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ABSTRACT Mining association rules is an important technique in data analysis. Many approaches for
rule analysis have been designed to address different problems. Among them, some works developed from
multiobjective genetic algorithms derive a set of Pareto solutions, each of which contains a set of membership
functions for fuzzy data mining from quantitative transactions with taxonomy. However, because more than
one solution exists in a Pareto set, finding a method to determine the appropriate membership functions and
combine them with useful knowledge for mining actionable patterns (such as fuzzy generalized association
rules and fuzzy utility itemsets) is a useful research problem. Hence, this paper presents a post-analysis-
based genetic-fuzzy mining (PA-GFM) framework for mining actionable patterns that involves two phases:
membership-function mining and actionable pattern mining. In the first phase, an existing approach is
utilized to derive the Pareto solutions with objective functions. In the second phase, a clustering technique
using clustering attributes selected by the users is employed to group the Pareto solutions. The representative
solution from each group is then exploited to mine actionable patterns based on the users’ requirements.
Experiments were conducted on both a simulated dataset and a real one to investigate the performance of
the PA-GFM framework.

INDEX TERMS Clustering algorithms, domain-driven data mining, fuzzy generalized association rules,
fuzzy utility itemsets, multiobjective genetic algorithms.

I. INTRODUCTION
The rapid growth of transactions in supermarkets has revealed
a need to develop tools for decision-makers to derive action-
able information when creating their marketing strategies.
In other words, because supermarket databases store many
transactions, it is difficult for supermarket owners to under-
stand how to choose the appropriate criteria to analyze them.
Selecting inappropriate evaluation criteria formining patterns
can reduce profits. In contrast, adopting appropriate evalu-
ation criteria such as item frequency, utility, or taxonomy
may result in derived patterns that are more actionable. Thus,
a pattern-mining approach that supports making tradeoffs
among diverse criteria is required.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mustafa Servet Kiran.

One of the best-known mining algorithms for analyzing
transactions uses association rules [2]. Many previous rule
mining approaches have been created to address various
problems, and fuzzy rule mining approaches exist that can
process transactions with quantitative values [14], [20], [30].
Because items have taxonomy, algorithms for mining
that use generalized fuzzy rule are designed to extract
implicit patterns from transactions under single or mul-
tiple supports [15], [17] [21]. Recently, some scholars
have designed genetic fuzzy mining (GFM) algorithms
to obtain both fuzzy association rules and membership
functions [13], [24], [27]. The knowledge mined can reflect
linguistic and uncertain characteristics of the databases.

In real applications, decision-makers may consider
multiple criteria when determining business strategies.
Thus, multiobjective optimization has become increasingly
important. Many GFM approaches using multiobjective
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genetic algorithms (MOGA) have been presented that use
different objective functions such as the number of inter-
esting itemsets and rules and the shapes of member-
ship functions [1], [6], [7], [18]. Although Pareto solutions
derived from these algorithms can provide users with a variety
of choices, they still faced the dilemma of how to generate fit-
ting solutions thatmine useful knowledge. Cao et al. proposed
a domain-driven data mining (D3M) method that combined
domain knowledge with meta-knowledge to mine useful
information. This approach was also called actionable knowl-
edge discovery (AKD) [4], [5], where the word ‘‘actionable’’
meant that the derived knowledge patterns could reflect real-
ities that decision-makers could use to determine appropriate
business strategies. Under this goal, four logical concepts
of D3M were described in [4], including post-analysis-
based AKD (PA-AKD), unified-interestingness-based AKD,
combined-mining-based AKD, and multisource combined-
mining-based AKD. Hence, actionable patterns mean the
information could be derived using the four logical concepts,
and the patterns could be represented in different forms. For
instance, the fuzzy set theory and the attribute flexibility are
considered for the enhancement of the fuzzy cost-effective
action mining algorithm (F-CEAMA) to maximize the fuzzy
net profit, where the actionable patterns could be derived
from the fuzzy decision tree using the fuzzy post-processing
[19]. As to other existing approaches, they can be divided
into three types, which are domain-driven data mining,
action mining and providing measures to verify discovered
patterns.

Based on the D3Mconcept, this work presents an approach
that can not only mine membership functions (Pareto solu-
tions) but also provide representative solutions that can mine
actionable knowledge for decision-makers. Thus, the Post-
Analysis-based Genetic-Fuzzy Mining (PA-GFM) frame-
work is proposed for mining actionable patterns according
to the PA-AKD framework. The main reason to employ the
PA-AKD framework to design the PA-GFM framework is
that it focuses on how to apply domain knowledge for post-
processing to derive actionable patterns. Using the proposed
framework, the previous approach [7] is utilized to extract
membership functions (Pareto solutions) in the first stage, and
actionable patterns are derived through domain knowledge
in the second stage. In other words, initially, the genetic-
fuzzy mining algorithm [7] is used to derive nondominated
solutions, which is the goal of first stage, with the given
objective functions (technique knowledge). In second stage,
a clustering technique using selected clustering attributes
that are extracted by the domain knowledge is then applied
to divide the Pareto solutions into groups. Then, in each
group, the representative solution can be employed to dis-
cover actionable patterns based on the users’ requirements,
where the actionable patterns are fuzzy generalized associa-
tion rules (FGAR) and utility fuzzy closed itemsets (UFCI).
Hence, based on the derived FGAR and UFCI, the proposed
approach could belong to not only descriptive but also pre-
dictive analytic method because the derived information can

be used for data description and prediction based on [33].
For example, the derived fuzzy generalized association rules
could not only be used for description what happened in the
historic data but also for predicting what will happen in the
future. At last, experiments on two datasets were conducted
to investigate the effectiveness of the framework.

The differences and improvements between this work
and the proposed study in [8] includes: (1) By utilizing the
D3M concept, the Post-Analysis-based Genetic-Fuzzy Min-
ing (PA-GFM) framework, which composes of two phases:
non-dominated solution mining and actionable pattern min-
ing, is proposed for deriving actionable patterns, where a non-
dominated solution is a set of membership functions for items
and actionable patterns include fuzzy generalized association
rules and utility fuzzy closed itemsets. Note that proposed
approach presented in [8] can only be used to mine fuzzy
generalized association rules. (2) Tomake readers understand
our paper easily, the related work is introduced in details and
an example is also given to illustrate the proposed PA-GFM
framework. (3) At last, extensive experiments carried on a
simulated and a real transaction datasets show that the pro-
posed approach can actually be utilized to derive actionable
patterns, including (a) the evolution of Pareto front in the first
phase, (b) the evaluation of the clustering results in the sec-
ond phase, and (c) the evaluation of the derived actionable
patterns. Besides, the main difference between the proposed
approach and the previous approach [7] is that the proposed
approach provides a more sophisticated procedure which is
the actionable pattern mining procedure (Stage II) to extract
actionable patterns.

