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ABSTRACT Recently, Radio Frequency Fingerprinting (RFF) becomes a promising technique which
augments existing multifactor authentication schemes at the device level to counter forgery and related
threats. As RFF leverages the discriminable hardware imperfections reflected in Radio Frequency (RF)
signals for device identification, it has a good property of scalability, accuracy, energy-efficiency and tamper
resistance. However, its identification accuracy might be compromised when the locations of training and
testing are different, which is a more realistic assumption in practical scenarios. To address this issue, we
study the location-invariant RFF feature extraction and identification method for WiFi Network Interface
Cards (NICs). Firstly, we present an RFF feature extraction approach named Differential Phase of Pilots
(DPoP). To further address the low-dimensional feature space problem, we propose another novel RFF
extraction approach named Amplitude of Quotient (AoQ). AoQ exploits the fact that the RFFs of two
Long Training Sequences (LTSs) in WiFi frames exhibit semi-steady characteristics and two LTSs in the
same frame have similar channel frequency responses. Next, we use Euclidean distance and Deep Neural
Network (DNN) for AoQ authentication and identification, respectively. Experimental results verify the
effectiveness of our proposed AoQ method among 55 WiFi NICs of 5 models. The identification accuracy
is higher than 95% and the Equal Error Rate (EER) is around 4% when SNR is higher than 40 dB.

INDEX TERMS Wireless communications, physical layer security, radio frequency fingerprint, device
identification, 802.11n OFDM.

I. INTRODUCTION
Due to the ease of deployment, WiFi has become a perva-
sive communication medium in connecting various wireless
devices in Local Area Networks (LANs) and the Internet of
Things (IoT). Unfortunately, the exposed security problems
have been increasingly serious because of the openness of
radio transmission. For example, insecure authentication pro-
tocols, implementation attacks, side channel attacks, imper-
sonation and the replay attack. Since these attacks may
happen in and below data link layer, soft-identifiers using
passwords, Service Set Identifier (SSID) and/or MAC/IP
addresses are prone to be spoofed. Therefore, it is significant
to find an efficient method to identify and prevent rogueWiFi
connections.

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

Recently, Physical Layer Security (PLS) becomes a
promising paradigm for safeguarding the air interface in 5G-
and-beyond networks [1]–[4]. PLS exploits the inherent fea-
tures of devices and wireless channels to authenticate users
and encrypt the communication data [5]. As one of the
PLS technologies, Radio Frequency Fingerprinting (RFF)
is adopted herein as a way to augment existing multifac-
tor authentication schemes at the device level to counter
forgery and related threats [6]–[9]. RFF identifies a trans-
mitter through discriminating features (also called patterns)
extracted from its intrinsic physical properties [10]. These
device-specific features, such as transient phase, modulation
error, timing error, frequency offset and power perturbation,
are resulted from the joint effects of hardware imperfec-
tions. These imperfections are originated from analogous
components including digital-to-analog converters, band-
pass filters, frequency mixers, and power amplifiers, etc.
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Different features may have different granularities in device
identification giving rise to trade-offs in false positive and
false negative rates. Once features are extracted, the next step
is to develop identification algorithms that utilize these fea-
tures for device identification [11]. In general, an RFF based
device identification system includes two phases, i.e., training
and identification [12]. At the training phase, the receiver
will first acquire signals, extract features, and save them as
a template library for reference from the legitimate devices.
During the identification stage, the receiver will obtain sig-
nals from the target devices, compare the same type of fea-
tures with the legitimate ones in the library, and classify the
devices based on the similarity between these features. Due to
the characters of scalability, accuracy, energy efficiency and
tamper resistance, RFF has been widely studied for device
authentication in the IoT networks [13]–[16]. Many RFF
prototypes have been reported among various IoT sys-
tems, including UWB [17], GSM [18], 802.16 WiMax [19],
LTE [20], WiFi [21], ZigBee [22], [23], LoRa [24],
Bluetooth [25], [26], RFID [27], wireless audio communica-
tions [28], USRP [29] and so on.

Despite the significant advancement of RFF, there are still
many major challenges in using it at a practical level. One
of the biggest challenges is the change of locations. Effective
RFF features should be stable in the presence of environmen-
tal changes and nodemobility. In contrast, location dependent
features such as the popular Radio Signal Strength (RSS) and
Channel State Information (CSI) cannot be used on their own
as fingerprints since they are susceptible to location changes.
Most previously published studies have focused on idealized
scenarios where locations are unchanging between training
and validation. However, their identification accuracy might
be compromised when the locations of training and validation
are different, which is a more realistic assumption in practical
scenarios. For example, Peng et al. propose a hybrid RFF
extraction and device identification scheme for 54 Zigbee
devices working with the IEEE 802.15.4 protocol [30]. Their
experimental results show that the performance losses due
to channel variations are not severe, with 4% to 9% loss
in terms of identification accuracy. The reason is that the
chip rate for IEEE 802.15.4 is only 1 M/s for each In-phase
/ Quadrature (I/Q) channel, and hence in one chip period,
the Radio Frequency (RF) signal can travel for a distance
of 3×108

1×106
= 300 m. In most of the experimental scenarios,

the distinctions between different paths are only approxi-
mately tens of meters. So the RF signal coming from the
line-of-sight path is very similar to the signals from the other
paths. Therefore, the combination of those signals is similar
to multiplying the RF signal from the line-of-sight path by
a factor. However, for 802.11n WiFi signals whose symbol
rate is 20 M/s, the negative effect of the multipath channel
becomes a discriminating factor, when the classifier is trained
with the raw samples. Multipath fading might attenuate the
RF signal strength severely in one location and strengthen it
in another location. Therefore many traditional RFF meth-
ods tend to be inapplicable in these scenarios. In [29], large

amounts of experiment results of WiFi devices demonstrate
that the wireless channel affects the distribution of complex
symbols captured by the receiver in a non-negligible manner.
Therefore, we believe that it is important to overcome wire-
less channel effects and explore those RFF features which are
consistent and constant to location conditions.

