IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 25, 2019, accepted August 4, 2019, date of publication August 6, 2019, date of current version August 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933616

Monitoring Influent Conditions of Wastewater
Treatment Plants by Nonlinear

Data-Based Techniques

TUOYUAN CHENG “!, ABDELKADER DAIRI“2, FOUZI HARROU 3, (Member, IEEE),

YING SUN"3, AND TOROVE LEIKNES !

IBiological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology,

Thuwal 23955-6900, Saudi Arabia

2Signal, Image, and Speech Laboratory (SIMPA), Computer Science Department, University of Science and Technology of Oran-Mohamed Boudiaf

(USTO-MB), Oran 31000, Algeria

3Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi

Arabia

Corresponding author: Tuoyuan Cheng (tuoyuan.cheng @kaust.edu.sa)

This work was supported by the King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR),

under Grant OSR-2019-CRG7-3800.

ABSTRACT To operate wastewater treatment plants (WWTPs) with optimized efficiency, influent con-
ditions (ICs) as initial states of inflow fed to WWTPs were monitored to identify potential anomalies
that would trigger adverse events or system crash. To employ voluminous measurements for data-driven
decisions, the non-linear, non-Gaussian, non-stationary, auto-correlated, cross-correlated, hetero-skedastic,
case-specific nature of multivariate environmental datasets must be considered. This research proposed
kernel machine learning models, the kernel principal components analysis based one-class support vector
machine (KPCA-OCSVM) with various kernels, to learn anomaly-free training set then classify the testing
set. A seven-years multivariate ICs time series was introduced with exploratory analysis performed to reveal
temporal behaviors and statistical properties. KPCA with polynomial kernels sufficiently output representa-
tive features, based on which OCSVM with Gaussian kernels sensitively and specifically identified anoma-
lies in ICs that were previously omitted by WWTP operators. The proposed kernel algorithms surpassed
previous linear PCA-based K-nearest-neighbors models, and improved outcomes with limited increase in
computation cost. Without requiring linear, Gaussian, stationary, independent, and homo-skedastic qualities
from data, the proposed flexible environmental data science approach could be transferred, rebuilt, and tuned
conveniently for ICs from different WWTPs.

INDEX TERMS Wastewater, influent condition, machine learning, kernel, support vector machines, data

visualization.

I. INTRODUCTION

Environmental systems are complex. Wastewater treatment
plants (WWTPs) are environmental systems where physical,
chemical, and biological unit processes are convoluted [1].
Modern WWTPs have to function unceasingly while accept-
ing incoming wastewater of volatile quantity and quality.
Industrial WWTPs have to manage wastewater with frequent
abrupt changes in case-specific composition and temperature,
while municipal counterparts often face impact from rainfall
and snowmelt. Though having limited storage for them to be
buffered, inflow cannot be abandoned or rejected. Nonlinear
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dynamic multivariate processes, rising operational costs, and
stringent discharge regulations altogether ask for optimal
efficiency from practitioners [2].

Influent conditions (ICs) are initial states of inflow fed to
WWTPs. ICs would affect system states, ongoing process
mechanisms, and final product (i.e treated effluent) quality.
Monitoring, detection, isolation, and diagnosis of potential
anomalies or faults in ICs could, at an early stage, avoid
unexpected system crash, maintain steady product quality,
support efficient downstream processes, improve WWTPs
reliability and reduce labor costs [3].

Conventionally, mechanistic model-based or analytical
methods are developed for WWTP forecast monitoring.
Utilizing first principals, such classical deterministic models
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could theoretically explain process mechanism, but they were
based on ideal hypotheses, requesting prior parameters for
calibration and would be challenged by ill-conditioned prob-
lems and costly high-dimensional computation in real appli-
cations. Expert systems, as established on knowledge bases,
rely on subjective judgments from individuals and may lead
to biased diagnoses.

Environmental data science is an emerging interdisci-
plinary field, that effectively addresses the intricacy inside
environmental systems, and could provide promising solu-
tions for WWTP monitoring. Ever updating instrumentation,
control, and automation in WWTPs are producing quantities
of multivariate time series data, which are often unexploited.
This “data-rich, information-poor” dilemma is attributed to
the lack of methodology to select the right algorithm for
a given case, the lack of standard prototypical data pro-
cessing procedures, and the lack of trained environmental
data scientist or data science expertise among environmental
scientists [4]. Moreover, the nonlinear, non-Gaussian, non-
stationary, auto-correlated, cross-correlated, heteroskedastic,
and case-specific nature of multivariate environmental time
series data are all adding difficulty for researchers to construct
both suitable and flexible models.