The remainder of this work is organized as follows. The
related work is described in Section II. The design of the
PA-GFM framework is presented in Section III. The clus-
tering attributes and objective functions used in the pro-
posed approach are provided in Section IV. In Section V,
the proposed algorithm based on the PA-GFM framework
is explained, and in Section VI, an example is provided to
illustrate the proposed approach. The experimental evaluation
is presented in Section VII. Finally, conclusions and future
work are given in Section VIII.

II. RELATED WORK
The related work is introduced in this section. In Section
II.A, the preliminaries of multiobjective optimization are
described. Genetic-fuzzy mining approaches are then stated
in Section II.B. The utility of fuzzy itemset mining
approaches is given in Section II.C.

A. PRELIMINARIES OF MULTIOBJECTIVE PROBLEMS
For optimization problems, the goals that must be satisfied
are transformed into different factors. Through those factors,
a fitness function is then designed such that evolutionary
algorithms can solve the specific problem. Unfortunately,
it is not always easy to define an appropriate fitness function
for a problem in advance. Hence, multiobjective optimiza-
tion problems that consider various criteria have become
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important in real applications. This type of problem is for-
mally stated as follows:

Min/Max z = o(x) = (o1(x), o2(x), . . . , om(x)),

subject to a = (a1, a2, . . . , ah) ∈ A and

b = (z1, z2, . . . , zk ) ∈ Z ,

where a and z are the decision and objective vectors
and A and Z represent the objective space and decision
space, respectively. Fonseca and Fleming proposed the
Multi-Objective Genetic Algorithm (MOGA) to solve such
problems. MOGA evaluated the fitness values of the solu-
tions based on the extended ranks and then used them to
find Pareto solutions [10]. Enhanced approaches such as
NSGA-II [9] and SPEA2 [40] were later proposed to find
better Pareto fronts than MOGA. The main idea behind
NSGA-II is to utilize a procedure to perform a fast sort
of the nondominated individuals to derive Pareto solutions
more effectively [9]. SPEA2 then proposed a better strategy
for assigning fitness values to solutions by estimating the
density of the nondominated solutions and enhancing archive
truncation [40]. In addition, Yu et al. presented the neighbor-
hood knowledge-based evolutionary algorithm (NKEA) to
solve multiobjective problems via three stages, including the
direction-learning, mutual-adaptation, and self-adaptation
stages [39]. It not only took the advantages of multiobjective
approaches into consideration, e.g., NSGA-II [9], but also uti-
lized the neighborhood knowledge systematically to enhance
searching ability during the evolution process.

B. GENETIC-FUZZY MINING APPROACHES
The use of association rules is the best-known technique
for market basket analysis [2]. Because quantitative val-
ues usually appear in transactions, many approaches that
use fuzzy sets have been designed to handle these transac-
tions when mining fuzzy association rules [14], [20], [30].
Fuzzy generalized rule mining approaches have also been
presented that obtain valuable information from quantita-
tive transactions with taxonomy under single or multiple
supports [15], [17], [21]. In addition, item sales earn different
profits. Thus, various methods have been presented to derive
fuzzy utility itemsets [22], [34].

Because membership functions are utilized to handle the
quantitative values, their settings have significant impacts
on the mining results. In the methods mentioned above,
the membership functions were assumed to be predefined;
however, later approaches presented some genetic fuzzy min-
ing algorithms to derive both membership functions and
linguistic association rules [13], [24], [27]. Considering the
number of large itemsets and the suitability of membership
functions, Hong et al. proposed aGA-based approach to solve
the above problem [13]. By considering the temporal aspect
of transactions, Matthews et al. designed a method to derive
temporal linguistic rules [24]. Palacios et al. then applied
GFM to perform fuzzy mining of low-quality data [27].

Because decision-makersmay adopt multiple criteria when
designing application strategies, multiobjective problems
have recently attracted much attention. Several GFM algo-
rithms based onmultiobjective evolution algorithms (MOEA)
that use various objective functions have been proposed
[1], [6], [7], [18]. Kaya presented an algorithm based on
MOGA to find optimized rules under three criteria, termed
strength, interestingness and comprehensibility [18]. Alhajj
and kaya derived membership functions using MOGA
with an automated clustering method to obtain fuzzy rules
from [1]. The criteria used in that work include the num-
ber of frequent itemsets and improvement in execution
time. Chen et al. also used MOGA to find suitable mem-
bership functions and adopted two criteria—the suitabil-
ity of membership functions and the number of frequent
itemsets—which they used to derive fuzzy association
rules [6]. Chen et al. also proposed an algorithm that used
a given taxonomy to derive multilevel linguistic rules using
MOGA [7].

Although the derived Pareto solutions can provide
decision-makers with numerous choices, it is still difficult to
identify a useful solution from those choices. For instance,
suppose a Pareto set contains forty solutions and that no
solution is dominated by any other under the given criteria.
It is then an interesting problem to select the most appro-
priate solutions for mining actionable patterns. In this work,
the goal is to design a framework that can not only derive
Pareto solutions and mine actionable knowledge but also
provide more useful information to users. Note that each
Pareto solution consists of a set of potential membership
functions.

C. THE UTILITY OF FUZZY ITEMSET MINING APPROACHES
Using an association rule mining approach can find large
itemsets and rules with high confidence values. However,
those patterns may not provide actionable knowledge that
meet business goals. Thus, utility mining algorithms have
been presented and used widely in various applications such
as retail transaction analysis. As described above, transac-
tions contain quantitative values. Therefore, some algorithms
have been proposed that consider the utility of fuzzy itemsets
in recent years.

For example, to utilize quantitative transactions, Wang et
al. proposed an approach named High-Utility Fuzzy Itemsets
Miner (HUFI-Miner) that derived fuzzy itemsets resulting
in high profits [34]. Using the given membership functions,
the quantitative values were first converted into linguistic
regions. Then, the utility of each fuzzy itemset was calculated
based on the external utility values of the items. Finally, the
utilities of the fuzzy itemsets were compared with a minimum
utility threshold to determine whether they were high-utility
fuzzy itemsets. To reveal the influence of fuzzy degrees and
the profit of high-utility itemsets, Lai et al. introduced the
Fuzzy High-Utility Itemsets Mining (FHUI-Mine) method
to discover fuzzy high-utility itemsets [22]. In this paper,
the utilities of the fuzzy itemsets are incorporated into a
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FIGURE 1. The first stage of PA-GFM framework.

second stage of the proposed framework to find representative
solutions and mine actionable knowledge.