To address these challenges, some RFF extraction algo-
rithms have been proposed. Brik et al. examine the steady
state signal of IEEE 802.11 cards transmitted through a wire-
less channel and extract some time-averaged features [31].
The frequency offset error between the transmitter and
receiver dominates the discriminatory performance of their
solution. However, the system is constrained by the low-
dimensional feature space and thus it is not applicable to the
identification for a large number of devices. Kunal et al. pro-
pose a new RFF system named ORACLE [29], which needs
to be trained only once. It can easily identify radios even if the
experienced channel changes or radios are moved to different
locations. However, since they use artificial impairments to
enable robust identification, the attacker could use the equiva-
lent perturbations of the transmitted constellations to achieve
a similar effect. Under the assumption that the nonlinearity
parameter set of an emitter is unique, Ming et al. provide
a robust identification by first using alternative degrees of
nonlinearities associated with symbol amplitudes for initial
estimation, and then iteratively estimating the channel coeffi-
cients and distorted transmit symbols to overcome the Inter
Symbol Interference (ISI) effect [32]. In [33], Adam et al.
also study the nonlinear characteristics of power ampli-
fiers which are modeled with Volterra series representations.
However, they only consider an Additive White Gaussian
Noise (AWGN) channel instead of a multipath channel.
Another work [21] alleviates channel effects by implement-
ing channel estimation and deconvolution and identifying the
deconvoluted signals. They only match the carrier frequency
offset and the nonlinear terms. This is because all the other
linear parts are highly related to the transmitted data and the
environment. To improve the identification accuracy, these
methods often need an additional anechoic chamber to obtain
pure RFF features in the training phase. In addition, a transfer
learning method is proposed in [34] for the identification
of devices with changing bandwidth. It is also applied to
the removal of the bias introduced by RF receivers through
the use of one golden reference [35]. The core idea of [34]
and [35] is to know the change of environment with the
aid of a known reference device. This idea can also be used
to address the changing location issue. However, the per-
formance bottleneck of the transfer learning method lies in
providing exactly the same environment of the target device
for the reference device.

On the whole, it is still missing how to extract channel
robust RFF features for 802.11n devices in practical scenar-
ios. Under the assumption that the wireless channel keeps
constant during the coherence time, this paper introduces
two location-invariant RFF feature extraction methods using
pilots and Long Training Sequences (LTSs) in the IEEE
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802.11n beacon frame preamble, respectively. The main con-
tributions of this paper are listed as follows:
• We present an RFF feature extraction approach named
Differential Phase of Pilots (DPoP). By building the
phase model, we find that the received phase is affected
by sub-carriers, symbols and locations. Next, we demon-
strate that the phase difference between two adjacent
received pilots is robust to locations as it mainly consists
of frequency offset.

• We propose another novel RFF extraction approach
named Amplitude of Quotient (AoQ). Exploiting the
fact that two LTSs in the same frame have similar chan-
nel frequency responses, we demonstrate that AoQ is
invariant to spatial variations and multipath channels so
that it can be applied in reality. Compared with those
deep learning based approaches, our model teases apart
RFF and channel effects in the received signals rather
than a blind use of machine learning. Therefore, our
model is more explainable and efficient.

• We further improve the approach by collecting AoQs
from multiple locations to constitute a robust AoQ fea-
ture. The improved AoQ approach can address the noise
amplification issue which is caused by the division oper-
ator. Furthermore, as AoQ is a comprehensive feature,
it has the potential to identify the IoT devices that are
indistinguishable in any low-dimensional feature space.

• We verify the effectiveness of the proposed approaches
on 55 commercial WiFi Network Interface Cards (NICs)
spanning 5 different models, including one set
of 15 cards and other sets of 10 cards each (from rep-
utable manufacturers). Experimental results show that
both DPoP and AoQ are robust to location variations,
but DPoP is restricted to a single dimension and thus
can hardly distinguish a large number of devices. The
identification accuracy is higher than 95% and the Equal
Error Rate (EER) is around 4%when SNR is higher than
40 dB.

The material in this paper has been partially submitted
at IEEE SiPS 2019. In our previous work, we have inves-
tigated the AoQ approach in theory and use the Euclidean
distance for device authentication. Experiment results show
that AoQ achieves low EER. In this paper, we considerably
extend and complement this work by additionally providing
another location-invariant approach based on DPoP as a ref-
erence. To further improve the accuracy, we add a two-layer
DeepNeural Network (DNN) for identification. Furthermore,
we conduct more experiments to verify the effectiveness of
our proposed approaches.