Data-based methods can perform systematic and objec-
tive exploration, visualization, and interpretation of data [5],
identify essential factors, features or patterns, and endorse
then optimize data-supported decision-making [6]. Validated
data-driven monitoring methods could be transferred and
shared conveniently among domain experts, in virtue of the
versatile nature of data science models [7].

Machine learning is a remarkable multidisciplinary field,
where methods could be implemented for fault detec-
tion. Artificial neuron network (ANN) displayed good
nonlinear projection quality, high fault tolerance, flexible
self-adaptation, and parallel computing efficiency, which
could deal with complexity and high-dimensionality of
implied knowledge in WWTP anomalies. ANN-based predic-
tive control has been introduced by [8] for WWTP monitoring
and was tested on benchmark simulation data. Feedforward
neural networks have been applied by [9] to predict wastew-
ater effluent ammonia-nitrogen contents. Hybrid ANN has
been developed by [3] to predict influent biochemical oxygen
demand, which otherwise was expensive and difficult to mea-
sure with sensors. The requirements of suitable sample size
and network architecture, the following intensive computa-
tion, overfitting, local optimal solutions, and inexplicability
were hurdles to overcome.

Latent variable methods applied in statistical process con-
trol, including independent component analysis (ICA) [10]
and principal component analysis (PCA) [11], could treat
multi-dimensionality and auto or cross correlations in WWTP
records. By dimension reduction, input data were projected
onto feature spaces of lower dimension, where statistics
could be built to reveal characteristics of interest and identify
abnormal conditions. In such cases, non-stationarity, non-
normality, and non-linearity were issues to resolve. ICA may
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be further affected by the number and sequence of input
signals or independent components.

To address the nonlinear nature of wastewater ICs data,
kernel methods should be emphasized, where projection onto
higher dimensions enables good reencoding of the data when
it lies along a nonlinear manifold. Kernel PCA (KPCA) has
been introduced by [12] to detect abrupt events in wastewater
systems, including pollutions and sensor faults. Kernel ICA
has been studied by [13] to detect exterior disturbance from
rainfall, and has shown competitive accuracy, efficiency, and
reliability. Support vector machine (SVM) has been proposed
by [14] to improve oxygen uptake rate on-line measurement
and control. Kernel methods demanded comparably larger
storage during computation, where parallel computing could
offer potential solutions. For ICs data, improved classification
efficiency could be anticipated by adopting kernel techniques.

This paper proposed an effective monitoring strategy merg-
ing the desirable characteristics of KPCA modeling with an
unsupervised one-class SVM (OCSVM) scheme to distin-
guish normal from abnormal measurements. In this regards,
KPCA was used to account for nonlinearities in the multi-
variate ICs data. KPCA may discover relevant patterns in
the data by transforming problems into higher dimensions
via kernel functions, enabling non-linear relationships to
be revealed as approximately linear. OCSVM may quan-
tify the dissimilarity between normal and abnormal non-
linear features for detection without making assumptions
on the underlying data distribution. Tests on real ICs data
from a local coastal municipal WWTP showed the effective-
ness of the proposed approach. Previous research employed
PCA-based k-nearest neighbor (PCA-KNN) algorithms to
connect dimension reduction with robust machine learning
approach for fault detection, and introduced radial visual-
ization for fault diagnosis, whose performances were partly
merged and compared in this paper. Exploratory data analy-
sis with data visualization were involved in uncovering and
interpreting historical influent behaviors.

The PCA and KPCA models were briefly presented
in Section II. The proposed KPCA-OCSVM monitoring
schemes were discussed in Section III. The performances
of the recommended approaches were evaluated via real
data, together with exploratory analysis and visualization in
Section IV. Conclusions were drawn in Section V.

II. LINEAR AND KERNEL PRINCIPAL COMPONENTS
ANALYSIS MODELS

This section provided an overview of the linear PCA and the
derived KPCA models.

A. LINEAR PRINCIPAL COMPONENTS

ANALYSIS (PCA) MODEL

Principal Components Analysis, as a dimension reduction
approach, was a popular modeling framework to learn
crucial features from multivariate data. By projecting the
process variables into lower-dimensional subspace, PCA
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enabled revealing the inherent cross-correlation among pro-
cess variables [15].

Let us consider X = [x],..., x,{]T € R be a scaled
data matrix of recorded inflow conditions with n observations
and m variables. Based on the PCA model, the data matrix X
can be expressed as a sum of the approximated matrix, X, and

residual data, E.

k m
X=TW =) "tw/ + ) tw/ =X+E (1)
i=1 i=k+1

where T € R™ represented a matrix of the principal
components (PCs) and W € R™* was the loading matrix.
In the presence of cross-correlation, the original multivariate
data X could be sufficiently preserved and approximated by
the first ‘6’ PCs (where k < m). One necessary step here
was to select the number of PCs. For this purpose, the camu-
lative percentage variance procedure was adopted due to its
simplicity and accuracy.