III. PROPOSED POST-ANALYSIS-BASED GENETIC-FUZZY
MINING FRAMEWORK
The proposed PA-GFM framework for mining actionable
patterns, which utilizes the PA-AKD framework, is described
in this section. The PA-GFM framework involves two phases.
The goal of the first phase is to obtain Pareto solutions
from the technique knowledge (objective functions). Each
Pareto solution contains a set of membership functions. Then,
in the second phase, a clustering method is used to divide
the Pareto solutions into several groups. The representative
solutions from each group are presented to users to assist
them in making decisions. The first stage of the framework
is depicted in Fig. 1.

In the first stage, the generalized items are encoded into
chromosomes based on the taxonomy provided as input to
the first phase. Here, each generalized item uses a set of
membership functions. Therefore, each individual includes
the set of membership functions for all generalized items.
Below, the chromosome representation presented in [7] used
to for encoding generalized items is described. Assume there
are two generalized items, a possible chromosome is shown
in Fig. 2.

Fig. 2 shows two generalized items which are ‘‘Food’’
and ’’Drinks’’. Because each membership function used for
an generalized item is represented by two genes that are
the center abscissa cjk and half the spread wjk of the fuzzy
region Rjk , the generalized item ‘‘Food’’ which has three
fuzzy regions (Low, Middle and High) are encoded as ‘‘2, 2,
7, 4, 11, 3’’. In the same way, the fuzzy regions for ‘‘Drinks’’
can be encoded as ‘‘1, 2, 6, 3, 11, 4’’. As a result, the two
generalized items are represented as ‘‘2, 2, 7, 4, 11, 3, 1, 2,
6, 3, 11, 4’’ in the chromosome C1. Then, utilizing the multi-
objective genetic-fuzzy acquisition process [7], the nondom-
inated membership functions are derived. Note that different

FIGURE 2. An example for chromosome representation.

FIGURE 3. The second stage of the PA-GFM framework.

MOGA approaches can be used in this stage such as those
in [9], [10], [39], [40]. Additionally, the objective functions,
which are known as technique knowledge, are selected and
incorporated into the evolution procedure based on the users’
preferences [1], [6], [7], [18].

As to the genetic operators, the max-min-arithmetical
(MMA) crossover [12] and the one-point mutation are used
to form offspring solutions. The MMA crossover will gen-
erate four candidate chromosomes from the selected two
chromosomes, C t

u = {c1, . . . , ch, . . . , cz} and C t
u =

{c
′

1, . . . , c
′

h, . . . , c
′

z} that are shown as follows:
1. C t+1

1 = {ct+111 , . . . , c
t+1
1h , . . . , c

t+1
1z }, where c

t+1
1h = dch+

(1− d)c
′

h.
2. C t+1

2 = {ct+121 , . . . , c
t+1
2h , . . . , c

t+1
2z }, where c

t+1
2h = (1−

d)ch+dc
′

h.
3. C t+1

3 = {ct+131 , . . . , c
t+1
3h , . . . , c

t+1
3z }, where ct+13h =

min{dch, c
′

h}.
4. C t+1

4 = {ct+141 , . . . , c
t+1
4h , . . . , c

t+1
4z }, where ct+14h =

max{dch, c
′

h}.
The best two out of the four chromosomes are kept in

population. The one-point mutation operator will derive a
different membership function through randomly adding a
value (between±wjk ) to the center or spread of a fuzzy region
Rjk . The second stage of the framework is illustrated in Fig. 3.
In the second stage, because each nondominated solution

in the Pareto set involves a tradeoff between the incorporated
objective functions, it is not easy for the user to choose
appropriate solutions. The goal of this phase is to obtain
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representative solutions for mining actionable patterns. Here,
the experts’ domain knowledge is considered to determine
the appropriate clustering attributes. For example, item utility
could be considered when the decision-maker focuses on
profit; alternatively, the number of frequent itemsets (rules)
could be used when the decision-maker wants to know the
relationships among items. Hence, the nondominated solu-
tions are grouped into several clusters by the clustering tech-
niques, e.g., k-means or others [35], [36], [37], [38]. Then,
the representative solutions from the groups are utilized to
mine actionable patterns such as fuzzy utility itemsets or
fuzzy association rules [15], [17], [22], [34].

According to the references [3], [11], transductive and
inductive learning algorithms are used to construct classifi-
cation models. The transductive learning is utilized to solve
a specific problem. It will use specific training instances to
build the classification model, which is then used to pre-
dict specific testing instances. Two well-known approaches
are the k-nearest neighbors (KNN) and the support vec-
tor machine (SVM) [11]. As to the inductive learning, it is
employed to deal with a more general problem. The goal of
inductive learning is to utilize the observed training instances
to construct a general classification model (like rules). Then,
the general rules are applied on the testing instances. The
well-known algorithms are ID3 and C4.5 [3]. Because the
proposed framework is designed to extract fuzzy generalized
association rules and utility fuzzy closed itemsets, they don’t
match the definitions of the transductive and inductive learn-
ing. However, if we limit the itemsets in the consequence part
as class labels, the proposed method can fall in the scope of
inductive learning algorithms.

IV. CLUSTERING CRITERIA AND ATTRIBUTES IN THE
PROPOSED APPROACH
The criteria used as technique knowledge for multiobjec-
tive evolutionary processes in the literature are stated in
Section IV.A. Then, the attributes used for clustering to obtain
representative solutions are given in Section IV.B.

A. OBJECTIVE FUNCTIONS USED IN THE FIRST STAGE
According to the literature, a MOGA process may have dif-
ferent criteria. For example, Kaya presented three criteria to
evaluate each solution: support threshold, rule correlation,
and the average number of fuzzy sets in a rule [18]. In addi-
tion, Alhajj and Kaya used two different criteria in a MOGA-
based fuzzy mining approach: runtime improvement and the
number of frequent itemsets [1]. With a given taxonomy,
Chen et al. considered the number of frequent itemsets and
the suitability of membership functions as the two objective
functions and designed MOGA-based approaches to mine
membership functions and fuzzy association rules [6], [7].
The criteria mentioned above can be explained as follows.

(1) Fuzzy Support FS(X) of an itemset X is

FS(X ) =

n∑
i=1

f (i)X

n
, (1)

where f (i)X = MINm
j=1 f

(i)
Xj , and f

(i)
Xj is the fuzzy value of the

j-th item in X in the i-th transaction [6].
(2) The comprehensibility of a rule R is

Comprehensibility(R) =
log(1+ |con|)

log(1+ |ante ∪ con|)
, (2)

where | con| is the attribute number in the consequent part of
R and |ante ∪ con| is the attribute number of R [18].

