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ABSTRACT Satellite-derived Normalized Difference Vegetation index (NDVI) data records offer important
sources for long term correlation modelling over West Africa. In this study, we assessed long range
correlations in half monthly NDVI records over West Africa from 1982 to 2011 using GIMMS NDVI.
In our analysis, we assessed (a) the annual and seasonal trends obtained using Ordinary Linear Regression,
(b) the detrended lag-1-autocorrelation C(1), (c) the Detrended Fluctuation Analysis (DFA) scaling Hurst
exponent h and (d) the Multifractal (MF) characteristics of NDVI. Results show that there exist some
patterns or trends in the records that persist over time. The value of C(1) for NDVI was obtained as 0.989 is
significant at 95% confidence interval. Consequently, the scaling h values of the Hurst DFA showed that
about 37.4, 20.5, 41.7 and 0.5% of the vegetated areas are anti-correlated (h < 0.5), un-correlated (h = 0.5),
correlated (0.5 < h < 1) and uncorrelated random walk (h = 1), respectively. The trend analysis from
Ordinary Least square Regression (OLR) shows that about 54.3, 0.1 and 45.6% of the vegetated areas are
positively, uncorrelated and negatively correlated, respectively. Our findings revealed that the DFA method
performed better than OLR and the findings could be useful in identifying areas with improved and degraded
vegetation, which cannot be properly captured by the OLR method. Accordingly, the comparison of the
MF-DFA results of original data to those of shuffled and surrogate series indicated that the multifractal
nature of considered time-series is both from PDF and long-range correlations but arguably, MF due to long
range correlation dominates over West Africa. The research is therefore helpful in the formulating crop and
environmental management policies that may be used to improve ecosystem management using a long term
plan (inter-annual) or short term (inter-seasonal) planning.

INDEX TERMS Long range correlation, multifractality, NOAA AVHRR, NDVI, ecological zones,
West Africa.

I. INTRODUCTION
The vegetation of West Africa fluctuates rapidly both at
spatial and temporal scales and the rate of fluctuation
depends on the level of vegetation degradation and/or replace-
ment [1], [2]. A lot of environmental factors are respon-
sible for long-term vegetation degradation over the region,
including naturally occurring processes [3] and human
activities [4]–[11]. The naturally occurring processes could
be erosion, drought, floods, population pressure, increased
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urbanization, and climatic change. Drought is a perennial
feature of the West African Sahel, with devastating impacts
on vegetation, soil and animal husbandry [4]. Vegetation has
a good coupling with climate over the region [12], [13] and
researches have shown that the depleted vegetation surface
and rapid evaporation of moisture from the surface may have
provided a positive feedback [14] that raises and sustains the
droughts conditions [15]. The large fluctuations in vegetation
trend in which there exist somemultiplicity of control mecha-
nism; possess scale invariant attributes defined by long range
power law signal. Further, the values of vegetation in specific
areas may exhibit autocorrelation (ACF) compared to the
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values at regional scale. And the vegetation recovery rate in
a specific location (say pixel level) is different compared to
the average over the whole region of West Africa. The formal
may not often be correlated while the later may be positively
correlated. It is evident that the seasonal changes, inter-annual
and directional fluctuations around the slope line are the
critical variables in vegetation change monitoring, specifi-
cally in global and regional vegetation surface change [16].
Several methods are employed in the study of vegetation con-
ditions [17] include (1) statistical techniques such as correla-
tion, Principal Component Analysis (PCA) [18], curvefitting
analysis [19]–[22] and fractal analysis [23]–[25]; (2) spectral
frequency techniques such as spectral unmixing [26], [27],
spectral mixture analysis [28], wavelets and spectral trans-
form analysis [29], [30], and (3) Neural networks [31]. Of all
the statistical methods, the most frequently used one is the
Ordinary Least Square Regression (OLR) model, which is
used in Trend analysis. The OLR is a robust and quickmethod
but the major drawbacks are that, it is sensitive to data outliers
and appears to exhibit symmetry around the maximum or
minimum data values. Thus, it is cannot be used to properly
assess vegetation expansion or degradation for areas with
high spatial and temporal vegetation fluctuation.

In recent decades, the introduction of time scaling tech-
niques in the characterization of long-range correlation of
time series have attracted considerable attention and turned
into a busy field of research, compared to short-range
methods such as the Markov process [32]–[34] and auto
regressive models [35], [36]. In long range correlations (per-
sistence), the lag-1 detrended ACF(C(1)) and the scaling
exponent called Hurst (h) are the basic variables [37]–[39].
Markovian processes are characterized with an exponen-
tial decay of their dwell times whereas non-Markovian
processes are not [40]. Generally, Long-range correlations
are likened to many chaotic systems [41], for which dif-
ferent methods and models in the Geoscience field have
been developed [17], [40], [42], [43]. Short-range correla-
tions are characterized by a decay such that the detrended
lag − s ACF is bounded by an exponential decay given
as C(s) ∝ e−s/so [21], [37], [38], [44] while long-range
correlated time series are defined by power-law decay given
as C(s) ∝ s−γ [33], [37], [39], [40], [45]. The correlation
exponent γ is computed by applying scaling laws where the
Hurst exponent H ≈ α = 1 − γ /2 is obtained, and for
H > 0.5 the system is considered long term correlated, H =
0.5 it is white noise, H < 0.5 it is long term anti-correlated
whileH > 1 it is a non-stationary local mean [40], [46]–[49].
Accordingly, this power-law decay of values can best be
applied using the concept of self-similarity (self-affinity) [39]
Self-affine/similar systems are also called fractals [50]–[52].
The concept was introduced by Mandelbrot and has
been broadly applied in different disciplines [53]. Fractal
dimension is directly linked to the strength of long-range
correlations [17], [43]. and this relationship affects the suit-
ability of arithmetic selected for any analysis. In a self-
affine time series, the strength of the variations at a given