The rest of the paper is organized as follows. Section II
introduces the experimental setup, structure of IEEE 802.11n
frame and the process of signal acquiring. In Section III and
Section IV, we present the models and algorithms of two pro-
posed RFF feature extraction approaches, respectively. The
device identification methods are described in Section IV-C.
Section V presents our implementation and experimental
results. We finally conclude our work in Section VI.

FIGURE 1. Experimental platform. (a) Photo of partial target WiFi devices.
(b) Photo of the USRP receiver platform and PC.

II. EXPERIMENTAL SYSTEM AND SIGNAL ACQUIRING
WiFi has become a pervasive communication medium in
connecting various wireless devices in LAN and IoT due to
the ease of deployment. The WiFi protocol includes various
physical layer technologies, such as IEEE 802.11a/b/ac/g/n
and the mixed ones. High Rate/ Direct Sequence Spread
Spectrum (HR/DSSS) is used for IEEE 802.11b and Orthog-
onal Frequency Division Multiplexing (OFDM) is used for
IEEE 802.11n. In this paper, we focus on IEEE 802.11n
devices with the OFDM modulation.

A. EXPERIMENTAL SETUP
The experimental system is shown in Fig. 1, which works
at 2.4/5.8 GHz Industrial, Scientific and Medical (ISM)
band. We aim to classify 55 WiFi NICs of 5 different mod-
els from 3 manufacturers. We implemented our work on a
Ubuntu-16.04-amd64 PC with an Intel Core i7-4790 CPU @
3.60 GHz processor, and this PC is connected to an Ettus
USRP transceiver to form an identification server.

A USRP platform with a UBX daughterboard is used as
the receiver for capturing RF signals with a sampling rate of
fs = 20 MHz. The captured baseband signals are transferred
to a PC and processed off-line. The details of the target WiFi
NICs and the information of the collected data set are listed in
Table 1, whereNd andNf represent the number of devices and
the number of collected frames for each device, respectively.
16,384 signals from each device were captured and stored by
the receiver, resulting in a data set of 901,120 received signals
in total. The signals were measured from 4 different locations
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TABLE 1. Information of experimental data set.

FIGURE 2. IEEE 802.11 OFDM frame format.

in a 5 m × 8 m room. The distance between the receiver and
the target devices was approximately 4 meters.

B. IEEE 802.11 OFDM FRAME
In this paper, we only consider the IEEE 802.11 legacy
OFDM standard with 20 MHz channel spacing. According
to the standard, 52 of 64 non-zero sub-carriers are used for
symbolmodulation. Starting from the origin of Direct Current
(DC), 26 pairs of sub-carriers are selected from two-axis.
They are numbered by−26 ∼ −1 and 1 ∼ 26. The frequency
difference between two continuous sub-carriers equals to
312.5 kHz. Among them, four sub-carriers numbered

Kpilot = [−21,−7, 7, 21], (1)

are specifically designed for pilot transmission. The pilots are
pseudo-random binary sequences modulated by Binary Phase
Shift Keying (BPSK).

Fig. 2 shows the frame structure of the IEEE 802.11n
OFDM standard. Each 802.11 RF frame contains three
parts, i.e., preamble, SIGNAL and data. The preamble con-
sists of two training sequences, i.e., 10 Short Training
Sequences (STSs) and 2 LTSs, each with a duration of 8 µs.
To reduce the Inter-Symbol Interference (ISI), there is a part
of Guard Interval (GI) in the LTS part, besides the two long
symbols. The length of GI is half that of a long symbol.
Since the GI is not used in our approaches, we do not show
it explicitly in Fig. 2. The STS is primarily used for frame
synchronization, Automatic Gain Control (AGC), and coarse
frequency offset estimation. STS uses 12 OFDM sub-carriers
which are symmetric to the DC. The sequence number is
given by

Kshort = [−24, −20, −16, −12, −8, −4,

4, 8, 12, 16, 20, 24]. (2)

For each sub-carrier, the STS is BPSK modulated with the
amplitude of

√
13
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π
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The LTS is mainly used for channel estimation, fine fre-
quency and symbol timing offset estimation. LTS uses the
whole 52 sub-carriers and in each sub-carrier, it is BPSK
modulated with phases of π or −π . The sequence number
is denoted by

Klong = [−26,−25, · · · ,−1, 1, 2, · · · , 26]. (4)

C. SIGNAL ACQUIRING
The RFF identification system contains threemain parts: RFF
feature extraction, RFF library establishment, and legitimacy
testing. We assume that there is a set of legitimate devices to
initialize the RFF library. Firstly, an RFF library of legitimate
devices should be established after authentication. Secondly,
when a rogue WiFi device tries to connect with the other one,
our systemmust detect and reject it accurately. In this subsec-
tion, we briefly introduce the signal acquiring technologies
which are the preliminaries for RFF feature extraction.