(3) The fuzzy correlation of a rule ‘‘(X, A) → (Y, B)’’ is
defined as follows:

Corr((X ,A)(Y ,B)) =
Cov((X ,A)(Y ,B))
√
Var(X ,A).Var(Y ,B)

, (3)

where A, B, X and Y are itemsets, Cov((X ,A)(Y ,B)) = FS(Z ,C)−
FS∗(X ,A)FS(Y ,B),Var(X ,A) = FS2(X ,A)−(FS(X ,A))

2,FS(Z ,C) is the
fuzzy support of item (Z , C), Z is the union of X and Y , and
C is the union of A and B [18].
The range of this measurement is between -1 and 1, and it

is utilized to evaluate the dependence of the antecedent and
the consequent in a rule.
(4) The number of large (or frequent) itemsets in a chro-

mosome Cq is defined as follows:

numL arg eItemSet(Cq) =
levels∑
k=1

|Lk1q|, (4)

where |Lk1q| represents the number of level-k large (frequent)
1-itemsets due to the membership functions represented by
chromosome Cq [7].
In addition to the number of frequent 1-itemsets, Formula

4 can be extended to reflect the number of all frequent item-
sets and the number of all rules generated from all levels;
however, doing so involves a tradeoff between computational
cost and knowledge accuracy. The rationale is that more
frequent 1-itemsets will incur more frequent itemsets at a
high probability, which will generate more association rules
as well. A similar objective function that focuses on obtaining
the maximum profit from a predefined minimum support
interval could also be used [1].
(5) The suitability of the membership functions in chromo-

some Cq is defined as follows:

suitability(Cq) =
m∑
j=1

[ overlap_F(Cqj)+coverage_F(Cqj)],

(5)

where overlap_F(Cqj) is used to measure the overlap degree
of membership functions for item Ij and is calculated by
the overlapping length of two fuzzy regions divided by
half the minimum span of the two fuzzy regions. Here,
coverage_F(Cqj) is used to measure the ratio of the coverage
range of the fuzzy regions over the maximum quantity of
the generalized item Ij in the database [7]. These criteria are
utilized to avoid fuzzy sets that are too redundant and too
widely separated.
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B. CLUSTERING ATTRIBUTES IN THE MINING
ACTIONABLE PATTERN PHASE
After the Pareto solutions are derived from the first phase,
the second phase involves clustering them to obtain the repre-
sentative solutions for mining actionable patterns. The action-
able knowledge discovery (AKD) and actionable pattern (AP)
are stated as follows.
Definition 1 Actionable Knowledge Discovery (AKD): The

definition given by Cao et al. [4] is given as follows:
‘‘The AKD is an iterative optimization process toward the

actionable pattern set, considering the surrounding business
environment and problem states. It is a loop-closed and
iterative refinement process, multiple feedbacks, iterations
and refinement are involved in the understanding of data,
resources, the roles and utilization of relevant intelligence,
the presentation of patterns, the delivery specification, and
knowledge validation’’.
Definition 2 Actionable Pattern (AP): The definition given

by Cao et al. [4] is shown as follows:
‘‘The AP satisfies both technical and business interesting-

ness needs, and can be seamlessly taken over by business
people for decision-making action-taking. AP can support
business problem-solving by taking actions recommended by
the pattern, and correspondingly transform the problem sta-
tus from an initially non-optimal status to a greatly improved
one’’.

Based on the definitions 1 and 2, we can understand that
AKD is an iterative optimization process to derive the AP
which should not only satisfy both technical and business
interestingness but also can be utilized for business decision-
making. In this paper, the two types of actionable patterns are
defined as follows.
Definition 3 A Fuzzy Generalized Association Rule

(FGAR): A FGAR is represented as ‘‘If X , Then Y ‘‘, where
X and Y are sets of fuzzy itemsets, and its support and
conference values are the two criteria used to assess its
quality. For instance, a FGAR could be ‘‘If Food.Low, Then
Drinks.Middle, sup. = 10%, conf. = 80%’’.
Note that an associative classification rule can be repre-

sented in the form: (Ai1, ai1) ^. . . ^(Aik , aik ) → c, where
the antecedent of the rule is an itemset and the consequent
is a class [32]. Based on the definitions of ACR and FGAR
(Definition 3), the difference between ACR and FGAR is
their consequent parts. The former is a class and the latter
is an itemset. In general, the purpose of ACR is to use the
association-rule analysis to get classification rules from a
supervised dataset. But the goal of the FGAR is to extract
the relationships among items from given transactions (an
unsupervised dataset).
Definition 4 A Utility Fuzzy Closed Itemset (UFCI): A

UCFI is represented as a fuzzy itemset X , where X is a
subset of the universal set {R11,R12, . . .Rjl, . . . ,Rnh}. Rjl
means the l-th fuzzy region of item Ij, and X has no
superset with the same support value and its utility being
larger than a given utility threshold. For example, a UCFI
could be ’’(11∗.Middle, 42∗.High, 31∗.High, 21∗.High),

utility = 87.52’’, where 11∗, 42∗, 31∗ and 21∗are gen-
eralized items. For example, the code 42∗ represents the
generalized item at the second branch in level 2 which is a
branch of 4-th branch in level 1.

Here, two sets of clustering attributes are designed for the
mining utility and relationship of items, namely, Combina-
tion I and Combination II. The suitability of membership
functions and the number of frequent fuzzy closed itemsets
are the two attributes used to cluster the Pareto solutions for
mining the relationships of items in Combination I. In con-
trast, the suitability of membership functions and the utility
of closed fuzzy itemsets are the two attributes used to cluster
Pareto solutions to mine the utility relationship of items in
Combination II.

Users who select ‘‘Combination I’’ as the set of clustering
attributes to obtain representative solutions want to find the
relationships among items. The number of fuzzy closed large
itemsets is defined as follows:

numLarFuzClosedItemSet(ps) =
levels∑
k=1

|LFCI k |,

where |LFCI k | is the number of level-k large fuzzy closed
itemsets in the Pareto solution ps, 1 ≤ k ≤ levels. The large
fuzzy closed itemset of each Pareto solution can be calculated
by using the fuzzy mining algorithm [14]. Thus, the set LFCI
is defined as follows:

LFCI = {X k |countkx=α, 1≤ j≤m
k ,1≤ l≤h,1≤k ≤ level},

where X k is a large fuzzy closed itemset in level k and countkx
is the fuzzy value of X k .