frequency is given as a power-law function of that frequency
and the scaling h exponent characterizes the type of self-
affinity [39], [54], [55]. There are several methods that are
developed to analyze self-similarity in the time series [56].
They include: Autocorrelation Function (ACF) , Spectral
analysis, Hurst’s Rescaled-Range analysis (R/S) and Fluctua-
tion analysis [57], [58]. Fractals can be classified into two cat-
egories [39]: mono-fractals and multifractals. Mono-fractals
are those, that are characterize with a single scaling exponent
while multifractals are those that are defined with a large
number of scaling exponents that are required for a detailed
characterization of the scaling behavior of series [39], [56],
[59], [60]. And so methods such as ACF, (R/S), and DFA
are mono-fractal while MF-DFA is multifractal [37], [41],
[42], [61]. ACF and R/S are strongly affected by length of
times series while DFA is much free of size effects [33].
Multi-fractality could be as a result broad probability distribu-
tion density function (PDF) [57] and long range correlations
(due to small and large fluctuations) [56]. Multifractality
due to long range correlations can be removed by shuffling
while the one due to PDF cannot be removed by time series
shuffling [39].

In the last decade, long-range persistence and fractal scal-
ing behaviors has been shown to be a part of many geophys-
ical records [62], [63] including vegetation [39]. Analysis of
the behavior of vegetation is less common compared to other
fields of research especially overWest Africa. The few exam-
ples used in studying fractals in vegetation are mono-fractal,
and so the complexities involved in the formation of vegeta-
tion will not be exhaustively revealed. Also, the approaches
did not incorporate long range correlation in time series of
vegetation data. In one example, Song et al. (2006) [64]
applied a box counting method to the vegetation distribu-
tion data collected from the vegetation map of the Xigaze
region and results showed the power law of the box-counting
dimension DB across a range of scales (5-160 km) affirmed
the fractal patterns for most vegetation formations, while the
fluctuations of the scale-specific dimensions of the different
batches indicated limitations of fractal consistency. In another
example, the spatial scale-dependent variations in Mu Us
sandy land in semi-arid area of Northwestern China were
studied by Fu et al. (2013) [65]. The data sets were analyzed
combining geostatistics and fractal geometry, and results
showed that large fractal dimensions (>1.70) commonly
found in the vegetation suggested dominance of small-scale
variations. The switch in fractal dimensions was detected,
indicating scale-dependent variation of vegetation as well
as its hierarchical arrangement Jiapaer et al. (2015) [24]
used the scaling Hurst exponent h to study the vegetation
dynamics and responses to recent climate change in Xinjiang
of China using leaf area index (LAI) as an indicator using
a regression technique and Hurst exponent scaling method,
and results revealed that the vegetation trend was consis-
tent with a sustainable area of 51.18%, unsustainable area
of 4.04% and stable and non-vegetated area ratio of 44.78%.
Zhao et al. (2006) [66] studied on a fractal method of
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estimating soil structure changes under different vegetation
types on Ziwuling Mountains of the Loess plateau, China
and the results suggested that collective fractal dimension is
more efficient in outlining soil structure and function com-
pared with particle fractal dimension. Guo et al. (2013) [67]
studied long range correlation in vegetation over the greater
Khingan Mountains using DFA method and results indicated
that NDVI have self-similar properties. Guo et al. (2015) [68]
evaluated the temporal scaling behavior of NDVI over China
using DFA method and the analysis suggested that the NDVI
time series displays strong long-range correlation through-
out most of China with regional variability in the Hurst
exponent h.

Previous researches on persistence in vegetation have
focused on (1) the trends of vegetation indices, (2) fractal
geometry and scaling properties of vegetation, and (3) rela-
tionships between them, limited efforts have been made
to study the existence of multi-fractality in vegetation.
In West Africa, it is to our knowledge that, no research on
persistence and long range correction is yet to be done. In gen-
eral, changes caused by climate and human activities, sepa-
rately or jointly, sum up to vegetation changes on global and
regional scales. Thus, it is vital to understand the persistence
in NDVI data records which are obviously nonstationary,
using some improved methods of time series analysis. Ordi-
narily, the OLR slope which has been utilized in assessing
the areas with vegetation expansion and degradation may not
properly reveal the exact nature of the vegetation changes,
especially in areas with mixed land cover types and sparse
vegetation. Thus, it is hoped that the application of frac-
tal (self-similar) methodology to vegetation time series will
reveal some important details about the vegetation changes
over West Africa especially the Sahel region. There has been
no comprehensive theory that describes the source of long
term persistence in vegetation data sets over West Africa.
However, studies have shown that climate variables like sea
surface temperature (SST), temperature, precipitation, wind
speed exhibit long range correlation and are persistent [38].
And since, researches over the region have proved a strong
ocean-vegetation coupling [69]; it is therefore important
to also know if vegetation data sets over West Africa are
persistent and long range correlated.

The primary objectives of this research are to investigate:
(1) the strength, presence/absence of long term correlations in
NDVI over West Africa from 1982 to 2011, (2) the intriguing
statistical properties and multifractal characteristics of the
series and (3) if the long term correlations (if at all they exist)
are due to PDF or long range correlations in NDVI. Our inves-
tigations are based on monofractal and multifractal analysis.
We apply the detrended lag-1 ACF to assess the short range
correlation and to also obtain the statistical significance. For
mono-fractality, the DFA has been used to obtain the scaling
Hurst exponent. To characterize the multi-fractality and their
possible sources, the MF- DFA is applied to NDVI data
sets. Consequently, two are series are generated from the
original one: shuffled (random) series and surrogated (phase

randomization) [18], [39], [56], [57], [59] The generated
series were investigated together with the original and their
properties are compared with the original one.

The work is structured as follows: we described the study
region, the study domain and data sources. Also, the different
measures of correlation (ACF and MF-DFA) which are used
in measuring the different measures of correlation (persis-
tence) including their equations are exhaustively discussed
in section 2. In section 3, the results and discussions are
presented and finally we make our conclusions based on the
aim and objectives.

FIGURE 1. Map of West Africa showing (a) ecological regions (FAO, 2000)
and (b) Digital Elevation Model (DEM). TD is Tropical Desert, TDF is
Tropical Desert Forest, TMDF is Tropical Moist Deciduous Forest, TMS is
Tropical Mountain System, TRF is Tropical Rainforest and TS is Tropical
Shrubland.