The loading matrix was frequently calculated using sin-
gular value decomposition of the covariance matrix S of the
design matrix X:

S =

1

XX =QAQ" with QQ" =Q'Q=1. (2
n—
where A = diag(h1, ..., Ap) = diag(olz, . ..,0,721) was a
diagonal matrix with eigenvalues of S filled in decreasing
order. The eigenvalue A; was equal to al.z, the variance of the
corresponding i-th PC t,.

B. KERNEL PRINCIPAL COMPONENTS ANALYSIS (KPCA)
MODEL

Kernel PCA, as an extension of the linear PCA with kernel
tricks, allowed learning and revealing of nonlinear relation-
ships among process variables. This non-linear dimension
reduction algorithm was applied to feed further one-class
SVM scheme, aiming at improved fault detection perfor-
mance over traditional linear PCA-based monitoring meth-
ods. Core principles were sketched in Figure 1. By KPCA,
firstly the input space was transformed via nonlinear mapping
into a high-dimensional feature space, in which data were
more linear. Then for dimension reduction, principal com-
ponents were extracted by applying kernel tricks with inner
products of nonlinear functions. Hence, procedures from

Input space
----- TTe..

Feature space
=T

PCA model

Mapping PCA training

FIGURE 1. Space mapping in kernel principal components analysis
(KPCA).
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linear PCA could be largely inherited, and nonlinear opti-
mization with high computation cost was saved. Moreover,
hyper-parameters were less involved here compared to other
nonlinear methods such as artificial neuron networks where
architecture designing could be empirical or metaphysical.
Let us consider the original training datasetx;, X2 ..., X, €
R™, where n was the sample number, m was the number
of process variables. The feature space was constructed by
using a nonlinear mapping: R™ 20, F”, where ®(-) was a
nonlinear mapping function and £, as a huge positive integer,
was the dimension of the feature space. Similar to PCA,
the covariance matrix in the feature space F, X could be

calculated as:
n

1 T

Tp = ; [cb(x» mq>} [cb(x» mq>} 3)
where mg¢ = Y ;| ®(x;)/n was the sample mean in the
feature space. Let ®(x;) denote a mapped point after centering
with the corresponding mean as D(x;) = PX;) — mo.
To find the principal components, we solved the eigenvalue
decomposition problem in the feature space such that:

n
AV = Xpv = 1 Z [E(Xi)Tv]E(xi) 4)
i
where A and v denote eigenvalue and eigenvector of the
covariance matrix X, respectively. By multiplying 5(xj)
from left in Eq.(4), and defining the kernel matrix K or K €
R™" guch that:

K(x;, X;) = ®(x;)” O(x;) Q)
K(x;, xj) = O(x;)" d(x)) ©6)
K = K — KE — EK + EKE @)

together with & € R” to span the kernel PCs by feature space
training samples, satisfying:

v=aidx) ®)
i=1

Then the eigenvalue decomposition problem was reformed
as [16]:

nie = Ka 9

The eigenvectors identified in the feature space I, namely
nonlinear kernel PCs, would characterize nonlinear pro-
cesses. Since the number of eigenvectors was the same as the
number of samples, it was multiple times more than the num-
ber of linear PCs that could be offered by the conventional
PCA.

Various kernel functions were available in literature [17],
including polynomial kernels:

K(x;, X)) = (x;, x,)¢, d € Z* (10)
cosine kernels:
Kxi, x)) = %) (1n)
x| 1%l
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and radial basis functions (RBF):
Ix;—x;112

Kxi, xj))=e 2

— e—VHXi—XjHZ’ y e R+ (12)

where 282 = % was the width of the Gaussian kernel.

1ll. THE PROPOSED KPCA-BASED ONE CLASS SUPPORT
VECTOR MACHINE (OCSVYM) MODELS

A. OCSVM MODELS

One-class support vector machine was an unsupervised
machine learning classifier and a special case of multi-class
SVM. OCSVM learned decision rules from anomaly-free
data, and then applied to classify new test data as either com-
parable or different from the learned anomaly-free case [18].
OCSVM would project the input data via kernel functions
into a high dimensional space where a hyper-plane could
be built for classification. This transformation permitted the
projected data to be relatively linear, which made it easier
to categorize. To infer the properties or features of normal
cases, the pre-defined hyperplane would help to perform clas-
sification, where the decision function, f (x) would determine
whether a new observation lies within the hyperplane side as
inliers (normalcies, f(x) = +1) or outliers (abnormalcies,
f) = —1).