1) COARSE SYNCHRONIZATION
STS has significant spectrum characteristics and thus can be
used to find the coarse position of the frame header quickly.
Denote x(n) as the received baseband data measured by the
RF front end and slice x(n) into MB data blocks, then the
mB-th block is defined as

XmB = [x(mBN − N + 1), x(mBN − N + 2),

· · · , x(mBN )], (5)

wheremB = 1, 2, · · · ,MB is the block number andN = 64 is
the number of sub-carriers. Transforming XmB from the time
domain to the frequency domain, we get

YmB (k) =
N−1∑
i=0

XmB (i) e
−j 2πN ki, k = 0, 1, . . .N − 1. (6)

Fig. 3(a) and Fig. 3(b) are the spectrums of an ideal and real
received STS, respectively. These spectrums are calculated
by using the Discrete Fourier Transform (DFT) transform
defined in (6) for ideal and real received STSs, respectively.
Define ξmB as the ratio of the sub-carrier power in STS and
that of all sub-carriers,

ξmB =

∑
i in Kshort

∣∣XmB (i)
∣∣2

N−1∑
i=0

∣∣XmB (i)
∣∣2 . (7)

When ξmB > ξth, the data block XmB is considered as an
STS symbol. The threshold ξth is an empirical value and
the value of ξmB provides an efficient criterion for coarse
synchronization with precision N .
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FIGURE 3. Spectrums of STS in coarse synchronization. (a) Ideal spectrum
of STS. (b) Real spectrum of STS.

2) FINE SYNCHRONIZATION
Next, we further conduct a fine synchronization with locally
stored ideal preamble signals. The correlation coefficients
between the received and ideal symbols are

Cshort (m) =
Lshort∑
i=1

p∗short (i)x (m+ i) , (8)

and

Clong(n) =
Llong∑
i=1

p∗long (i)x (n+ i) , (9)

respectively. pshort and plong are the ideal STS and LTS signals
in the time domain. Superscript (·)∗ denotes the conjugate.
Lshort = 16× 10 = 160 and Llong = 32+ 64× 2 = 160 are
the sampling numbers of STS and LTS, respectively. Define
the Correlation Coefficient Ratio (CCR) of STS and LTS as

ξshort (m)=
|Cshort (m)|2

m+Lshort∑
i=m−Lshort

|Cshort (i)|2
. (10)

and

ξlong(n)=

∣∣Clong (n)∣∣2
n+Llong∑
i=n−Llong

∣∣Clong (i)∣∣2 , (11)

respectively.

FIGURE 4. Sampling points and correlation results in fine
synchronization.

Since there are 10 STSs, the start point of STS and LTS
are separated by 160 points. When ξshort (m) and ξlong(n)
achieve the largest CCRs among all points and m− n = 160,
the signal is considered to be fine synchronized. Fig. 4 shows
the received preamble signal and its correlation coefficient
with the ideal preamble signal. The correlation coefficients
are calculated according to (8) and (9), respectively. The
circled points achieve the largest CCRs and they are also the
start points of STS and LTS, respectively.

Next, we will introduce two location-invariant RFF fea-
ture extraction and identification approaches using pilots and
LTSs, respectively.

III. RFF IDENTIFICATION USING DPOP
In 802.11n OFDM frames, four sub-carriers are deployed for
pilot transmission. The phase of received pilots at location l is
denoted as φl , which is calculated from the I/Q components:

φl = tan−1
(
Ql

I l

)
, (12)

where Ql and I l denote the in-phase and quadrature compo-
nents of the received pilots, respectively.

According to [36], for a particular pair of transmitter and
receiver, the phase of the received OFDM symbol ms and
the sub-carrier k measured in one frame at location l can be
expressed as

φl (ms, k)= ϕ (ms, k)+ω (ms, k)+θ (k)+ε (k)+ψ l (k) ,

ms ∈ {1, 2, · · · ,Ms}, k ∈ Kpilot ,

l ∈ {Location 1,Location 2, · · · ,Location L},

(13)
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where Ms denotes the symbol number, ϕ (ms, k) denotes the
ideal phase of pilots, ω (ms, k) denotes the phase caused
by the frequency offset, θ (k) denotes the phase caused by
the frame detection delay. Besides, ε (k) denotes the error
caused by the I/Q imbalance. The last elementψ l (k) denotes
the phase caused by the time of flight, which changes with
locations. In general, the received phase is affected by sub-
carriers, symbols and locations.

In one frame, phases caused by frame detection delay,
I/Q imbalance and time of flight remain unchanged for all
symbols, thus we omit the variable ms in these terms. On the
contrary, ϕ (ms, k) changes with ms since it is the phase
of a pseudo-random binary sequence. The phase caused by
frequency offset can be further written by

ω (ms, k) = ms
(
ωr (k)− ωt (k)

)
Ts = ms1ω (k)Ts, (14)

where ωr (k) and ωt (k) denote the carrier frequencies of a
pair of receiver and transmitter, respectively. 1ω (k) denotes
the frequency offset of sub-carrier k and Ts denotes the time
interval between two adjacent pilots. There are 80 sampling
points during time Ts.

Since the frequency offset is caused by the typical slight
frequency difference between the transmitter and receiver
crystal oscillators, it is robust to locations. Thus, we use it
for fingerprinting purpose. We compute the phase difference
between two adjacent received pilots by

1φ (k)= φ (ms+1, k)−φ (ms, k)

= ϕ (ms+1, k)−ϕ (ms, k)+ω (ms+1, k)−ω (ms, k)

= ϕ (ms+1, k)−ϕ (ms, k)+1ω (k)Ts. (15)

Then, the frequency offset is derived by

1ω (k) =
1φ (k)−1ϕ (ms, k)

Ts
, (16)

where 1ϕ (ms, k) = ϕ (ms + 1, k)− ϕ (ms, k).
Since the frequency difference among sub-carriers is far

less than the carrier frequency, the frequency offset remains
stable among different sub-carriers

1ω (k) ≈ 1ω. (17)

To reduce the noise-induced variations of 1ω due to noise,
we compute the average frequency offset over sub-carriers,
multiple OFDM symbols, and multiple frames by

1ω = avg1ω. (18)

Algorithm 1 illustrates the detailed feature extraction
approach based on the differential phase.