II. MATERIALS AND METHOD
A. STUDY AREA
West Africa comprises of about 16 countries which
include; Nigeria, Benin, Togo, Ghana, Ivory Coast, Liberia,
Sierra Leone, Guinea, Guinea Bissau, Senegal, Burkina Faso,
Cape Verde, Mali, Niger, Mauritania and The Gambia. The
region is the most densely populated region in Africa which is
located in between the dry Sahel to the north and the Atlantic
Ocean to the south and west. The areas close to the ocean
are relatively humid [10] and endowed with rich ecosystem
while the Sahel is relatively dry and characterized with a
rugged terrain (Fig. 1). The plain surface is covered with
short, stunted and sparse vegetation. There are a lot of river
networks in West Africa and in dry regions of the Sahel,
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most settlements are confined to the banks of some rivers
or streams. Some natural oases found in the area are often
surroundedwith vegetation as a result of their highermoisture
conditions. West African oases have offered considerable
favorable conditions for settlements, trade and transportation
routes around the Sahel area. The rainfall in the Guinea
(Sahel) region follows a bimodal (unimodal) pattern as a
result of the shift in the intertropical convergence zone during
the wet season [70]. The West African Monsoon is the main
supplier of moisture over the region and the areas close to
the Guinea coast are more rain fed compared to the Sahel
regions [71], [72]. West Africa has an outlined geography,
with subtropical desert ecological regions to the northern
border, tropical rain forests in the humid South and Western
border and down to the Atlantic Ocean coast. Due to the low
elevation around the ocean coast, most rivers over the region
shed their waters into the Atlantic Ocean.

B. DATA
This study is based on the Normalized Difference Vegeta-
tion index (NDVI) data records obtained from the Global
Inventory Modeling and Mapping Studies (GIMMS) third
generation third generation (NDVI3g) data records from
July 1981 to December 2011 a semi-weekly temporal and
0.083 × 0.083 degrees spatial resolution [73]. The dataset
is derived from the NOAA/AVHRR sensors (NOAA 7,
9, 11, 14, 16, 17, 18, and 19), with a spatial resolution
of 0.0833 degrees over a 15-day interval. During the extrac-
tion of the vegetated areas, pixels with a 30-year averaged
NDVI value less than 0.1 were assumed to be non-vegetated
and were extracted out [74]. The introduction of satellite
remote sensing (RS) in recent decades has proved useful
in monitoring vegetation cover changes which using dif-
ferent approaches. Basically, the NDVI is the most fre-
quently used RS vegetation index for vegetation dynamics
and degradation observation. NDVI is used to describe the
photosynthetic vigor of vegetation [75] and also as an alter-
native for diverse vegetation properties [76], [77]. Being the
only source of long term remote sensing vegetation data,
the NDVI retrievals from the NOAA/AVHRRR sensors have
contributed a lot in vegetation studies over the Sahel of West
Africa and have helped to correct the impression of over-
stated claims about the desertification extent [78]. The Digital
Elevation Model (DEM) was obtained from retrieved from
National Aeronautics and Space Administration (NASA)
Shuttle Radar Topographic Mission (SRTM) retrieved from
http://srtm.csi.cgiar.org/. The data is prepared by Consortium
of International Agricultural Research Centers (CGIAR) and
has undergone gap filling post-processing of the no data
spaces through interpolation techniques. It has a 90 m reso-
lution and the tiles are downloaded as a seamless mosaicked
unit at 5 × 5 degrees for easy and convenient usage.

C. METHODS
Fractal methodologies are useful tools for the modelling
of complex and stochastic processes. Of important interest

is their application in the study of long-range correlation,
self-similarity, and the dynamical behavior of non-stationary
variables. Persistence in self-affine time series usually is
considered when large values are usually followed by large
ones and small values are followed by small values. In this
work, we considered the Lag-1 Detrendend Autocorrelation
Function C (1) and the Multifractal Detrended Fluctuation
Analysis (MF-DFA).

1) LAG-1 DETRENDED AUTOCORRELATION (C (1))
The properties of a fractal structure in time series can be mea-
sured by the correlation function [41]. Considering equation
(1) which is typical of self-similar series, one discovers that it
can be either long term correlated, long term anti-correlated
or independent [39]. Previous studies [36] have assumed that
vegetation time series can be described by Autoregressive
processes (AR), and the AR is defined [38], [43] by

ϑi+1 = r1ϑi + εi, i = 1, 2, . . . ,N − 1 (1)

where ϑ is the detrended annual mean (x(t) − x) (usu-
ally referred to as random walk) of the NDVI/LAI times
series x(t), with local mean x.r1 is the AR correlation parame-
ter (−1 to 1) and Ei the Gaussian white noise. For r1 > 0 and
r1 < 0 the series are correlated (persistent) and uncorrelated
(anti-persistent) respectively. For r1 = 0, the series shows a
Gaussian white noise. The autocorrelation function (ACF) of
the linearly detrended record is defined as [21], [38]

C(s) =
c(s)′

1
N

∑N
i=1 ϑ(i)2

(2)

C(s)′ =
1

N − s

∑N−s

i=1
ϑ(i)ϑ(i+ s) (3)

where s is the lag, C(s)′ is the auto-covariance. x(t) is uncor-
related, if c(s) = 0 (for s > 0) and short term persistent
if C(s) deteriorates exponentially according Schumann &
Kantelhardt (2011) [43] and Xue et al. (2015) [79] as

C(s) ∝ e−s/sx (4)

where sx is the decay time [39]. Consequently, for an AR(1)
process, C(1) which is the first lag (lag-1) of Eq. (2) is
the central quantity [38], so long as N is significantly large
enough. A plot of C(s) against S is known as a correlogram
and several statistical tests exist that consider N and C (s)
for the computed values of S, to evaluate the significance of
rejecting the time series as being correlated [43]. For the ACF
method, the slope log-log fit of C(s) and s, can also produce
the Hurst exponent but due to the fact that the exponential
decay of the ACF produces negative values, it is always
difficult to evaluate Hurst exponent through log-log fit using
the ACF method.