Weletxy,...,x; € Dandj € [1, k] be the training dataset.
OCSVM mapped input data into the high-dimensional feature
space F via kernels such as the radial basis function (RBF)
(Eq. 12). As illustrated in Figure 2(a), the decision rule f(x)
aimed to maximize the Euclidean distance between the origin
and the separating hyperplane H, which separated the training
data in the features space F. Therefore we have the objective
function f (x) expressed as:

f(x) = sign({w, ¥(x)) — p) (13)

where w, p and ¥ represented respectively a weight vector,
an offset, and a feature mapping D — F. Here, W and
p could be determined by solving the following quadratic
optimization problem.

l
. 1 2 l
min —[w||"+ — i — 0,
permin i W;},p
s.t. W@ =p—& &=0, (14

where v € [0, 1] represented the parameter that defined the
solution.

For illustration purpose, a simplified SVM classification
was plotted in Figure 2(b), where an SVM was built based
only on the first two PCs for ICs classification. The diverg-
ing color reflected model prediction. Normal conditions as
in triangles were intensely centered around the bottom left
red corner. Anomalies as in circles were generally outside
the red region and scattered among blue areas. The white
band around zero delineated decision boundaries formed in
this model. The capability of SVM to tackle nonlinearity by
forming nonlinear hyperplanes via kernel functions could be
witnessed.
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SVM classification plot

40 | ® normal conditions (support vectors)
© normal conditions (non-support vectors)

A abnormal conditions (support vectors)

A abnormal conditions (non-support vectors)

~ 05

HEEEN

— 0.0

Dim.1

Dim.2

(b)

FIGURE 2. (a) One-class support vector machine (OCSVM). The
hyperplane was formed amid two classes, with maximized distance from
the origin; (b) Simplified SVM for illustration, predicting anomalies from
only first two PC scores, trained by radial basis function (RBF) kernels.
Support vectors functionally affecting the decision boundaries were
marked solid while trivials were hollow.

B. KPCA-OCSVM FOR ENHANCED NONLINEAR INFLUENT
CONDITIONS (ICS) MONITORING

The proposed KPCA-based OCSVM approach for detecting
abnormal changes in multivariate IC time-series was brieiCy
described in this section and illustrated in Figure 3. KPCA
possessed simplicity and capability to extract relevant fea-
tures in multivariate time series data appropriately, and there-
fore was considered as an efficient approach for capturing
important features in high-dimensional nonlinear processes.
Features (loadings on PCs) extracted from multivariate 1C
time series by KPCA could be offered to train OCSVM in an
unsupervised manner, which would further tackle nonlinear
and non-Gaussian properties flexibly, for not assuming any
distribution of the underlying data. By introducing radial
basis kernel function in the projection of OCSVM, we could
access nonlinear hyperplanes as decision boundaries to dif-
ferentiate between normal observations and anomalies.
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FIGURE 3. KPCA-OCSVM for improved nonlinear process monitoring.

In the proposed approach, we expect the KPCA would
sufficiently learn and accurately describe the anomaly-free-
only multivariate time series, the training IC dataset, and
produce scores enabling the training process of OCSVM.
Then the OCSVM would sensitively and specifically capture
the presence of anomalies in the testing IC dataset. Several
kernel functions were examined with different numbers of
PCs in the KPCA step, while OCSVM was trained using the
most popular flexible RBF kernel with fixed v = 0.01 and
y = 0.1 in all scenarios. By connecting the two models,
we hypothesized the original non-Gaussian, linearly insep-
arable influent conditions data could be treated well.

IV. RESULTS AND DISCUSSION

A. EXPLORATIVE ANALYSIS AND VISUALIZATION OF A
HISTORICAL MULTIVARIATE IC DATASET

To verify the hypothesis, one dataset from full-scale WWTP
was engaged for training and testing. In this dataframe, oper-
ators have kept seven-years records of twenty-one variables
including various flow quantity and water quality values.
Measurements were performed on samples taken from the
headwork of WWTP in order to maintain compliance with
local regulations and standards (Figure 4). The monitored
plant was receiving municipal wastewater, which was repre-
sentative of cases in the literature. Though maintained with
laborious effort and duly examination by local technicians,
more than a hundred abnormal influent conditions were not
detected. All those anomalies have caused negative effects on
the process due to various reasons as reported by the practi-
tioners, which let the classification and soft sensing research
feasible and necessary. R package Amelia was imported to
impute a few missing data (132 out of 63950, less than 1%)
during the preprocessing step [19]. To explore the dataset,
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descriptive analysis and visualization were conducted, during
which RStudio with R packages (kernlab, cluster, factoextra,
ggplot2, ggTimeSeries, gplots) were employed [20]-[26].