Then, we use Support Vector Machine (SVM) for DPoP
identification. The SVM is a popular and powerful binary
classifier, which aims to find a hyperplane within the feature
space that separates two classes. We divide the collected
data into two categories, i.e., training data and testing data.
From the training data, the SVM parameter is optimized.
Define the training percentage Ptrain as the ratio of the num-
ber of training data to the total number of collected data.

Algorithm 1 Differential Phase Algorithm
Input: The in-phase and quadrature components of

received pilots, I l and Ql , respectively.
The number of received OFDM symbols,Ms.
The time interval between two adjacent pilots, Ts.
The ideal phases of pilots, ϕ (ms, k) ,ms ∈
{1, 2, · · · ,Ms}, k ∈ K = [−21,−7, 7, 21];
Output: The average frequency offset 1ω

1 ;
2 Initialize the index of OFDM symbols ms = 1; Set the
number of sub-carriers Nk = 4;

3 Initialize the index of sub-carrier, kp = 1;
4 Compute the phase of the received signal

φl = tan−1
(
Ql

I l

)
;

5 while kp ≤ Nk do
6 while ms ≤ Ms do
7 Set k̂ = K (kp);
8 Compute the phase difference of the received

signal 1φ
(
k̂
)
= φ

(
ms + 1, k̂

)
− φ

(
ms, k̂

)
;

9 Compute the ideal phase difference of the pilots

1ϕ
(
ms, k̂

)
= ϕ

(
ms + 1, k̂

)
− ϕ

(
ms, k̂

)
;

10 Compute the frequency offset

1ω
(
k̂
)
=

1φ
(
k̂
)
−1ϕ

(
ms,k̂

)
Ts

;

11 Compute ms = ms + 1 and kp = kp + 1;
12 end
13 end
14 Return the average frequency offset 1ω = avg1ω;

Fig. 5 shows the identification accuracy of RFF systems
using DPoP versus Ptrain. For 10 WDR-5660 NICs, both
identification accuracies of training and testing sets achieve
98% when Ptrain is larger than 0.1. Therefore, DPoP could
well identify the differences between theseWDR-5660 NICs,
even in different locations. However, for 55 mixed NICs,
their accuracies reduce to only about 70% even when Ptrain is
larger than 0.3.

IV. RFF IDENTIFICATION USING AOQ OF LTS
Although the DPoP feature in Algorithm 1 is both stable and
channel-robust, it is a single dimensional feature and thus
can be hardly used to distinguish a large number of devices.
It is also verified by the experimental results in Fig. 5. Next,
we seek for another location-invariant feature which is not
constrained by a certain low-dimensional feature space.

A. AOQ OF LTS
According to the process of signal transmission, the
transceiver can be modeled as filters cascaded to the wireless
channel in the time domain or extra scalars multiplying the
channel frequency response in each sub-carrier in the fre-
quency domain [37]. In the f -th frame, the received signal
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FIGURE 5. Identification accuracy of RFF systems using DPoP.
(a) WDR-5660. (b) Mixed NICs.

frequency response of the j-th sub-carrier in the p-th LTS at
location l satisfies that

Y lf (p, j) = Grf (p, j)H
l
f (p, j)G

t
f (p, j)S(p, j)+ N

l
f (p, j),

l ∈ {Location 1,Location 2, · · · ,Location L},

f ∈ {1, 2, · · · ,F}, p ∈ {1, 2}, j ∈ Klong, (19)

where S(p, j) = S(j) is the frequency spectrum of each trans-
mitted LTS at j-th sub-carrier, Grf (p, j) and G

t
f (p, j) represent

the RFFs of the receiver and target transmitter, respectively.
In general, Grf (p, j) and G

t
f (p, j) are assumed to be consis-

tent and invariant to time and locations. Thus, we can omit
the subscript f , Grf (p, j) ≈ Gr (p, j) and Gtf (p, j) ≈ Gt (p, j).
H l
f (p, j) and N

l
f (p, j) are respectively the Channel Frequency

Response (CFR) and the additive noise which change over
time and locations.

According to (19), Y lf (p, j) is variant to location l due to
H l
f (p, j) andN

l
f (p, j), and thus it cannot be used to identify one

device in two different locations. The impact of additive noise
can be effectively reduced by smoothing through frames.
However, it is challenging to eliminate the negative effect of
the multipath channel because H l

f (p, j) is multiplicative and
mixed with the frequency responses of devices.

Fig. 6 and Fig. 7 show the frequency spectrums of two
LTSs for four frames from the device WDR-5620 No.4 at

FIGURE 6. Frequency spectrums of the first and second LTS in Location 1.

FIGURE 7. Frequency spectrums of the first and second LTS in Location 2.

Location 1 and Location 2, respectively. The environment
remains static for each location. It is observed that the fre-
quency spectrums of the first LTS and the second LTS are
not the same. Besides, the frequency spectrums of each
LTS change little over time in the same location. However,
the frequency spectrums of the same device have significant
changes from Location 1 to Location 2.