In this work the significance of C (1) was tested using
a one-tailed 95% significant test of the Gaussian distribu-
tion [80]. It is given by

C(1)t =
−1± δg

√
N−2

N − 1
(5)
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where δg is the standard deviation in the Gaussian distribution
obtained at 95% significance level. Positive and negative
values of c(1) represents Markov linear type persistence (cor-
relation) and high frequency respectively [33], [80].

2) MULTIFRACTAL DETRENDED FLUCTUATION
ANALYSIS (MF-DFA)
Generally, an MF-DFA algorithm consists of the steps
below [37], [39], [42], [44], [56]:
Step 1: We let x(t) be the times series of NDVI for i =

1, 2, . . . .N . Since the integrated series have been obtained
using Eq. (10) above, the x(t) is considered to be a random
walker (Najafi et al., 2015) that consist of succession of steps
around the mean.
Step 2: The integrated series of NDVI is then divided into

Ns non-overlapping partitions (bins) given as Ns = int(N/s),
where s is the time interval. IfN is not amultiple of S, then the
technique is repeated out from the opposite end of the series.
With this, segments of equal lengths will be 2 Ns.
Step 3: then the local trend for each of the 2 Ns segments

is estimated by applying a least square fit to the segments.
Accordingly, we let yp to be the best fit to an arbitrary
segment p of the series. Thereafter, the variance is determined
as [41], [56], [59], [81]:

F2(p, s) =
1
s

∑s

i=1

{
Y (i)[(p− 1)s+ i]− yp(i)

}2 (6)

And, similarly for p = 1, . . . ..Ns and p = Ns + 1, . . . 2 Ns,
the variance is computed as:

F2(p, s) =
1
s

∑s

i=1

{
Y (i)

[
(N − (p− Ns) s+ i]− yp(i)

}2
(7)

Step 4: The qth order of the MF-DFA fluctuation is defined
by Eqs. (8) and (9)

Fq(s) =
{

1
2Ns

∑2Ns

p=1

[
F2(p, s)

]q/2}1/q
, for q 6= 0 (8)

Fq(s) = exp
{

1
4Ns

∑2Ns

p=1
ln
[
F2(p, s)

]}
, for q = 0 (9)

Step 5: Determine the scaling pattern of the fluctuation
function for a range of q moments. When is positive, parti-
tions with large fluctuations will display smaller h(q) while
for negative q partitions with small fluctuations will display
larger h(q) [56]. And so, if the NDVI and LAI series are
long term correlated according to the power law described in
Eq. (6), then Fq(s) will increase significantly for large values
of S. And then, the generalized Hurst function h(q) will be
determined by least square logarithmfit of Eq. (10) [21], [41],
[51], [82] below

Fq(s) ∝ sh(q) (10)

Generally, for h(q) > 0.5, the series is long range cor-
related and for h(q) < 0.5 the series is long range anti-
correlated. If h(q) = 0.5, then the series is random (white
noise). For 0.5 < h(q) < 1, the series is considered long

term correlated which is a typical behavior of multifractal
series and the value of h(q) in the order 2 (i.e., h(2)) is similar
to the usual Hurst exponent [41], [42]. And h(2) is related
to the correlation exponent γ and power spectrum exponent
by β [37], [40], [44], [83]:

β = 1− γ = 2h(2)− 1 (11)

Accordingly, for β > 0 the series are long term correlated
while for β < 0, the series are anti-correlated. If β = 0,
the series are uncorrelated [43].

Specifically, the concept of the classical multifractal scal-
ing exponent τ (q) can be expressed in terms of the general-
ized hurst exponent h(q) [39], [56], [59], [81], [84]:

τ (q) = qh(q)− 1 (12)

From Eq.(12), the singularity spectrum (spectral function)
f (α) can be defined via a Legendre transform α = (∂τ )

/
(∂q)

and f (α) = qα− τ (q) [39], [42], [50], [83], [84]. Where α is
the singularity strength (Holder exponent) [44] and f (α) rep-
resents the dimension of the subset series in α. The concept
provides clear evidence about the long range correlation in
time series. Using Eq. (12) α and f (α) can be expressed in
terms of h(q) as [39], [41], [82]:

α = h(q)+ q
(
h′(q)

)
(13)

f (α) = q[α − h(q)]+ 1 (14)

In multifractal analysis, the width (ω) of the singularity
spectrum provides a direct measure of the degree of multi-
fractality [56] and it also describes the range of the expo-
nent [37]. ω is given as the difference between the maximum
andminimum α, expressed as [35], [37], [51], [56], [81], [83]:

1α = αmax − αmin (15)

which satisfies f (α)→ 0 for α→ αmax and α→ αmin [60].

III. RESULTS AND DISCUSSION
A. STATISTICAL CHARACTERISTICS OF NDVI
Figs. 2a, b and c, show the trend, seasonal and irregular
(remainder) components of vegetation over West Africa from
1982 to 2011.

The semi-monthly NDVI time series (Yt) was regarded as
an additive series of three components: Trend (Tt), Seasonal-
ity (St) and Reminder (Rt). The decomposition of the original
NDVI series was done according to the equation Yt = Tt +
St +Rt [85], and our assumption here is that, NDVI temporal
and spatial series are composed of some pattern which is
concealed by random noise (or irregularity). The extraction
was done in R lab software, according to the STL (weighted
regression) method [85] and the extracted trend was used for
further analysis. The variation of NDVI over West Africa is
highly variable and the fluctuations show a strong trend with
slope of 12.4 × 10−4 NDVI/month, with a seasonal range
of 0.2 (max amplitude = −0.1 and min amplitude = +0.1).
The standard deviation (SD) of the irregular part is 0.02 while
the maximum and the minimum amplitude of the irregular
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FIGURE 2. NDVI (a) trends, (b) seasonal, and (c) remainder over
West Africa from 1982 to 2011.

series are 0.06 and −0.07 respectively. The trend shows a
strong non-linear pattern, thus the need to apply non-linear
analysis coupled with a power law technique. The Skewness
and Kurtosis are −1.22 and −0.08 respectively which means
the distribution is not normal. A negative Skewness shows
that the series has more response to precipitation during the
third quarter of the year (July, August and September summer
season) and a negative kurtosis indicates the peak of the
series is low. The reason could be that, over West Africa,
the vegetation distribution is heterogeneous and the dynamics
in vegetation both at temporal and spatial scales are majorly
explained by rainfall. The rainfall pattern over Guinea and
Sahel regions of West Africa is bi-modal and mono-modal
respectively.