Because items have different prices, item prices should be
considered to meet business requirement. In such situations,
the clustering attributes of ‘‘Combination II’’ can be selected.
The representative solutions of clusters can then provide dif-
ferent ways to mine utility fuzzy itemsets. Each item’s utility
is then taken into consideration in the mining of the Utility
of Fuzzy Itemsets (UFI) [34]. The formula for the utility of a
utility fuzzy itemset is defined as follows:

UFI (X ) =
∑

i∈TID(X )

∑
Rjl∈X

f (i)jl ×WEU (Rjl), (6)

where TID(X) is the set of transaction identifiers for which the
cardinality of the fuzzy region of the items in fuzzy itemset
X is larger than zero, f (i)jl is the cardinality of the l-th fuzzy
region of Ij in the i-th transaction, Rjl is the l-th fuzzy region
of item Ij, andWEU(Rjl) is calculated by the maximum value
of Rji multiplied by the external utility of item Ij. Thus,
the utility fuzzy itemsets are first derived for each chromo-
some. Then, according to the derived utility fuzzy itemsets,
the summation of the utilities of all utility fuzzy itemsets
is calculated as a clustering attribute, and incorporated into
the membership suitability functions to obtain representative
solutions to derive the utility of items.
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TABLE 1. The pseudo code of the second stage.

V. PROPOSED ACTIONABLE PATTERN MINING
APPROACH
In accordance with the PA-GFM framework, the proposed
actionable pattern mining approach is stated here. As men-
tioned above, the goal of the first stage of the proposed frame-
work is to obtain Pareto solutions using the MOGA-based
mining method presented in [7]. The goal of the second phase
is to cluster the nondominated solutions using the selected
clustering attributes for actionable pattern mining. Because
the procedure of the first stage can be found in [7], the pseudo
code of the second stage is given in Table 1.

The details of the proposed algorithm for the second stage
are stated as follows:
Phase II: Actionable pattern mining approach:

STEP 1: For each chromosome in NDS, calculate its
utility of fuzzy itemsets (UFI) as follows.

SUBSTEP 1.1: Calculate the fuzzy closed large itemset
of each chromosome in NDS with the
fuzzy mining algorithm [14] and collect the
derived large fuzzy closed itemsets into a set
LFCI as follows:

LFCI = {X k |countkx = α,

1 ≤ j ≤ mk ,1 ≤ l ≤ h,1 ≤ k ≤ level},

where X k is a large fuzzy closed itemset
in level k and countkx is the fuzzy value of
X k . Note that different fuzzy data mining
algorithms can be used in this step.

SUBSTEP 1.2: Find the UFI value of each large fuzzy
closed itemset X in the LFCI of each chro-
mosome using the following formula:

UFI (X k ) =
∑

i∈TID(X k )

∑
Rjl∈X k

f (k)ijl ×WEU (Rkjl),

where Rkjl is the linguistic region of item Ij
with the l-th linguistic term at the k-th level
and TID(Xk ) means the transactions contain-
ing X k .

SUBSTEP 1.3: Set theUFI of each chromosome as the sum-
mation of all UFI(Xk ) inLFCI.

STEP 2: Normalize the attributes of each chromo-
some as follows:

Normalize(ai)
ai∈A

=
ai −Min(A)

Max(A)−Min(A)
,

where A is an attribute with n values a1 to
an, and Max(A) and Min(A) are the max-
imum and minimum values of A, respec-
tively. Here, A may be either the UFI or the
suitability of chromosomes.

STEP 3: Use k-means to partition the chromo-
somes into numCluster groups based on
the attributes in STEP 2. The adopted
attributes can be either Combination I (nor-
malized suitabilityandnormalized number of
large itemsets) or Combination II (normal-
ized UFI and normalized suitability) of
each Pareto solution. When Combination II
is utilized to cluster nondominated points,
the utility threshold of the Pareto solution
UTC can be used to prune the Pareto solu-
tions with low normalized UFI values.

STEP 4: Obtain representative Pareto solutions from
the groups, where a representative solution
is the one closest to the center of its corre-
sponding cluster.

STEP 5: Mine and output the fuzzy association rules
at all levels according to the confidence
threshold λ, (or mine and output the utility
closed fuzzy itemsets according to theUT of
each representative solution).

In the following, we provide some possible solutions for
estimating the number of groups for STEP 3 because dif-
ferent datasets may have different numbers of groups. For
estimating the number of groups, Rahman and Islam pre-
sented an algorithm, called GenClust, that combined GA and
k-means for dealing with clustering problems [29]. Using the
GenClust, GA is utilized to search for a suitable number
of groups for k-means. Hence, the number of groups does
not be set by users. In addition, based on the GenClust,
an enhanced algorithm, called GENCLUST++, was pro-
vided to speed up the evolution process [16]. For parameter-
independent clustering approaches, Rahman et al. proposed
two density-based clustering (PIDC) algorithms, namely
PIDC-WO and PIDC-O, which are used for datasets without
and with outliers, respectively [28].

VI. AN EXAMPLE OF THE ACTIONABLE PATTERN MINING
PHASE
A simple example is shown below to help clarify the sec-
ond phase of the framework. The six encoded transactions,
the external utility of all items, and the six nondominated
solutions derived using the previous approach [7] are shown
in Tables 2, 3 and 4, respectively.

STEP 1: The utility of the fuzzy itemsets for each
chromosome is found as follows.
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TABLE 2. The six encoded transactions.

TABLE 3. External utility of all items.

TABLE 4. Six Pareto solutions in this example.

TABLE 5. Fuzzy closed itemsets in all levels.

SUBSTEP 1.1: First, the large fuzzy itemsets are found
by the fuzzy data mining algorithm in [14];
only the large fuzzy closed itemsets are kept.
Taking ps1 as an example; the large fuzzy
closed itemsets in all levels with minimum
support of 0.04 are shown in Table 5.

SUBSTEP 1.2: The UFI of each large fuzzy closed item-
set generated from each chromosome is

TABLE 6. The UFI values of all large itemsets in level 2 in ps1.

TABLE 7. The UFIs at different levels in ps1.

TABLE 8. Total UFI and suitability of all Pareto solutions.

TABLE 9. Normalized suitability and UFI of Pareto solutions.

calculated. Take the large fuzzy closed item-
set ‘‘(11∗.Middle, 32∗.High, 21∗.Low)’’
in ps1 as an example. Because the
large fuzzy closed itemset only appears
in TIDD1, theUFI (11∗.Middle, 32∗.High,
21∗.Low) = 0.88∗WEU (11 ∗ .Middle) +
0.76∗WEU (32∗.High)+0.9∗WEU (21∗.Low)
= 0.88∗(6.24∗6.5)+ 0.76∗(7.21∗7)+ 0.9 ∗
(4.81∗1) = 35.69 + 38.36 + 4.33 = 78.38.
TheUFI of all the large itemsets in level 2 in
ps1 are shown in Table 6. The summary of
all UFIs at different levels in ps1 is depicted
in Table 7.