To facilitate visualization, anomaly-free-only dataset
grouped by clustering large applications (CLARA) algorithm
was further played together with dimension reduction (PCA),
as shown in Figure 5(a) with unit aspect ratio. Normal ICs
were clustered to five typical classes by which similar ICs
were grouped within each category and hence could be rep-
resented by their corresponding medoid. ICs of each medoid
and the average values of anomalies were shown in Table 1.
Clustered data were further submitted to PCA via which
scores on the first two PCs were plotted. It was shown in
the axes of Figure 5(a) that the first two PCs from linear
PCA accounted for only around 40% variation, implying
the high dimensionality and complexity of the dataset. The
envelope or outline of all 2401 normal ICs as a whole was
far from the elliptical shape, demonstrating the non-Gaussian
characteristic. Though not separated well in the PCA plot,
the fifth cluster was located distinctly from others, which
could be attributed to their high conductivity, total dissolved
solids (TDS), magnesium hardness, chloride content but low
fat-oil-grease (FOG) and nitrate as listed in Table 1.

To investigate temporal behavior, the calendar plot in
Figure 5(b) was employed, where entries from the ICs were
sequentially vertically aligned, circulated by weeks and
months, and colored according to their clusters. Interestingly,
clusters showed temporal agglomerative behavior. The first
cluster was popular from 2011 to 2013, especially from
June to October. Later on, the second cluster replaced the
first cluster from 2014 to 2016 - both of the above repre-
sented typical cases in summer. The third cluster presented
from 2012 to 2017, primarily from November to April, could
represent cases in winter. The fourth cluster was intensively
concentrated in 2011 from February to June, and surrounded
most of the anomalies, with least inflow compared to others.
At the beginning of 2012, there was a gathering of consec-
utive anomalies that were recorded as ‘total alkalinity over
the limit’ by the operators. Such agglomerative phenomenon
(i.e lack of complete randomness in different variables on
different dates) reflected the existence of non-Gaussian,
non-stationary, auto-correlated (seasonal recurrent), cross-
correlated, and heteroskedastic characteristics in environ-
mental datasets.

To summary ICs as univariates, wastewater quality
index (WWQI) given by [27] was introduced, of which higher
values represented better qualities. Calendar plot of WWQI
was displayed in Figure 6. WWQI of medoids and the aver-
aged value of anomalies were listed in Table 1. A significant
low WWQI region was observed in 2011, coinciding with
the fourth cluster, whose medoid owned WWQI even lower
than anomalies. The fifth medoids showed highest WWQIL.
ICs in summer (first and second cluster) possessed higher
WWQI than ICs in winter (third cluster). Probably higher
usage of water in summer inflated the inflow and diluted
its pollutant contents to some extent. The methods above
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(a)

(b)

FIGURE 4. (a) Overview of the wastewater treatment plant; (b) Fine screen inside the headwork, where influent was filtered.

cIusterE]1E|2E|34E[s

DIm2 (17.5%)

0
Dim1 (23.2%)

(a)

2010

2011

2012

2013

] Cluster
Anomaly
Cluster_1

2014 Cluster_2
Cluster_3
Cluster_4
Cluster_5

FIGURE 5. (a) Scatterplot of the dataset via PCA and clustering large applications (CLARA) algorithm; (b) Calendar plot of temporal CLARA result.

supported efficient analysis of ICs and yielded concise infor-
mation. Moreover, practitioners could gain experience by
understanding such visualizations. They would be vigilant
during the winter or when the second cluster appeared, since
the conditional probability of anomaly was higher in those
cases.

By further examining Table 1, it was exhibited that anoma-
lies averagely had smaller WWQI and lower temperature
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as expected, since abnormal events were observed more in
winter and were related to worse influent qualities. More-
over, they were reported to exhibit high pH, conductivity,
TDS, calcium hardness, magnesium hardness, total alkalin-
ity, nitrate, phosphate, chloride, and boron contents. Such
phenomena coincided with reports from local operators
that, majority anomalous events occurred in this western-
coastal-desert municipal WWTP were brackish/saline water
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TABLE 1. Descriptive statistics of medoids.