Table 1 shows the correlation between NDVI and climate
elements over West Africa across the ecological zones. It was

TABLE 1. Correlation between NDVI and climate elements from
1982 to 2011 (Pos. means positive and Neg. means negative).

FIGURE 3. Detrended Autocorrelation Function ACF (C(s)) of NDVI time
series at 15-day time interval (s) over West Africa from 1982 to 2011.

observed that about 57, 96, 90, 60, 88, and 92 % pixels
showed positive correlation between NDVI versus precipita-
tion while 21, 3, 2, 40, 4 % pixels showed negative correla-
tion between NDVI and precipitation over TD, TDF, TMDF,
TMS, TRF and TS respectively. Also, the correlation between
NDVI and temperature showed that about 83, 96, 99, 10 and
99% pixels were negatively correlated over TD, TDF, TMDF,
TMS, TRF and TS ecological zones respectively while about
15, 3, 1, 90, 1 and 10 % pixels were positively correlated
across TD, TDF, TMDF, TMS, TRF and TS respectively. This
suggests that precipitation is the primary climate element
that affects vegetation dynamics over West Africa. For the
TMS, the correlation between NDVI and temperature shows
that about 90 % pixels correlated positively while 10 %
correlated negatively. This is expected because the TMS has
different climatemodifications from the surrounding environ-
ments that tend to affect vegetation since there is variation in
temperature with increase in altitude.

B. ANALYSIS OF PERSISTENCE: LAG- 1 DETRENDED
AUTOCORRELATION C (1)
From Fig. 3, the semi-monthly (1982 to 2011) NDVI data
records shows a serial correlation, with fluctuations from
positive to negative values with a delayed version of itself as
a function of time lag between them.

Positive lags are from C (1) to C(174) and also from
C(542) to C(719), whereas negative lags are from C (175)
to C (542). The ACF dampens out at higher lags, suggesting
that the relationship at a short time interval is larger than the
relation over wider distances. The value of C (1) is 0.989
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which is positive and significant at 95% confidence level.
This is just a hint that NDVI data records overWest Africa are
persistent but and this result cannot be completely relied upon
due to the exponential decay nature of the ACF. C (1) is used
because of the following reasons: (1) various auto-regressive
and moving average systems (ARIMA) set out distinctive
evidence on the ACF, (2) it is useful in the estimation of
statistical significance [38] and (3) it can be used to suggest
a suitable model for the time series if they are not random.
The statistical significance is essential when one wants to
evaluate if the trend changes are perhaps due to anthropogenic
origin or not [38] and also to check the nature of short
range persistence [80], [86]. Now to suggest a suitable model,
we apply the C (1) described in Eq. (4) and for negative C
(1) the series can be modelled and considered short range
correlated (anti persistent) [33] and for positive C (1), it is
long range correlated (persistent) [41], [56], [87]. And if we
assume that the vegetation data sets are long-term correlated,
C (1) may not be meaningful again and is substituted by a
power law exponent called the Hurst. This is because the
log-log fit of C (s) against may not be feasible due to the
negative values shown by the C (s) (Fig. 3). In this work,
the Hurst exponent is applied using power scaling laws and
techniques based on the MF-DFA (section C). And if indeed
NDVI is persistent, the results will actually be confirmed by
the power law method because the method assumes that a
relative change in one variable is proportional to the relative
change in the other variable, independent of the initial size or
length of those variables.

C. ANALYSIS OF PERSISTENCE: DETRENDED
FLUCTUATION ANALYSIS (DFA)
The previous subsection points to the fact that C (s), how-
ever, is not a viable technique for assessing long-term per-
sistence in NDVI, since the model is strongly affected by
finite-size effects, thereby restricting the valid extent of the
time span (s) [38], [88]. Thus, we adopt a more dependable
model where one estimates the fluctuation function F(s) as
previously discussed in Eq. (15). Equations (6-9) from the
first four (4) steps under MFDFA procedures give the esti-
mation of Hurst exponent using the DFA method. Fig. 4a
shows the spatial distribution of Hurst scaling exponent over
West Africa.

The spatial pattern reveals the spatial heterogeneity in
the temporal scaling behavior of the NDVI that corresponds
to the individual ecological regions. The exponents of the
vegetation time series ranged from 0.0 to 1.3 over the period
1982 – 2011 with a standard deviation of 0.18, while those
of China vegetation ranged from 0.4843 to 1.2215 with an
standard deviation of 0.08 over the period 1982 – 2006 [68].
High values of h are observed over Guinea coast in southern
part of Nigeria, Benin, Togo, Ghana, Liberia, Sierra Leone,
Senegal and Guinea. Also, high values of h were observe
over Sahel in Northeastern Niger, Northern part of Mali,
northcentral, northeast and north west of Mauritania. Low to

FIGURE 4. Spatial distribution of (a) Hurst exponent using DFA and
(b) NDVI trends using OLR from 1982 to 2011.

moderate values of h are observed around the Sudano-Sahel
region cutting across Nigeria, Benin, Togo, Ghana, Burkina
Faso, Mali, Senegal and parts of Mauritania. This area is
basically the grazing corridor characterized by high level of
vegetation degradation.