In order to obtain an RFF that is invariant to locations,
we aim to extract a novel robust feature from the quotient of
two successive received LTS spectrums. Due to the coherence
of wireless channels, their CFRs remain unchanged within a
very short time interval of 8 µs as

H l
f (1, j) = H l

f (2, j) = H l
f (j). (20)

However, the frequency spectrums of two LTSs are different.
It is caused by the semi-steady characteristics of their RFFs,
since they are located in the header of the IEEE 802.11n
OFDM frame. According to [22], it was found that the first
few symbols in the preamble are unstable in the sleep mode
switching scenarios. The unstable part during the settling
time is defined as the semi-steady portion to distinguish from
the traditional steady-state definition. In our experiments,
we further observe that the semi-steady portion also shows
stable characteristics between frames. It might be explained
that for every frame, someminor components, e.g., the crystal
oscillator experience the same variation in a frame. It is also
verified by the work of [38] for ZigBee devices identification.
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FIGURE 8. AoQs of device WDR-5620 No.4 at four different locations.

Define the AoQ of the received LTS spectrums for the f -th
frame at Location l as

Ỹl
f = [Ỹ lf (−26), Ỹ

l
f (−25), · · · , Ỹ

l
f (26)]

T , (21)

where the matrix superscript (·)T denotes its transpose.
Among it, the AoQ of the j-th sub-carrier is

Ỹ lf (j) =

∣∣∣∣∣Y
l
f (1, j)

Y lf (2, j)

∣∣∣∣∣
=

∣∣∣Gr (1, j)H l
f (j)G

t (1, j)S(j)+ N l
f (1, j)

∣∣∣∣∣∣Gr (2, j)H l
f (j)G

t (2, j)S(j)+ N l
f (2, j)

∣∣∣ , (22)

where | · | represents the absolute value. Neglecting the
influence of noise, the approximate result of AoQ is derived
as

Ỹ lf (j) ≈

∣∣∣Gr (1, j)H l
f (j)G

t (1, j)S(j)
∣∣∣∣∣∣Gr (2, j)H l

f (j)G
t (2, j)S(j)

∣∣∣
≈

∣∣∣G̃r (j)G̃t (j)∣∣∣ , (23)

where G̃r (j) =
∣∣∣Gr (1,j)Gr (2,j)

∣∣∣ and G̃t (j) = ∣∣∣Gt (1,j)Gt (2,j)

∣∣∣. It is observed
that G̃t (j) reflects the inherent frequency response charac-
teristics of the transmitter and does not change with l. In
this paper, we assume that all target devices are authenti-
cated by the same receiver, so G̃r (j) becomes a constant
value for all target devices. According to (23), AoQ is a
location-invariant RFF feature. Fig. 8 shows the AoQs of
device WDR-5620 No.4 at four different locations. In each
location, AoQs of 10 frames are overlapped. It is observed
that AoQ keeps almost constant over frames and locations.
However, division may lead to the problem of noise amplifi-
cation, especially when the divisor is small. Thus, there are
some sharp points in Fig. 8.

Fig. 9 and Fig. 10 show the AoQs of devices with differ-
ent models and the same model, respectively. It is observed
that AoQs have significant discrimination among different
devices, especially devices with different models.

FIGURE 9. AoQ of devices with five different models.

FIGURE 10. AoQ of devices with the same models.

B. AOQ EXTRACTION ALGORITHM
In order to address this problem, we collect AoQs of devices
from L locations. In each location, F frames of IEEE 802.11n
OFDM signals are measured. Denote the collected AoQs at
location l as

Ỹ
l
= [Ỹ l1, Ỹ

l
2, · · · , Ỹ

l
f , · · · , Ỹ

l
F ], (24)

where Ỹ lf represents the AoQ for frame f ∈ {1, 2, · · · ,F} at
Location l. We calculate the mean and variance of AoQs for
sub-carrier j over F frames as

µl (j) = avg Ỹl (j) =
1
F

F∑
f=1

Ỹ lf (j), (25)

σ 2
l (j) = var Ỹl (j) =

1
F

F∑
f=1

(
Ỹ lf (j)− µl (j)

)2
. (26)

For each sub-carrier, we select the optimal location l∗(j)
where the AoQ has the smallest variance,

l∗j = argmin
l
σ 2
l (j), (27)

then the final selected AoQ feature is

Ỹ =
[
µl∗
−26

(−26), µl∗
−25

(−25), · · · , µl∗j (j), · · · , µl∗26 (26)
]
.

(28)

Fig. 11 illustrates the selection process of AoQ feature.
According to the variance of AoQs at three different locations

VOLUME 7, 2019 106981



G. Li et al.: Location-Invariant Physical Layer Identification Approach for WiFi Devices

Algorithm 2 AoQ Algorithm
Input: Received signal frequency response of the j-th

sub-carrier for the LTS p at location l in the f -th
frame, Y lf (p, j).