Cluster Anomaly Medoid_1 Medoid 2 Medoid_3 Medoid_4 Medoid_5 Explanation
WWQI 53.04 56.63 56.29 54.67 48.73 57.58 Wastewater quality index
InFlow-Total ~ 4184.17  4207.00 4716.00 4385.00 3300.00 4403.00 Inflow, total, in m®/day
InFlow-LS1  3810.23  4048.00 4471.00 4153.00 3062.00 4180.00 Inflow, municipal, in m®/day
InFlow-LS8  227.55 148.00 212.00 185.00 227.00 145.00 Inflow, from a desalination plant, in m3/day
InFlow-DP  50.01 11.00 33.00 47.00 11.00 51.00 Inflow, recycled from WWTP itself, in m®/day
Temp 29.53 32.03 30.55 28.65 30.40 31.73 Temperature, in Celsius
pH 791 7.31 7.48 7.36 7.28 7.36 Potential of hydrogen, unitless
Conductivity ~ 1574.20  568.00 852.00 808.00 568.00 1577.00 Conductivity, in pS/cm
TDS 1102.36 382.00 582.00 547.00 381.00 1104.00 Total dissolved solid, in mg/L
TSS  68.65 42.00 81.00 79.00 63.00 61.00 Total suspended solid, in mg/L
CaHardness 101.76 52.00 48.00 56.00 64.00 64.00 Calcium hardness, in mg/L
MgHardness ~ 96.15 28.00 32.00 24.00 28.00 88.00 Magnesium hardness, in mg/L
TotalAlkalinity ~ 187.79 92.00 108.00 136.00 120.00 128.00 Total alkalinity, in mg/L
BODs 97.72 65.00 110.00 134.00 96.00 107.00 5-day biochemical oxygen demand, in mg/L
COD  153.39 93.00 155.00 194.00 173.00 164.00 Chemical oxygen demand, in mg/L
FOG 31.14 22.90 11.40 11.40 80.00 5.70 Fat, oils and grease, in mg/L
TKN  14.67 12.40 14.30 17.60 16.80 15.80 Total Kjeldahl nitrogen, in mg/L
NH3N 9.08 7.90 9.80 13.00 10.60 12.00 Ammonia nitrogen, in mg/L
NOsN 4.76 2.90 2.60 2.80 4.30 1.50 Nitrate nitrogen, in mg/L
PO4P 10.72 9.50 4.70 9.90 7.80 5.40 Phosphate phosphorus, in mg/L
Cl 369.88 94.00 157.00 130.00 82.00 353.00 Chloride, in mg/L
Boron  1.95 0.90 1.20 1.10 1.00 1.10 Boron, in mg/L
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FIGURE 6. Calendar plot of temporal wastewater quality index.

intrusion, whether from groundwater surrounding lift pump
station, from upstream desalination plant emergent discharge,
or from rare rainfall streamflow.

To show relationships among measured variables and tem-
poral records, double hierarchical clustered heatmap with
density plot based on quarterly averages were delineated
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in Figure 7. Z scores were normalized values calculated by
row averages and summarized as probability density distri-
bution via kernel density estimation, as shown in the density
plot. Though quarterly averages were taken for smoothing,
summary, and visualization, asymmetric unimodal distribu-
tion with positive skewness and positive kurtosis was evi-
dently observed. This point coincided with the previous PCA
plot to imply extreme non-Gaussian property of this environ-
mental dataset. Temporal records were reordered in columns
by clusters. Similar to the CLARA results, the unique year
2011 was isolated from others.

Color Key
and Density Plot

e [ [ e

InFlow_Total
InFlow_LS1
<
08
TotalAlkalinity
BOD

coo
o

[ nFlow_ 58
758
m Catardnoss
u WHardness
nFlow_DP
Tomp
FOG
N
NN
powP
o
NosN
] Boon
SO S SIS SIFFS SIS ISP IP DD PSP ISP

FIGURE 7. Double hierarchical clustered heatmap with density plot.

Measured variables were reordered in rows by clusters.
Similar palette composition in rows signified positive cor-
relations, while the reverse for negative ones. The inflow
from lift station one clearly contributed the majority of total
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inflow. The inflow from lift station eight (connected to a
desalination plant) was shown negative to chloride, chemical
oxygen demand (COD), and biochemical oxygen demand
(BOD), and alkalinity, but its trend was similar to boron
contents. This showed utterly different compositions of
industrial discharge and municipal wastewater in our case.
The inflow from WWTP inside ('Inflow DP’) was shown
closer to hardness and suspended solids (TSS), probably
due to chemicals dosed for membrane cleaning and sludge
processing events. The temperature was displayed moving
negatively to almost all water quality variables but positively
to major municipal water quantity variables, which con-
firmed previous statements on seasonal wastewater qualities
and flow quantities. The overall agglomerative phenomenon
demonstrated the non-linear, non-Gaussian, non-stationary,
auto-correlated, cross-correlated, and heteroskedastic charac-
teristics. Those empirical historical observations would chal-
lenge traditional regression techniques that were typically
requiring linear, independent (no autocorrelation or mul-
ticollinearity), homoskedastic, and Gaussian distributions.
Therefore, versatile preprocessing treatment of environmen-
tal data such as kernel techniques could be promising.