The spatially averaged Hurst exponent over West Africa
for 30 years is 0.58 while that of China is 0.78 over a period
of 25yrs, which implies China’s vegetation is more persistent
than West Africa. This is because China has adopted sound
ecological development and maintenance programs com-
pared to West Africa. About 37.4, 20.5, 41.7 and 0.5% of the
vegetated areas are anti-correlated (h < 0.5), un-correlated
(h = 0.5), correlated (0.5 < h < 1) and uncorrelated random
walk (h = 1) respectively. An insignificant amount of the
vegetated are was a non-stationary randomwalk (h> 1). This
shows that on average, the overall vegetation of West Africa
is weakly-correlated, typical of recovery from random fluctu-
ation due to human and natural factors. These spatial patterns
demonstrate the broadness of the temporal scaling behavior
of vegetation over West Africa. Areas where high (small)
values always follow high (small) ones dominates the for-
est (desert) vegetation while areas where high (low) values
of NDVI do not always follow high (low) ones are clearly
visible in between latitude 7 and 15 degrees. Areas with high
correlation in the Sahel region are those where vegetation is
highly resilient and is adapted to climate and environmental
stress.

According to Telesca and Lasaponara (2006) [89], higher
persistence changes in vegetation degradation as a result of
fire suggests that the ecosystem under research is regulated by
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a feedback control which carries out the vegetation recovery.
Persistence and long range correlation in vegetation with
h > 0.5 around the TRF zones ofWest Africa are as a result of
stable forested areas close to the coastal regions while uncor-
related areas of h < 0.5 are suggestive of urbanization and
forested areas being converted to agricultural lands, h = 0.5
are suggestive of thicker forested areas that are converted
to fragmented forests. Forest fragmentation reduces habitat,
adaptability supply and maintenance through a decline in
land area. Over the TD, TDF and TS zones, barren lands
conversion to irrigated and croplands have favored vegeta-
tion persistence over the area while uncorrelated areas are
basically as a result of barren and scattered vegetation. For
areas with random (uncorrelated) vegetation scaling proper-
ties around TMDF, TRF, TDF and TS zones, it was suggestive
that grazing activities and crude agricultural practices were
the main causes.

Fig. 4b shows the NDVI trends computed from OLR
method and result shows that about 54.3, 0.1 and 45.6%
of the vegetated areas are positively, uncorrelated and neg-
atively correlated respectively. Compared with Hurst expo-
nent, the trend method by OLR is effective in describing
the fluctuation in vegetation along the slope line and for
non-linear systems like vegetation; detailed changes are not
completely captured. The OLR shows high trend values in
the Southern part of the regional where rainfall is high while
low trend values are observed over the Sudano-Sahel region
where rainfall is low. The distribution of the pixels follows a
latitudinal gradient from North (desert vegetation) to South
(forest vegetation).

In Fig. 5a, the correlation C(r) (R2) between NDVI slope
and Hurst exponent is−0.22 (0.05) which shows an insignif-
icant relationship between the two techniques. Figs. 5b & c
show the histogram of pixel values from Hurst exponent
and NDVI slope. The Hurst exponent pixels are normally
distributed and also agree with the central limit theorem com-
pared to the NDVI slope pixels. The limit theorem assumes
that the mean approximates a normal Gaussian distribution
with a bell curve for any set of variables with large number
of independent variables and continuous variable outcomes.
Thus, the Hurst exponent distribution represents an unbiased
series compared to the NDVI trend distribution.

For a vivid understating of this, we produced scatter plots
of Hurst exponents at various elevations and latitudes (Fig. 6)
and the result was compared with the NDVI trends.

Fig. 6b shows that in every ecological zone, vegetation is
being degraded and expanded and the most anti-persistent
location is between latitude 8 to 12 degrees. For the NDVI
slope, the pixels are observed to be clustered around the zero
slope line with between latitude 13 and 17. From latitude 4 to
12 (16 to 25), the NDVI shows high positive (negative) trends
above (below) the zero trend line. Compared with NDVI
trends from OLR, the DFA method has better revealed the
complexities of West Africa’s vegetation dynamics and also
present a way of understating their spatial distribution. Based
on the trends, vegetation seems to exhibit higher (lower) trend

FIGURE 5. (a) Correlation between NDVI slope and DFA Hurst exponent at
different grid points; Histogram of pixel values from (b) Hurst exponent
and (c) NDVI trends.

changes over the humid forests (arid) regions revealing a
zonal symmetry. But, in DFA method, the spatial identifica-
tion of vegetation changes by Hurst exponent shows variation
along the latitudes. This is expected because of the existence
of different vegetation cover types in one ecological region,
since all the ecological regions are interlaced with each other
with no clear sharp boundaries.

In Fig.s 6a & b, the range of Hurst exponent (NDVI trends)
in TRF is from 0 to 1.1 (−1.7× 10−4 to 2.4×10−4) between
latitude 4.31 and 11.97 degrees, for TMS the range is from
0.04 to 0.78 (1.35 × 10−5 to 1.38 × 10−4) located between
latitude 6.47 and 11.8 degrees, for TMDF it is from 0 to
1.05 (−1.5 × 10−4 to 2.15 × 10−4) located between lati-
tude 6.47 and 11.8 degrees, for TDF the range is from 0 to
0.97 (−3 × 10−4 to 2.2 × 10−4) located between latitude
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FIGURE 6. Range of (a) DFA Hurst exponents at various
latitudes (degrees) and (b) NDVI trends at various latitudes.

4.99 and 14.74 degrees, for TS the range is from 0 to 1.31
(−1.3 × 10−4 to 1.7 × 10−4) located between latitude 11.26
and 20.43 degrees, for TD the range is from 0 to 1.12 (−4.9×
10−5 to 2.4 × 10−5) located between latitude 15.67 and
23.33 degrees. The standard deviation (SD) for Hurst expo-
nent (NDVI slope) over TRF, TM, TMDF, TDF, TS and TD is
0.16 (4.11× 10−4), 0.12 (2.37 × 10−4), 0.15 (2.87 × 10−4),
0.11 (2.77× 10−4), 0.14 (2.72× 10−5) and 0.17 (1.1× 10−5)
respectively.