Location number L.
Output: The AoQ feature Ỹ

1 while l ≤ L do
2 Compute the AoQ of Y lf (p, j) for the j-th sub-carrier,

Ỹ lf (j) =

∣∣∣∣Y lf (1,j)Y lf (2,j)

∣∣∣∣;
3 Set the AoQ for the f -th frame,

Ỹl
f = [Ỹ lf (−26), Ỹ

l
f (−25), · · · , Ỹ

l
f (26)]

T ;
4 Set AoQs of F frames at location l,

Ỹl
= [Ỹ l1, Ỹ

l
2, · · · , Ỹ

l
F ];

5 Compute the mean µl (j) and variance σ 2
l (j) of

Ỹl(j);
6 end
7 Compute the optimal location l∗j = argminl σ 2

l (j);
8 Set AoQ feature Ỹ =[
µl∗
−26

(−26), µl∗
−25

(−25), · · · , µl∗j (j), · · · , µl∗26 (26)
]
.

FIGURE 11. Selected AoQs among three different locations. (a) Variance
of AoQs among three different locations. (b) Selected AoQ feature.

in Fig. 11(a), l∗j achieves the minimal variance for each sub-
carrier. For example, for sub-carriers−26 and−25, the AoQs
at Location 2 have the minimal variances and thus they are
selected as the AoQ features for these two sub-carriers. While
for sub-carriers −24 and −23, the AoQs at Location 1 have
the minimal variances and thus they are selected as the AoQ
features for these two sub-carriers.

Algorithm 2 describes the complete process of AoQ feature
extraction.

C. DEVICE AUTHENTICATION AND IDENTIFICATION
As mentioned above, an RFF-based device identification sys-
tem generally includes two phases, i.e., training and iden-
tification [12]. In the training stage, the receiver collects
LTS signals of target devices from multiple locations. AoQ
features are then extracted and saved as templates in the
library according to the approach described in Section IV-B.
The recorded AoQ of device d ∈ {1, 2, · · · ,Nd } is denoted as
Ỹlib. In the identification stage, the receiver will first capture
samples from the target device, then extract its AoQ feature
which is denoted by Ỹtest , and at last, compare it with all tem-
plates for identification. In this section, we describe the AoQ
authentication and identification methods using Euclidean
distance and DNN, respectively.

1) AUTHENTICATION USING EUCLIDEAN DISTANCE
Firstly, we quantitatively use the Euclidean distance as the
metric to evaluate the similarity between Ỹlib

d and Ỹtest as

D
(
Ỹlib
d , Ỹ

test
)
=

∥∥∥Ỹlib
d − Ỹtest

∥∥∥ , (29)

where ‖·‖ denotes the two-norm. When the Euclidean
distance is less than the threshold dth

D
(
Ỹlib
d∗ , Ỹ

test
)
< dth, (30)

the testing device is identified as the legitimate one in the
library. Otherwise, it is identified as a rogue device.

2) IDENTIFICATION USING DNN
To further improve the identification accuracy, we also use
DNN for identification. The AoQ feature is a 52-dimensional
complex-valued vector. By connecting its in-phase channel
and quadrature channel, we can get a 104-dimensional real-
valued feature vector for identification. Since the feature
dimension is not very high, we select a two-layer DNN
for device identification as shown in Fig. 12. The sizes of
these two hidden layers are the same as the input layer,
namely, 104 neurons in each layer. Besides, Rectified Linear
Unit (ReLU) activation functions are used for hidden lay-
ers. Then, the DNN outputs the predicted probability dis-
tribution of each possible label by using a Softmax layer.
At last, the index of the maximum value of the predicted
probability distribution is just the predicted device label. To
train the DNN, the categorical cross-entropy is used as the
loss function, which is a measure of the difference between
the predicted probability distribution and the real probability
distribution. The loss is calculated in the forward pass and
weights are updated using the chain rule, which is known as
the backward propagation.

V. EXPERIMENTAL RESULTS
In this section, we present some experimental results on our
proposed AoQ approach.
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FIGURE 12. Structure of DNN for AoQ identification.

TABLE 2. Authentication EERs of target NICs using single model devices
and mixed model devices.

A. AUTHENTICATION USING EUCLIDEAN DISTANCE
We choose one NIC as the legitimate device, and the
other 54 NICs are regarded as the targets for identification.
We measure the signals from four different locations in a
5 m × 8 m room. The distance between the receiver and
the target devices was approximately 4 meters. Fig. 13
shows the False Acceptance Rate (FAR) and False Rejec-
tion Rate (FRR) versus the threshold when NICs with
MAC addresses 9C-A6-15-42-FC-F5 and D0-D7-83-EE-
DD-28 act as the legitimate ones, respectively. FAR repre-
sents the error ratio when a rogue device is identified as a
legitimate one, while FRR represents the error ratio when a
legitimate device is identified as a rogue one. The FAR rises
with the increase of the threshold dth while the opposite is
true for FFR. We aim to find an appropriate threshold dth
by trading off FAR and FRR. According to Fig. 13, it can
be seen that the optimal threshold value that FAR equals to
FRR is 0.25 and 0.4 for 9C-A6-15-42-FC-F5 and D0-D7-83-
EE-DD-28, respectively. When the rates of FAR and FRR are
equal, the common Y-axis value is referred to as the EER.
The value indicates that the proportion of false acceptances
is equal to the proportion of false rejections. The lower the
EER, the better the performance of the authentication system.