SUBSTEP 1.3: Thus, the total UFI of ps1 is 1299.81 =
(417.11+228.38+654.32). In the sameway,
the total UFI and the suitability of all Pareto
solutions are shown in Table 8.

STEP 2: The value ofUFI and suitability of all Pareto
solutions are normalized. Take the suitability
of ps3 as an example. The normalized suit-
ability is 0.27 = ((6.80 − 5.97)/(9.07 −
5.97)). The normalization of the UFI and
the suitability of all Pareto solutions can be
obtained in the same way. Table 9 shows the
results.
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TABLE 10. Clustering results.

TABLE 11. LFCI and normalized UFI in level 1 by the Pareto solution ps3.

TABLE 12. Basic information of the used datasets.

STEP 3: Assume that the user selected Combination
II in this example. The Pareto solutions are
divided into groups using k-means with the
normalizedUFI and suitability values. If the
numCluster parameter is set to 3 and UTC
is set to 0; the clustering results are shown
in Table 10.

STEPS 4 to 5: The representative Pareto solutions of the
groups are ps1, ps3 and ps6. Assume that the
user’s goal is to find the valuable patterns
that can maximize profits. When UT is 0.3,
the derived utility of the fuzzy closed item-
sets in level 1 by the membership functions
in the representative Pareto solution ps3 are
shown in Table 11.

VII. EXPERIMENTAL EVALUATION
Experimental results for the proposed framework and action-
able pattern mining approach are presented in this section.
The proposed approach was programmed in Java on a per-
sonal computer with an Intel Core i7 CPU @ 2.9 GHz and
4.0 GB of RAM. The initial population size P was 100,
the crossover rate pc was 0.8, and the mutation rate pm was
0.001. In addition, the minimum support was 0.04 (4%) and
the d value in the crossover operator was 0.35 according
to [12].

A. DATASET DESCRIPTION
Two datasets, including a simulated one and the Foodmart,
used in these experiments are stated in this section. The basic
information of the datasets is shown in Table 12.

The simulated dataset is the same as that used in [8]. It con-
tains 64 terminal nodes (items) on level 3, and the numbers of
generalized items on levels 2 and 1 are 16 and 4, respectively.

FIGURE 4. The Pareto fronts for different generations.

Only the terminal nodes could appear in transactions. There
were four branches for each internal node in the taxonomy.
The proposed algorithm was tested on different numbers of
randomly generated transactions. In total, 10,000 transactions
were used in the experiments.

As to the Foodmart dataset, it has 21,557 transactions,
1,559 items in level 4 (terminal nodes), 110 generalized
items in level 3, 49 generalized items in level 2, and three
generalized items in level 1. The generalized items in level 1
are drink, food, and non-consumables, with 7, 27, and 15
branches, respectively.

B. THE EVOLUTION OF PARETO FRONT IN THE FIRST
PHASE
First, the experiments were constructed to show the Pareto
fronts at different generations on the simulated dataset. The
Pareto fronts for generations 0 to 1000 are shown in Fig. 4.

As Fig. 4 shows, the Pareto solutions improved steadily in
throughout the generations. The final results at 1000 gener-
ations outperform those of earlier generations. In addition,
many Pareto solutions were found—in this case, 27 Pareto
solutions—whichmeans that it might not be easy to choose an
appropriate one to mine actionable patterns. Thus, the exper-
iments presented in the next section were conducted to show
the merits of the second phase of the proposed PA-GFM
framework.

C. EVALUATION OF THE CLUSTERING RESULTS IN THE
SECOND PHASE
As shown above, after the first phase of PA-GFM, a set
of Pareto solutions is obtained, each of which represents
a nondominated tradeoff. When too many Pareto solutions
are found, users will have difficulty selecting the appropri-
ate solution to extract the information they need to make
decisions. Thus, the goal of the second phase is to find
representative solutions so that decision-makers can employ
them efficiently. The k-means clustering strategy is used
to achieve this goal. To evaluate the quality of the derived
clusters, the similarity of two Pareto solutions is first defined
as follows:

Sim(psq, psh) =
sameItemset(psq, psh)

MaxNumberofItemset(psq, psh)
,
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FIGURE 5. The relationships between the average similarity of clustering
results and the number of clusters.

where sameItemset(psq, psh) means that some number of the
same large itemsets appears in both the Pareto solutions psq
and psh and MaxNumberofItemset(psq, psh) is the maximum
number of large itemsets between chromosomes psq and psh.
The average similarity of the Pareto solutions in the same
cluster is defined as follows:

avgSimCluster(Clusteri) =
∑

Cq,Ch∈Clusteri,q6=h

2 ∗ Sim(psq, psh)
|Clusteri| ∗ |Clusteri − 1|

.

Thus, given a clustering result CR, the average similarity
of all clusters is defined as follows:

avgSimAllCluster(CR) =
∑

i=1 to k, CLusteri∈CR

avgSimCluster(Clusteri)
|CR|

.

The experiments were then conducted on the simulated
dataset as follows. The Pareto solutions obtained previously
were partitioned into clusters by k-means with the designed
clustering attributes (Combination I or II) to obtain the
representative solutions. Using the similarity measurement,
the ten-run average results of the relationships between the
average similarity of clustering results and the number of
clusters are depicted in Fig. 5.

From Fig. 5, for Combination I, we can see that the aver-
age similarities of clusters increase as the number of clus-
ters increases until the number of clusters reaches six. This
indicates that the derived clustering results achieve the best
similarity when the number of clusters is set to six. For Com-
bination II with different utility thresholds, the best average
cluster similarities for both versions appear with three clus-
ters. This phenomenon occurs because some solutions with
low normalizedUFIwere deleted by the utility threshold; thus
degeneracy may occur as the number of clusters increases.
The clustering results with the highest average similarity for
Combination I and Combination II (utc = 0.1) are shown
in Figs. 6 and 7, respectively.

Fig. 6 shows that six clusters were formed from the non-
dominated solutions. The 27 Pareto solutions derived from

FIGURE 6. The groups formed based on Combination I (k = 6).

FIGURE 7. The groups formed based on Combination II (k = 3).

FIGURE 8. The normalized number of large fuzzy closed itemsets and the
suitability of representative solutions by Combination I on the simulated
dataset.

the first stage are now reduced to only six representative
solutions that provide a more effective way for users to mine
actionable patterns involving relationships among items and
to make decisions.