Fig. 7a shows the mean NDVI for various ecological
regions and results shows that the TRF (TD) regions exhibit
high (low) semi-monthly NDVI values which are above
(below) average. There is a decrease in the mean NDVI
values from the humid forest to the desert regions. In Fig. 7b,
the Hurst exponent display a complex pattern with high
clusters located over the TRF, TS and TD ecological zones
while moderate and low values are located around the TMDF,
TMS, and TDF ecological zones. In the TRF, TMDF, TS and
TD zones, high values (h > 1) represents regions with non-
stationary random walk, which are considered difficult to
model and predict as a result of (1) complex changes (2) non
availability of data and (3) difficult topography.

Fig. 7c illustrates the NDVI trends in the various eco-
logical zones, and result shows that the mean semi-monthly
trends were positive while in TS (TD) the trends were around
zero with TS (TD) slightly above (below) zero. Specifically,
both the Spatial Hurst exponent and the NDVI slope val-
ues have revealed well-defined variability over the study
area and revealed high clusters in low elevation areas below

FIGURE 7. Distribution of (a) mean NDVI, (b) DFA Hurst exponent and
(c) NDVI slope at various ecological zones.

1500 meters (Figs. 1 & 2). But comparison between them
shows that the DFA Hurst exponent has been able to capture
the little changes and improvements in vegetation over the
tropical desert areas compared to the OLR method. Recent
studies have shown that the TS and TD which comprises the
Sahel have shown remarkable improvement in vegetation in
recent decades. Despite strong efforts in research over the
Sahel, there is no general agreement about the re-greening
of the Sahel and persistent desertification. Thus, this method
could be useful in identifying areas with improved and
degraded vegetation, which cannot be captured by the OLR
method (Figs. 4a & b).

D. MULTIFRACTALITY: MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS (MF-DFA)
In this section, the multifractal scaling properties of NDVI
was investigated using the MF-DFA. DFA was selected
because it is minimally affected by record length while the
ACF method can be affected by record length variation [33].
The DFA method is a mono-fractal method obtained from
the first four steps of the MFDFA, which is insufficient to
characterize time series with MF properties. Mono-fractal
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FIGURE 8. MF-DFA results of (a) original (c) Shuffled and (c) Surrogated
NDVI from 1982 to 2011.

methods suppress the multi-fractality of time series and
assume that both stationary and nonstationary time series are
mono-fractal by indicating a single scaling exponent h [41].
However, NDVI time series are characterized by a lot of
irregularities (Fig. 2c) with many complex fractal subsets
demonstrating MF scaling property. Equations (6-10) are
used in estimating MF in NDVI. Figs. 8a-c show the power-
law dependence of log Fq(s) against log s for different orders
of q (−8 to 8) with an interval of 2.0. For each time series, h(q)
is estimated by the slope of the least square poly fits between
the log–log plot of Fq(s) versus log s for each value of q.

Fig. 9a reveals that the generalized Hurst exponent h(q)
are decreasing functions that display a strong relationship
with each moment q, which suggest that vegetation time
series is characterized by MF behavior. The exponent h(q)

FIGURE 9. The relationship between (a) the generalized Hurst exponent
h(q) and q, (b) multi-scaling exponent τ (q) and q, and (c) the multi-fractal
spectra exponent f (α) exponent and α NDVI series of West Africa.

outlines the scaling behavior of the qth order fluctuation
function [59], [87].

According to Tanna and Pathak (2014) [56], the uniqueness
of the qth order fluctuation for positive and negative q’s from
the least segment sizes to the large segment partitions for the
both time series indicate the multi-scaling characteristics of
considered series. The smaller partitions are able to differ-
entiate between the local time periods with large and small
fluctuations (i.e.,−q and+q’s, respectively) because, smaller
segments are enclosed within these time periods. Neverthe-
less, the large partitions intersect several local time periods
with both small and large fluctuations and their fluctuations
in magnitude are normalized, the value of h varies on q values
and so we deduce that they have a multifractal structure.

Furthermore, the values of the classical multifractal scaling
exponent τ (q) have been calculated using Eq. (12) and mul-
tifractal spectrum f (α) have also been calculated through the
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Legendre relationship. Generally, the non-linear dependence
of the classical scaling exponent τ (q) on q, is clearly from the
relationship between h(q) and q (Figs. 9a & b) [56], which
reveals the presence of non-linear interaction between the
different scale events andmultifractal nature of the vegetation
time series.

From Fig. 9c, the resulting multifractal spectra f (α) mim-
ics a characteristic left truncated symmetrical bell with a
long right tail, which is an indication that vegetation over
West Africa is sensitive to small magnitudes of local fluc-
tuations. Ihlen reported that time series would produce a long
left when they are insensitive to local fluctuations of smaller
magnitudes, and long right tail when they are insensitive to
local fluctuations of larger magnitudes [85]. Eq. (15) was
used in computing the absolute width of the multifractal spec-
trum (ω) for the value of generalized Hurst at q = 2 because
of the relationship with the well-known Hurst exponent. The
width ω and the shape of the multifractal spectrum are related
to the changes in h(q) [37], [56], [86]. From Table 2, width
ω (h(q = 2)) of the NDVI series are obtained as 0.519(0.586).
The sporadic fluctuations in vegetation both at small and large
scales have been defined by the width of the spectrum.

TABLE 2. Multifractal width ω, Hurst exponent h (2) and multifractal
spectrum exponent β.

Overall, the MF − DFA results show that NDVI is long-
range correlated and multi-scaling, the preceding values at
any grid point are related to the present values and they
also have some effects on both the current and future values.
This means that when changes occur in NDVI at the present
instance, the changes tend to occur in the next moment. Also,
the effect of small and large scale fluctuations is discernible
in Fig. 8 for all the records using the value of h (2). By using
eye balling method [41], a crossover (about 14 months)
point is observed on h (2) in Fig. 9a of the original NDVI
series, which is separated by two regimes. The location of the
crossover point indicates annual cycle of vegetation, implying
strong coupling between climate variables like precipitation
and soil moisture.

