is
more stable than that of MADQN in this combat task.

B. PERFORMANCE OF SCENARIO-TRANSFER

TRAINING

Now we consider the combat scenario when green agents
move randomly and can attack red agents, which is called ran-
domly combat task. We consider using the scenario-transfer
training, for which we treat the simple task in last section as
the source scenario, and the randomly combat task as the tar-
get scenario. We load the trained model obtained in the source
scenario for red agents and then start a new training with
MADQN/MADDPG, which indicates that the experience

VOLUME 7, 2019

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

IEEE Access

100 600 100
Q [0)
S I e
c 50 2 c 50f
= = 200 2
—— SP-MADDPG —— SP-MADDPG ——— SP-MADDPG
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 10 20 30 40 50
episodes x10% episodes x10% battle round
100 400 100
Q Q
E .c% 200 -E
c 50 2 c 50f
= = 0 =
—— SP-MADQN ——— SP-MADQN ——— SP-MADQN
0 -200 0
0 2 4 6 8 10 0 2 4 6 8 10 0 10 20 30 40 50
episodes x10% episodes % 10% battle round
FIGURE 6. Performance of self-play training.
A a b c d

FIGURE 7. The cooperative behaviors learned by red agents to combat with green agents.

learned in the source scenario will be reused for learning new
knowledge in the target scenario. We use ST-MADQN and
ST-MADDPG to represent the two methods which combine
the scenario-transfer training with MADQN and MADDPG
respectively. The red agents are trained for 200, 000 episodes
for the two methods. The comparison results of MADQN,ST-
MADQN,MADDPG,and ST-MADDPG are shown in Fig.5.
As we can see, all methods are convergent in this randomly
combat task, in terms of the win rate and the reward. It is
remarkable to see that for both MADQN and MADDPG,
the scenario-transfer training can significantly accelerate the
convergence speed. Take the training results of the win
rate as the example, MADQN needs 180, 000 episodes to
converge while ST-MADQN needs only 130, 000 episodes.
MADDPG needs around 120, 000 episodes to converge while
ST-MADDPG needs only 60, 000 episodes. The scenario-
transfer training saves 50, 000 episodes for MADQN to con-
verge, and speeds up the convergence speed of MADDPG for
this task by around 50%. Besides, compared with MADQN,
MADDPG has faster convergence speed and higher win rate,
which again shows the superiority of MADDPG.

C. PERFORMANCE OF SELF-PLAY TRAINING
With trained models obtained by the scenario-transfer train-
ing as initial models, we consider continuously improving

VOLUME 7, 2019

the performance of these models by the self-play training.
Firstly, following the procedure of Algorithm 2, we make
one round of self-play training with 100, 000 episodes for
MADQN and MADDPG. We name them as SP-MADQN
and SP-MADDPG respectively. The variation of the reward
and the win rate during the training is shown in the left four
sub-figures in Fig.6. As we can see, both the reward and the
win rate are all improved through the self-play training. It is
notable to see that the win rate for red agents is increased
from around 50% to around 55% for SP-MADQN and from
around 50% to around 60% for SP-MADDPG. This illustrates
that the self-play training is a good way to improve the
performance of the model for the combat task. Next, we carry
out another experiment to demonstrate the superiority of the
self-play training. We conduct 50 rounds of self-play (K = 50
in Algorithm 2). Each round of self-play includes 50, 000
episodes. For every 100 episodes, we make a test that the red
agents loaded with the latest trained model fight with green
agents equipped initial models for 100 times. The win rate of
red agents can be seen in the right two sub-figures in Fig.6.
With the increasing rounds of self-play, the performance of
red agents becomes stronger gradually. It is surprising to see
that red agents trained by SP-MADQN could achieve around
95% win rate when they fight with green agents loaded
with models trained by ST-MADQN. Red agents trained