Fig. 7 shows that the 27 Pareto solutions obtained from
the first phase were clustered into 3 groups when using the
combination II as clustering attributes. The three represen-
tative solutions in the clusters are best suited to helping
decision-makers analyze the profits among items and make
actionable promotions efficiently.

To show more detailed results from the second phase,
the normalized number of large fuzzy closed item-
sets (LFCI) and suitability and the normalized UFI and
suitability of the representative chromosomes derived by
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FIGURE 9. The normalized UFI and the suitability of representative
solutions by Combination II on the simulated dataset.

FIGURE 10. The representative chromosomes by Combination I on the
Foodmart dataset.

Combinations I and II are shown in Figs. 8 and 9, respectively.
The values of the two attributes in Combination I for the six
representative points are shown in Fig. 8.

Fig. 8 shows that, when the derived representative solutions
have large normalized suitability values, their normalized
numbers of LFCI are also large (e.g., the representative solu-
tion of chromosome 9). Alternatively, although representative
solution 3 has the best normalized suitability value, it has
the smallest normalized number of LFCI. From these results,
clearly, the six derived representative solutions represent
trade-offs between objective functions and make it easier
for users to mine actionable fuzzy generalized association
rules.

Fig. 9 shows that the larger the suitability values of the
representative chromosomes are, the larger the UFI val-
ues are. Thus, when users need to obtain more actionable
patterns, representative solution 2 (chromosome 2) could
be suggested to achieve that goal. Experiments were
then made on different data sizes to show the execution
time of the proposed approach. The results are shown in
Table 13.

From Table 13, we can observe that the execution time
of the first stage was larger than that of the second stage
when the population size was set at 50. Because the first
stage is used to derive the Pareto solutions by an evolutionary
algorithm, the results are reasonable. Although the execution
is a little time-consuming, it is increasing linearly along with
the increasing of transaction sizes.

FIGURE 11. The representative chromosomes by Combination II on the
Foodmart dataset.

TABLE 13. Execution time on simulated datasets with different
transaction sizes.

In the same process, the representative chromosomes
derived by the proposed approach with Combinations I and
II on the Foodmart dataset are shown in Fig. 10 and Fig. 11.

From Fig. 10, we can observe that the larger the suitability
values of the representative chromosomes are, the better the
number of LFCI of chromosomes are.

From Fig. 11, when Combination II was used in the second
stage, large suitability values basically could generate large
utility values excepting C16. Thus, if user wants to mine more
fuzzy rules or utility fuzzy itemsets, the chromosomes C26
and C14 could be provided for the actionable pattern mining
tasks.

Notice that because the proposed PA-GFM framework con-
sists of two phases, named nondominated membership func-
tions mining and actionable pattern mining phases, in order
to mine more useful information, the objective functions
used in the first phase and clustering attributes employed in
the second phase should be related. Otherwise, some derived
good solutions by the first phase may be removed in the
second phase. In other words, the utility of the representa-
tive chromosomes could be decreased. A possible solution
for avoiding this problem is using predefined conditions to
follow between the objective functions and the clustering
attributes in the two phases. For instance, a condition could be
‘‘If objective functions funA and funB are selected in the first
phase, then clustering attributes AttriC and AttriD should be
used to find the representative solution for mining actionable
patterns’’.

D. THE EVALUATION OF THE DERIVED ACTIONABLE
PATTERNS
Finally, the representative solutions derived by the action-
able pattern mining approach on the simulated dataset are
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TABLE 14. The derived number of fuzzy rules at different levels.

TABLE 15. The rules with the highest confidence values derived by the
three Pareto solutions at different levels.

provided to reveal the deeper information. For Combination I,
three representative solutions, ps3, ps9 and ps22, are selected
for mining actionable patterns in terms of the number of
fuzzy generalized association rules. Note that Pareto solution
ps3 has the best normalized suitability, ps9 has the largest
normalized number of LFCI, and the normalized number of
LFCI and suitability of ps22 are between those of ps3 and ps9.
The results are listed in Table 14.

Table 14 shows the number of rules derived by three repre-
sentative solutions at different levels. At Level 1, the numbers
of generalized rules derived the three solutions are similar.
At Level 2, using ps9, the actionable pattern mining approach
mines the largest number of rules and achieves higher con-
fidence values than when using ps3 and ps22. In contrast,
the number of rules derived by the actionable pattern min-
ing approach using ps3 is smaller than ps9 and ps22. Thus,
when users need more information about item relationships,
Pareto solution ps9 could be suggested to mine actionable
knowledge for further analysis. Alternatively, Pareto solution
ps3 could be suggested to mine actionable knowledge when
users do not want too much information. Below, the rules
with the highest confidence values derived by the three Pareto
solutions at different levels are illustrated in Table 15.

From Table 15, it is verified again that the derived rules
basically have the high confidence values when the Pareto

TABLE 16. The derived number of utility fuzzy closed itemsets at
different levels.

solution ps9 is used. In addition, the three Pareto solutions
ps3, ps22 and ps9 at Level 2 are shown below:
Ruleps3: 11∗.3, 14∗.3 => 32∗.3 (conf. = 0.55),
Ruleps22: 11∗.3, 14∗.3, 24∗.3 => 32∗.3 (conf. = 0.767),
Ruleps9: 11∗.3, 14∗.3, 31∗.2 => 32∗.3 (conf. = 0.892).
According to the rules derived, it can be observed that

no matter which Pareto solution is employed to mine rules,
they all can get the rule ’’11∗.3, 14∗.3 => 32∗.3’’. Their
difference is extra items could be found when the Pareto
solutions ps22 and ps9 are utilized. This observation also
indicates that the Pareto solutions with a high normalized
number of LFCI can be chosen when users want to get more
item relationships. Otherwise, the Pareto solutions with a
good normalized suitability values can be employed to derive
few but valuable rules.

The derived numbers of utility fuzzy closed itemsets
at different levels of representative solutions are shown
in Table 16 for Combination II when the utility threshold was
set to 0.1.