E. ORIGIN OF MULTIFRACTALITY IN NDVI TIME
SERIES OVER WEST AFRICA
To study the complexity of NDVI and LAI due to random
correlations in the time series, we performed two analy-
ses on the shuffled and surrogated the original series in
comparison with the original series. Specifically, there are
two forms of MF, which are due to long range correlations
and PDF [39], [56]. The shuffling technique destroys the
long range correlation but keeps the original data distribu-
tion unchanged, while in the surrogating technique produces
phase randomization but preserves the linear properties of

the time series like AFC [39], [46], [56], [59]. Now we can
determine the difference between the Original (horg) and the
Shuffle (hsh)/Surrogate (hsur ) series by considering the differ-
ences between these two scaling functions in Eqs. (16)& (17).
They can be obtained from the ratio between the fluctua-
tion functions of the original and shuffled/surrogated series
which directly shows the presence of long-range correlations
or broadness of the PDF in the original series (Tanna &
Pathak, 2014). The two ratios are given as [90]

Fq(s)
Fqsh(s)

∼ sh(q)−hsh(q) = shcor (q) (16)

Fq(s)
Fqsur(s)

∼ sh(q)−hsur (q) = shpdf (q) (17)

According to Jafari et al. (2007) [90], if hsh(q) is random
(i.e., 0.5), then the existence of multi-fractality (MF) is due
to correlation. And for combined MF due heavy tailed PDF
and correlation, hsh(q) and hsur (q) will show dependence
on q. But for MF due to heavy tail PDF h(q) = hsh(q) and
hcor (q) = 0, and for hcor (q) 6= 0 MF is suggested to originate
from long range correlation [90]. From the Table 1, results
show that the values of h(2), ω and β obtained from the
original series differed from the shuffled and the surrogated
series. It can be noticed that compared with original series,
the variation amplitudes of scaling, spectrum and correlation
are reduced by means of shuffled and surrogate procedure.
We observed that, the spectrum of series of h(2) and ω for
NDVI original data series were larger and strongly order
dependent than those for shuffled and surrogated series. Also
the shuffled and the surrogate series produced β values closer
to zero (0) than the original series which depicts that, more
noise was introduced during the shuffling and surrogating
processes. To check the nature ofMF in NDVI series, we con-
sidered Eqs. (16) & (17) and results from Table 1 show that
theMF properties of NDVI are both from PDF and long range
correlation. Arguably, the MF due to long range correlation
is dominant. From Fig. 9c, it can be seen that the widest
range (1α) of the MF spectrum in original, shuffled and
surrogated time series is obtained as 0.52, 0.49 and 0.34
respectively, which showed that the strength and complexities
of MF in the original series are higher than the shuffled and
surrogated series. Also, the values of 1f > 0, show that
longer time scales have more chance of having improved
NDVI while the chance of NDVI correlations is higher at
a longer time scales compared to lower time scale and vice
versa.

IV. CONCLUSION
Many data records in the Earth Sciences indicate long-range
correlations and it is very important to determine the strength
and source of such correlations. In this work, we analyzed
the long range correlations in NDVI data using different
methods. The spatial and temporal scaling h values of the
well-known Hurst exponent showed that NDVI series are
long range correlated. For ACF , it was difficult to compute
the scaling h values using log-log plots due to the appearance
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of negative values in theACF values, results showed thatC(1)
value was positive and significant at 95% confidence interval.
The spatial pattern of Hurst exponents in NDVI reveals the
spatial heterogeneity in the temporal scaling behavior of the
NDVI that rhymes with the individual ecological regions. The
SD of the exponent is 0.18 and the range is from 0.0 to 1.3
over the period 1982 – 2011, while the range of exponent
over China is from 0.4843 to 1.2215 with SD of 0.08 over
the period 1982 – 2006 [68]. The spatially averaged exponent
over West Africa for 30 years is 0.58 while that of China is
0.78 over a period of 25 years, which implies China’s veg-
etation is more persistent than West Africa. This is because
China has adopted sound ecological development and main-
tenance programs compared to West Africa. About 59.6,
11.3, 29.0 and 0.1% of the vegetated areas over West Africa
are anti-correlated, un-correlated (random), correlated and
uncorrelated random walk respectively. desert areas reflect
the amount of vegetation dynamics which is expressed in
terms of the resilience [89].

The exponents display a complex pattern with high clusters
located over the TRF and TD ecological zones while mod-
erate and low values are located around the TMDF, TDF,
TMS, and TDF ecological zones. A comparison between
DFA Hurst exponent and NDVI slope from OLR indicates
that the Hurst exponents have been able to capture the little
but intermittent changes in vegetation over the TD than the
NDVI slope values. The slight improvements (high degrada-
tion) in vegetation around the Sahel region have been well
noted (see Fig. 4a). Our analyses indicate that not all areas
that exhibited negative trends in NDVI slope were long range
anti-correlated and vice versa.

The broadness and complexity of the vegetation series was
assessed using theMF−DFAmethod and results showed the
existence of prominent MF properties in vegetation records.
The q dependence h(q) and τ (q) in vegetation time series is
clearly a fingerprint of MF. Accordingly, by comparing the
original series to the shuffled and surrogated one, our analysis
indicates that the MF pattern due to long range correlations
is dominant in NDVI over West Africa. This shows that MF
over the region scale is as a result of self-affine clustering
of time patterns of mean vegetation values on different time
scales ranging from seasonal to annual. A crossover point at
about 14months can be observed on h(2) from the log-log plot
in Fig. 9a, which is attributed to a one year (annual) cycle of
vegetation, implying strong coupling between climate vari-
ables like precipitation and soil moisture.

The presence of long range correlations are therefore help-
ful in the formulating crop and environmental management
policies that may be used to improve ecosystem management
using a long term plan (inter-annual) or short term (inter-
seasonal) planning. However, the work was restricted by the
spatial and temporal resolution of the vegetation (GIMMS
AVHRR NDVI 3g) records and it is hoped that in future,
longer temporal and finer spatial resolutions may provide a
better understanding about the spatial and temporal dynamics
of vegetation over the region.
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