109307

I EE E ACC@SS G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

100 600
—— MADQN —— MADQN
——— MADDPG — MADDPG
—— RC-MADQN — RC-MADQN
80 || —— RC-MADDPG 400 | —— RC-MADDPG
I
iy
% 60 - 200 ‘ \ q
o ®© T
= % | ‘ﬁ h | M A,JMH\ VWWW
% 40 n T oo Al Ml I
VATV
‘ ‘ Mm ‘\J \ "\ ‘V‘u‘ (R
il) \ HH W mvau H T
MM\\ \\“H\W Iy M‘U | J ‘N ﬁ Jﬁ‘ i ! L
20 ‘ V -200
\ﬂ“'{ﬂ |
0 -400
0 0.5 1 1.5 2 0 0.5 1 15 2
episodes «10° episodes «10°
FIGURE 8. Performance of the rule-coupled training.
I ‘ ——— ST-MADDPG ' ‘ " [—st-mapDPG
—— SP-MADDPG ——— SP-MADDPG
110 F RC-MADDPG 100 F RC-MADDPG
100 A 80 F 4
[J) [
[©
= 2 = 60 b
2 2
80 [q 40 + i
70 1 20 b
60 o \/_/\N . N
0 10 20 30 40 50 0 10 20 30 40 50
battle round battle round
——— ST-MADQN —— ST-MADQN
——— SP-MADQN ——— SP-MADQN
110 F RC-MADQN 100 F RC-MADQN H
100 N 80 }
[[
[[
c 90 r b = 60 1
2 2
80 [1 40 f ‘ 1
70 b 20
60 | . . M/\MVWW
0 10 20 30 40 50 0 10 20 30 40 50
battle round battle round
FIGURE 9. The comparisons for the three training techniques for the random task and the fix-rule task.
by SP-MADDPG could achieve around 96% win rate when In addition, we find that though the self-play training, red

they fight with green agents loaded with models trained by agents learn some interesting behaviors as shown in Fig.7.
ST-MADDPG. Both methods enhance the performance of red Initially, three red agents are distributed at different locations
agents by around 40%, which is a great improvement. in Fig.7(a). Then two red agents learn to cooperatively fight

109308 VOLUME 7, 2019

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

IEEE Access

with green ones in Fig.7(b) and wipe out a green agent
in Fig.7(c). At last, the three red agents work cooperatively
to wipe out the last agent.

D. PERFORMANCE OF RULE-COUPLED TRAINING
Combing rules with the training is another way of improv-
ing the performance of agents by reducing the exploration
space of the reinforcement learning. The performance of red
agents has been greatly improved through self-play training.
However, when we equip the green agents with a rule that
a green agent always moves towards the nearest red agent
(named as the green rule), the win rate of agents with the self-
play training becomes very small. As we can see in Fig.§, red
agents with models trained by the self-play training can only
have a win rate of 10%. This value is improved to around
20% by the training of MADQN and to 38% by the training
of MADDPG.

Therefore we adopt the rule-coupled training, i.e., training
red agents with a simpler rule. When the distance between
the red agent and the nearest green agent is smaller than
2danacking, the red agent moves towards the green agent.
Otherwise, the action of the red agent is computed by rein-
forcement learning. We apply the rule-coupled training to
MADQN and MADDPG, which are noted as RC-MADQN
and RC-MADDPG respectively. The results are shown
in Fig.8. As we can see, both methods are converged. For
RC-MADQN, the converged win rate is around 57%, which is
improved by 37% compared to MADQN. For RC-MADDPG,
the win rate is improved to 62%. The converged rewards
are also improved through the rule-coupled training. Besides,
the results also show that MADDPG outperforms MADQN
in such combat scenarios.

Finally we make a comprehensive comparison for models
delivered by the three training techniques of MADDPG and
MADQN, which is shown in Fig.9. We compare these models
for two tasks: green agents move randomly (random task)
and green agents more following the green rule (fix-rule
task). As we can see by consecutively using the three training
techniques, the win rate of red agents with MADDPG is
improved from around 85% to around 98% for the random
task, while the win rate of MADQN is improved from 83% to
around 94%. For the fix-rule task, the win rate of MADDPG
is improved from 5% to 75%, while the win rate of MADQN
is improved from 4% to around 68%.