Table II shows the maximal, minimal and average identi-
fication EERs of target NICs. We first carry out experiments
for the NICs of each model. One NIC is randomly selected as
the legitimate device and all other NICs of the samemodel are
the illegal ones for identification. The results are shown in the
first five rows. It can be seen that CPE-500 achieves the best
performance among individual models, with only 1.1% EER
on average. WDR-5660 has the worst identification accuracy,

FIGURE 13. FAR and FRR versus the threshold for two different NICs.
(a) 9C-A6-15-42-FC-F5. (b) D0-D7-83-EE-DD-28.

but its average EER is still less than 10%. We also evaluate
the EER performance for mixed devices, and the EER is
18.1% for the worst case and 4.0% on average. From the
experimental results, our proposed approach achieves com-
plete resilience to the wireless channel allowing a device to
be correctly classified with near-perfect accuracy in unknown
environments.

B. IDENTIFICATION USING DNN
Next, we perform a cross-validation to illustrate the effective-
ness of AoQ. DNN is chosen as the identification method.
Our training is carried out through optimizing the cross-
entropy loss function using an Adam solver with batch
size setting to 256 on the collected dataset. All our net-
work models were trained and tested running on Keras
2.1.6 using TensorFlow 1.12.0 as backend with an NVIDIA
GeForce GTX 1070Ti GPU. Moreover, the L2 regularization
of on both hidden layers was used to 0.001 prevent over-
fitting. The initial learning rate was set to 0.001 and the
Xavier initialization was used to initialize the hidden layer
weights.

We divide the data set into four categories, i.e., Loca-
tion A, B, C, and D, according to the measured locations.
By comparison, we first cross-check the identification accu-
racy using the received frequency responses of two LTSs over
different data sets. In the testing process, when a device is
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TABLE 3. Identification accuracy ξ using received frequency response of
two LTSs. The signals were measured from four different locations in a
5 m × 8 m room. The distance between the receiver and the target
devices was approximately 4 meters.

TABLE 4. Identification accuracy using AoQ. The signals were measured
from four different locations in a 5 m × 8 m room. The distance between
the receiver and the target devices was approximately 4 meters.

correctly identified as the real one, we call it a successful
identification. Otherwise, we call it a failure identification.
The identification accuracy ξ is defined as the ratio of the
number of successful identifications to that of failure iden-
tifications during the testing process in the experiments. The
identification results are shown in Table III. It is observed that
the identification accuracy approximates 100.0% when the
training and testing data are in the same location. However,
the identification accuracy falls sharply when the training and
testing data are in different locations, with a maximal value
of 24.3% on the training of Location C and the testing of
Location B. The results of Table III indicates that the received
frequency responses of two LTSs are seriously influenced
by the locations, which is consistent with the assumption in
Section IV-A.
We also perform a cross-validation using the RFF feature

of AoQ. Table IV shows the identification accuracy using
AoQ for NICs with 5 types of models and all mixed NICs.
Accuracy 1 and Accuracy 2 are the identification accuracies
where training and testing data sets are measured at the same
and different locations, respectively. It is observed that the
accuracies is 100% for the NICs with WDR-5620, WDR-
5660, CPE-500 andWS-5100 models and about 99% for MI-
3A and the mixed NICs. There is no significant difference
between Accuracy 1 and Accuracy 2, which indicates that
AoQ is still effective in new locations.

Then, we explore the impact of noise to identification
accuracy of AoQ by adding AWGN to the received time-
domain LTSs signals. After signal acquiring, additive noise
was imposed on the I/Q signal via MATLAB’s awgn() func-
tion. Fig. 14 shows the identification accuracy using AoQ
versus SNR for NICs with 5 types of models and all mixed
NICs. The SNR is defined as the power of the received signal
to that of the added artificial AWGN. It is observed that all
the identification accuracies are higher than 95% when SNR
is larger than 40 dB, while the accuracy of the mixed NICs

FIGURE 14. Identification accuracy using AoQ versus SNR(dB).

declines to 90% when SNR decreases to 30 dB. However,
the performance reduces seriously for SNR is below 30 dB
which indicates that AoQ is still heavily influenced by noise.
It is caused by the division. Although we attempt to alleviate
this problem by selecting the optimal location where the AoQ
has the smallest variance, the performance of AoQ in low
SNR regions is still far from satisfactory, which needs to be
addressed further.

VI. CONCLUSION
This paper investigated the RFF feature extraction and iden-
tification issue for 802.11n devices in practical scenarios,
in which the training and testing locations are different. We
presented a differential phase approach using received pilots.
We found that it is efficient for a small number of devices
even at different training and testing locations. However, it is
not applicable to the identification for a large number of
devices due to the low-dimensional feature space. Therefore,
we explored another location-invariant RFF feature suitable
for large-scale devices. We found that the RFFs of two
LTSs exhibit semi-steady characteristics since their frequency
spectrums are different. Inspired by this fact, we proposed
a novel RFF feature AoQ leveraging the channel coherence
between two LTSs in an 802.11n beacon frame preamble.
We demonstrated that AoQ is invariant to wireless channels.
We further addressed the problem of noise amplification by
collecting AoQs frommultiple locations to constitute a robust
AoQ feature. Simulation and experiment results indicated
that our proposed AoQ approach can provide a good identifi-
cation accuracy higher than 95% when SNR is higher than
40 dB and an EER around 4% for 55 WiFi NICs. In the
future work, we will study how to improve the performance
of AoQ in low SNR regions. Furthermore, more deep learning
methods can be further investigated [39]–[41].
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