Table 16 shows that when Pareto solution ps2 is utilized
to derive actionable knowledge, it can mine a larger number
of utility fuzzy closed itemsets than ps9 and ps10 at Levels 1,
2 and 3. Additionally, when Pareto solution ps9 is utilized
to derive actionable knowledge, the number of utility fuzzy
closed itemsets is smaller than that of the other two Pareto
solutions at Level 3. In other words, when users want to
know more actionable utility itemsets, Pareto solution ps2
could be utilized to derive utility itemsets and help users make
actionable promotions. Alternatively, Pareto solution ps9 or
ps10 could be used to mine the utility itemsets.
At last, the representative chromosomes obtained by the

proposed approach with Combination I on the Foodmart
dataset were used for mining fuzzy rules. Three Pareto solu-
tions, ps26, ps49 and ps12, are selected from Fig. 10 for
deriving fuzzy rules at different levels, where ps49 has the
best normalized suitability, ps26 has the largest normalized
number of LFCI, and the normalized number of LFCI and
suitability of chromosome ps12 is between those of ps26 and
ps49. The results are shown in Table 17.
From Table 17, we can observe that the number of rules

at levels 2 and 3 derived by ps26 are larger than the other
two chromosomes. We can also find that the average support
and confidence values of the rules derived by ps26 are big-
ger than or almost near the same as those of the other two
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TABLE 17. The derived numbers of fuzzy rules at different levels on the
foodmart dataset.

chromosomes. On the contrary, ps49 has a smaller number
than or almost near the same number of rules as the other
two. Thus, when the users need more information about the
relationship of items, ps26 could be suggested to mine rules
and provide results to them for further analysis. Besides, ps12
could be suggested to discover rules when users want concise
information.

From these experimental results, we can conclude that the
proposed PA-GFM framework can provide an effective and
useful way for users to derive Pareto solutions to discover
actionable patterns such as fuzzy generalized association
rules and fuzzy utility itemsets for decision-makers to make
appropriate business plans.

E. DISCUSSIONS
In this section, the time complexity, space complexity and
limitations of the proposed framework are discussed. Asmen-
tioned in a previous section, the PA-GFM framework consists
of two phase that are Pareto solution mining and actionable
pattern mining.

In the first stage, the genetic-fuzzy approach is utilized
to derive appropriate MFs. The most time-consuming part is
the process of chromosome evolution which is calculated by
the number of large generalized items and the suitability of
MFs, and the time needed for finding the number of large
generalized items is larger than calculating the suitability of
MFs. Thus, when the number of transactions is n, the number
of items at each certain level is m, the number of levels in the
taxonomy is t, and the number of linguistic terms of each item
is l, the worst time complexity for calculating the number of
large generalized items is O(n∗m∗t∗l). The actual execution
time, of course, will depend on the given dataset. Let the time
complexity for evaluating a chromosomeO(n∗m∗t∗l) as chro-
moTime, the population size as pSize and number of genera-
tions as numGeneration, the time complexity of the first stage
is thus O(numGeneration∗pSize∗chromoTime). In the sec-
ond stage, the algorithm utilizes a clustering approach to
find representative solutions, and the fuzzy rule or utility
mining algorithm is then applied to the dataset to obtain
actionable patterns. For the k-means clustering technique
used in the proposed framework, assume the number of
instances is numIns and the number of iterations is numIter.

The time complexity for assigning instances into groups is
O(numIter∗k∗numIns). From the time complexities of the two
stages, we can know that the time complexity of the proposed
approach is O(numGeneration∗pSize∗chromoTime).

Let the length of each transaction is len, the space
complexity of the first stage is O(n∗len + pSize∗m∗t∗l),
where n∗len and pSize∗m∗t∗l are spaces needed for a given
transaction dataset and a population. In the second stage,
since the k-means algorithm is used to divide solutions
into clusters, the space complexity of the second stage is
O(numInstances+k), where numInstancesand kare the num-
ber of instances and number of clusters, respectively. Thus,
from the space complexities of the two stages, we can also
know that the space complexity of the proposed approach is
O(n∗len + pSize∗m∗t∗l).
As to the two mining algorithms, we can know that the

most time-consuming part is to derive fuzzy large itemsets.
To deal with this problem, MapReduce-based algorithms can
be employed to improve the efficiency [25], [31]. For exam-
ple, Martín et al. presented a generic MapReduce frame-
work for rule discovery [25], and Singh et al. proposed a
MapReduce-based Apriori algorithm for performance opti-
mization on a Hadoop cluster [31].

Based on the above analysis, the limitations of the pro-
posed framework are listed below: (1) The memory needs to
be enough to load a given dataset for analysis.When themem-
ory is not enough, some approaches could also be utilized
to handle it. For example, Nguyen and Orlowska presented
a partition-based approach, named the PartitionSP algorithm,
for performance improvement when dataset is very large [26].
(2) Users should make sure there are no missing values in
given transactions. When the missing values are appeared
in the dataset, those values should be removed or recov-
ered by missing data recovery approaches. For instance, Liu
and Dai proposed an information decomposition imputation
approach for missing value recovery using fuzzy membership
functions [23].

VIII. CONCLUSIONS AND FUTURE WORK
This paper proposes a Post-Analysis-based Genetic-Fuzzy
Mining (PA-GFM) framework by combining domain-driven
data mining, fuzzy data mining and genetic algorithms to find
actionable patterns. PA-GFM involves two phases: Pareto
solution mining and actionable pattern mining. In the first
phase, the nondominated solutions (NDS) with given objec-
tive functions are found by a MOGA-based approach in
which each chromosome represents a potential set of mem-
bership functions. Then, in the second phase, representative
solutions are derived from the NDS using the two sets of
designed clustering attributes, named Combinations I and II.
Then, the two types of actionable patterns (fuzzy general-
ized association rules and fuzzy utility itemsets) are mined
from the representative solutions. The performance of the
PA-GFM framework is verified through experimental results
on the simulated and the Foodmart datasets. The experimental
results show that the proposed framework is useful because
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it adopts only the representative solutions to mine action-
able knowledge based on the users’ preferences. In addition,
we have made experiments on the Foodmart dataset to show
a practical application of the propose approach.

Future work can adopt the following directions: (1) In
the first phase, the effectiveness of the proposed framework
may be improved by utilizing other multiobjective genetic
algorithms; (2) In the second phase—the actionable pat-
tern mining phase—different mining strategies (e.g., level-
by-level or cross-level mining strategies) could be utilized
to derive various types of actionable knowledge; (3) In
addition, the PA-GFM framework could be improved by
designing a fine-tuning approach using an iterative learning
algorithm; (4) Besides, the other ADK frameworks could
also be employed to mine actionable patterns. For instance,
themultisource combined-mining-basedAKD can be utilized
when the proposed approach takes transactions from mul-
tiple sources into consideration for deriving actionable pat-
terns; (5) Combining other various mining algorithms to the
proposed framework to derive more actionable knowledge.
For example, classification mode can be constructed using
association-rule analysis; (6) We will try to find possible
ways to collaborate with retail stores and design the fair cri-
teria to compare the proposed framework with other existing
approaches in the future.
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