VI. CONCLUSION

In this paper we study a multi-agent combat problem with
multi-agent reinforcement learning methods. Much previous
research is focused on devising different types of learning
methods to deal with these tasks. We propose three effi-
cient train techniques: scenario-transfer training, self-play
training and rule-coupled training, which greatly improve
the performance of two popular MARL methods (MADQN
and MADDPG). The proposed methods achieve great perfor-
mance for the considered combat problem. In fact, the three
training techniques are general methods that can also be used

VOLUME 7, 2019

for other MARL methods and also for other kinds of tasks.
It would be interesting to explore the effectiveness of the three
training techniques when they can be used solely or in any
other combination for other problems.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, and Y. Chen, ‘“Mastering
the game of go without human knowledge,” Nature, vol. 550, pp. 354-359,
Oct. 2017.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
and S. Petersen, ‘“Human-level control through deep reinforcement
learning,” Nature, vol. 518, p. 529, Feb. 2015.

[3] C.J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3—4, pp. 279-292, 1992.

[4] J. Peters and J. A. Bagnell, “Policy gradient methods,” in Encyclopedia
of Machine Learning and Data Mining. Boston, MA, USA: Springer,
Jan. 2010, pp. 774-776.

[5] L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” Innov. Multi-Agent Syst. Appl., vol. 310,
pp. 183-221, Jul. 2010.

[6] R. C. Arkin, “Cooperation without communication: Multiagent schema-
based robot navigation,” J. Field Robot., vol. 9, no. 3, pp. 351-364,
Jun. 2010.

[7]1 P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang,
“Multiagent bidirectionally-coordinated nets for learning to play star-
craft combat games,” 2017, arXiv:1703.10069. [Online]. Available:
https://arxiv.org/abs/1703.10069

[8] M. A. Khamis and W. Gomaa, “Enhanced multiagent multi-objective
reinforcement learning for urban traffic light contro,” in Proc. 11th Int.
Conf. Mach. Learn. Appl., vol. 1, Dec. 2012, pp. 586-591.

[9] J.Han, C.-H. Wang, and G.-X. Yi, “Cooperative control of UAV based on
multi-agent system,” in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA),
Jun. 2013, pp. 96-101.

[10] P. Frasca, R. Carli, and F. Bullo, “Multiagent coverage algorithms with
gossip communication: Control systems on the space of partitions,” in
Proc. Amer. Control Conf., Jun. 2009, pp. 2228-2235.

[11] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, ‘““Hysteretic Q-learning
: An algorithm for decentralized reinforcement learning in cooperative
multi-agent teams,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Dec. 2007, pp. 64-69.

[12] E.Semsar-Kazerooni and K. Khorasani, “Multi-agent team cooperation: A
game theory approach,” Automatica, vol. 45, no. 10, pp. 2205-2213, 2009.

[13] K. Shao, Y. Zhu, and D. Zhao, ““StarCraft micromanagement with rein-
forcement learning and curriculum transfer learning,” IEEE Trans. Emerg.
Topics Comput. Intell., vol. 3, no. 1, pp. 73-84, Feb. 2018.

[14] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with deep
reinforcement learning,” Plos One, vol. 12, Dec. 2015, Art. no. e0172395.

[15] H. Kebriaei, A. Tajeddini, and N. Rashedi, ‘“Markov game approach
for multi-agent competitive bidding strategies in electricity market,” IET
Gener., Transmiss. Distrib., vol. 10, no. 15, pp. 3756-3763, Nov. 2016.

[16] K. Mateusz and J. Wojciech, ‘“Heterogeneous team deep g-learning in
low-dimensional multi-agent environments,” in Proc. IEEE Conf. Comput.
Intell. Games, Sep. 2016, pp. 1-8.

[17] L. Kaixiang, Z. Renyu, X. Zhe, and Z. Jiayu, “Efficient large-scale
fleet management via multi-agent deep reinforcement learning,” 2017,
arXiv:1802.06444. [Online]. Available: https://arxiv.org/abs/1802.06444

[18] M. Aleksandra, T. Tegg, S. Chae-Bong, K. Daniel, and S. Aleksei,
“Deep multi-agent reinforcement learning with relevance graphs,” 2018,
arXiv:1811.12557. [Online]. Available: https://arxiv.org/abs/1811.12557

[19] R.Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. Adv. Neural Info. Process. Syst., Long Beach, CA, USA, Dec. 2017,
pp. 6379-6390.

[20] Z.Yun, P. Yao, Y. Sun, and J. Yang, ““Cooperative task allocation method of
MCAV/UCAV formation,” Math. Problems Eng., vol. 11, p. 9, Jan. 2016.