B. DETECTION PERFORMANCE OF THE PROPOSED
KPCA-OCSVM APPROACH

To assess quantitatively the detection efficiency of the
proposed procedures, the following metrics were employed:
true-positive rate (TPR, or recall), false-positive rate (FPR),
area under the receiver operating characteristic curve (AUC),
accuracy, precision, and F1Score. A confusion matrix with
equations for frequently visited metrics in assessing classifi-
cation algorithm performances was summarized in Figure 8.
Detection results were delineated in Figure 9 in time
series. Derived performance metrics were computed and
listed in Table 2. Previous research on PCA-based methods
(Table 3) were revisited as comparison [11]. Since previously
we defined normal/abnormal as 41/ — 1, consistently here
they were taken as positive/negative classes.

Real Class

Positive Negative
TPR = Recall = TP/(TP+FN)
True Positive False Positive FPR = FP/(FP+TN)
Accuracy = (TP+TN)/(TP+TN+FP+FN)
Detected normal False-alarm Precision = TP/(TP+FP)

F1Score = 2TP/(2TP+FP+FN)

False Negative True Negative
(FN) (™)

Predicted Class
Negative| Positive

Missed-detection Detected abnormal

FIGURE 8. Confusion matrix and associated performance metrics in this
study.

For series in Figure 9, true positives were in green circles,
representing normal ICs that were classified as normal, trivial
cases. False negatives were in blue down triangles, represent-
ing normal ICs that were classified as abnormal, raising false-
alarms, and would cause unnecessary operating costs. True
negatives were in yellow diamonds, representing successfully
captured abnormalities. False positives were in red squares,
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FIGURE 9. Anomaly detection results of KPCA-OCSVM algorithms. KPCA
kernels were selected as (a) polynomial, with 5 PCs; (b) cosine, with
5 PCs; (c) RBF, with 40 PCs.

representing missed detection, were most dangerous and may
lead to system failures. Therefore, from model evaluation
aspect, we were expecting no red squares, less blue triangles,
or as numerically in Table 2, minimized FPR, higher TPR,
AUC, accuracy, precision, and F1Score.

In Table 2, various kernels for KPCA were compared with
increasing numbers of PCs. With more PCs, the anomaly-
free training dataset would be learned and approximated
more precisely. However, excessive PCs would over-express
the original dataset and lead to ill-structured classification
problem for later OCSVM processing. Thereby with ris-
ing counts of PCs, generally both TPR and FPR would
rise, while precision would fall. AUC, as a weighted com-
bination of TPR and FPR, together with F1Score as the
harmonic mean of TPR and precision, showed optimal
maximum values when tuning. With polynomial KPCA,
perfect detections were displayed with around 10 PCs,
showing stronger abilities to learn the training dataset.
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TABLE 2. Anomaly detection performance of KPCA-OCSVM algorithms with various kernel functions and different numbers of selected PCs in the KPCA.

Kernel num.PCs TPR FPR AUC  Accuracy Precision F1Score
Poly 5 09991 0.0000 0.9995 0.9991 1.0000 0.9995
Poly 10 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
Poly 15 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
Poly 20 1.0000 0.0097 0.9951 0.9996 0.9995 0.9998
Poly 25 1.0000 0.0467 0.9766 0.9978 0.9977 0.9989
Poly 30 1.0000 0.0727 0.9636 0.9965 0.9964 0.9982
Poly 40 1.0000 0.1570 0.9215 0.9917 0.9914 0.9957
Cosine 5 09717 0.0000 0.9859 0.9722 1.0000 0.9857
Cosine 10 0.9852 0.0000 0.9926 0.9857 1.0000 0.9926
Cosine 15 09955 0.0108 0.9924 0.9952 0.9995 0.9975
Cosine 20 0.9982 0.0200 0.9891 0.9974 0.9991 0.9986
Cosine 25 09982 0.0200 0.9891 0.9974 0.9991 0.9986
Cosine 30 09982 0.0200 0.9891 0.9974 0.9991 0.9986
Cosine 40 09982 0.0200 0.9891 0.9974 0.9991 0.9986
RBF 5 0.9565 0 09783 0.9566 1 0.9778
RBF 10 0.9826 0.0308 0.9759 0.9822 0.9991 0.9908
RBF 15 1 0.1639 0.9180 0.9913 0.9909 0.9954
RBF 20 09594 0.0000 0.9797 0.9596 1.0000 0.9793
RBF 25 09636 0.0000 0.9818 0.9639 1.0000 0.9815
RBF 30 09696 0.0000 0.9848 0.9700 1.0000 0.9846
RBF 40 0.9883 0.0130 0.9877 0.9883 0.9995 0.9939

TABLE 3. Anomaly detection performance of PCA-based algorithms, from prior research. PCA reconstructions formed statistics including univariate
residuals, squared prediction error (SPE), T2, and K-nearest neighbor distances (Euclidean or Manhattan), for which parametric/nonparametric thresholds

were set to detect anomalies.

Methods Thresholds TPR FPR AUC  Accuracy Precision Fl1Score
PCA-KNN Eucl-np 0.9277 0.1275 0.9001 0.9253 0.9937 0.9596
PCA-KNN Eucl-p 0.7627 0.0490 0.8569 0.7711 0.9970 0.8643
PCA-KNN Manh-np 0.9332 0.1176  0.9078 0.9309 0.9942 0.9627
PCA-KNN Manh-p 0.7650  0.0294 0.8678 0.7741 0.9982 0.8662
PCA-Residual np 0.4673 0.2353 0.6160 0.4805 0.9772 0.6322
PCA-SPE np 0.9432 0.1471 0.8981 0.9392 0.9928 0.9674
PCA-SPE p 0.9991 0.8039 0.5976 0.9635 0.9640 0.9812
PCA-T2 np 0.9950 0.5980 0.6985 0.9687 0.9729 0.9838
PCA-T2 p 0.9409 0.3431 0.7989 0.9283 0.9834 0.9617

Cosine KPCA showed comparable performance with 15 PCs.
RBF KPCAs were similarly poor with fewer PCs but func-
tioned better with more, which would involve intensive com-
putation or potential overfitting and thus not suitable for
online process monitoring or knowledge sharing among dif-
ferent WWTP ICs.

By comparison between Table 2 and Table 3, we could con-
clude that the nonlinear attribute of the dataset was generally
better learned by the proposed kernel approaches than directly
applying traditional PCA-based methods. Though KNN was
applied as a local lazy learning algorithm in PCA-KNN to
tackle nonlinear behavior and outperformed other counter-
parts, outputs from PCA were not sufficiently revealing data
nature. Probably the data nature was nonlinear to some extent
and could be explained better by polynomial KPCA and
summarized by RBF-based OCSVM than linear PCA, but
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not “too”” nonlinear that undermined outcomes would arrive
when applying RBF in KPCA.

With proper training adopting local data, the proposed
data-driven KPCA-OCSVM models could sufficiently learn
and approximate nonlinear, non-Gaussian, non-stationary,
auto-correlated, cross-correlated, and heteroskedastic fea-
tures from anomaly-free local WWTP ICs data by KPCA,
then effectively identify real anomalies from the test dataset
with competitive performances by OCSVM, in contrast
to previous linear PCA-KNN algorithms. Kernel tech-
niques successfully improved model outcomes with limited
increase in computation cost or model complexity. With-
out assuming the underlying data structure, the investi-
gated flexible environmental data science approach could
be transferred, rebuilt, and tuned for ICs from different
WWTPs.
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V. CONCLUSION

To operate wastewater treatment plants with optimized effi-
ciency, influent conditions as initial states of inflow fed to
WWTPs were monitored to identify potential anomalies that
would trigger adverse events or system crash. To involve
voluminous ICs data for data-driven decisions, the non-
linear, non-Gaussian, non-stationary, auto-correlated, cross-
correlated, and heteroskedastic nature of environmental
dataset must be considered. This research introduced ker-
nel machine learning models, KPCA-OCSVM with various
kernels, to learn anomaly-free training set then classify the
testing set of ICs. Exploratory analysis with data visualization
was performed to reveal temporal behaviors and statistical
properties of multivariate IC time series. KPCA sufficiently
output representative features, based on which OCSVM sen-
sitively and specifically identified anomalies in ICs that were
previously omitted by operators. The proposed kernel algo-
rithms surpassed previous linear PCA-based KNN models,
and improved outcomes with limited increase in computation
cost. Without requiring linear, Gaussian, stationary, indepen-
dent, and homoskedastic qualities from data, the proposed
flexible environmental data science approach could be trans-
ferred, rebuilt, and tuned conveniently for ICs from differ-
ent WWTPs. Future research would further investigate data
from full-scale wastewater treatment process and apply ker-
nel machine learning techniques for effective whole process
monitoring.
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