[21] M. Xiaoteng, X. Li, and Z. Qianchuan, “Air-combat strategy using
deep Q-learning,” in Proc. Chin. Automat. Congr. (CAC), Nov. 2018,
pp. 3952-3957.

109309

IEEE Access

G. Zhang et al.: Efficient Training Techniques for Multi-Agent Reinforcement Learning in Combat Tasks

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep
reinforcement learning,” 2013, arXiv:1312.5602. [Online]. Available:
https://arxiv.org/abs/1312.5602

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. 31st Int. Conf. Mach.
Learn., vol. 1, Jun. 2014, pp. 387-395.

C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Kiittler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, and J. Schrittwieser, Deepmind
Lab. Dec. 2016.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘“Bench-
marking deep reinforcement learning for continuous control,” in Proc. Int.
Conf. Int. Conf. Mach. Learn., May 2016, pp. 1329-1338.

M. Tan, “Multi-agent reinforcement learning: Independent vs. coop-
erative agents,” in Proc. 10th Int. Conf. Mach. Learn., Jun. 1993,
pp. 330-337.

G. Tesauro, “Extending g-learning to general adaptive multi-agent sys-
tems,” in Proc. Adv. Neural Inf. Process. Syst., Mar. 2004, pp. 871-878.
J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70,
Aug. 2017, pp. 1146-1155.

L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Auton. Agents Multi-Agent Syst., vol. 11, no. 3, pp. 387-434,
Nov. 2005.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Proc. Int. Conf. Auto.
Agents Multiagent Syst., Nov. 2017, pp. 66-83.

S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent commu-
nication with backpropagation,” in Proc. Adv. Neural Inf. Process. Syst.,
May 2016, pp. 2244-2252.

T. Chen, 1. Goodfellow, and J. Shlens, “Net2net: Accelerating learning
via knowledge transfer,” 2015, arXiv:1511.05641. [Online]. Available:
https://arxiv.org/abs/1511.05641

R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R. Costa, ‘“Heuristi-
cally accelerated Q-learning: A new approach to speed up reinforcement
learning,” in Proc. Brazilian Symp. Artif. Intell., vol. 3171, Sep. 2004,
pp. 245-254.

L. Busoniu, B. De Schutter, R. Babuska, and D. Ernst, “Using prior
knowledge to accelerate online least-squares policy iteration,” in Proc.
IEEE Int. Conf. Automat., Qual. Testing, Robotics, vol. 1, May 2010,
pp. 1-6.

M. Cutler and J. How, “Efficient reinforcement learning for robots using
informative simulated priors,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2015, pp. 2605-2612.

J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in
imperfect-information games,” 2016, arXiv:1603.01121. [Online]. Avail-
able: https://arxiv.org/abs/1603.01121

S. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, pp. 1345-1359, Nov. 2010.

GUANYU ZHANG received the B.S. degree in
software engineering from the National University
of Defense Technology, in 2017, where he is cur-
rently pursuing the master’s degree. His research
interests include multi-agent reinforcement learn-
ing algorithms and basic software.

109310

YUAN LI received the B.Sc. degree in computer
science from the National University of Defense
Technology, China, and the Ph.D. degree in net-
work optimization from Lund University, Sweden,
in 2008 and 2015, respectively. He has published
papers on top network journals such as the IEEE
JSAC. He has published papers on conference such
as the IEEE INFOCOM. Since 2018, his research
interest has been focused on multi-agent reinforce-
ment learning algorithms with applications in real-
time strategy games. His research interests include network modeling, algo-
rithm design, integer programming and other combinatorial methods with
applications in communication networks. He has won the first place from
the Multi-Agent Confrontation Competition 2019 that was held by China
Electronics Technology Group Corporation.

XINHAI XU received the Ph.D. degree in computer
science from the National University of Defense
Technology, in 2012. He is currently an Associate
Professor with the Artificial Intelligence Research
Center, National Innovation Institute of Defense
Technology, Beijing, China. His research interests
include artificial intelligence algorithms, simula-
tion, and parallel computing.

HUADONG DA received the Ph.D. degree from
the National University of Defense Technology,
China, in 2002. He is currently a Professor with
the National Innovation Institute of Defense Tech-
nology, Beijing, China. His main research interests
include operating systems, computer architectures,
and artificial intelligence.

VOLUME 7, 2019

