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ABSTRACT Vehicle-to-Pedestrian (V2P) communication is essential to enable a reliable collision avoidance
system for vehicles and vulnerable road users (VRUs). In order to develop a reliable communication system
accurate channel models are required. However, no dedicated channel model for V2P communication in
critical scenarios has been proposed so far. To develop a channel model, we conducted wideband channel
sounding measurements considering a typical collision scenario between a vehicle and a pedestrian in
line-of-sight (LoS) and non-LoS (NLoS) situations. The wideband measurement data is used to study the
characteristics of large-scale or shadow fading, pathloss and diffraction loss. The spatial correlation of
shadow fading is examined and different models are proposed. For NLoS scenario, a 3D scenario model is
designed to simulate the diffraction at a row of parked vehicles. The diffraction loss due to parked vehicles
is analyzed and modeled based on multiple knife-edge diffraction model combined with a two-ray pathloss
model. The results show that the proposed diffraction model provides a goodmatch to the measured pathloss.

INDEX TERMS Channel modeling, pathloss, diffraction, fading, large-scale, shadow fading, spatial
correlation, vehicle-to-pedestrian communication.

I. INTRODUCTION
According to the World Health Organization, traffic acci-
dents take about 1.35 million lives and cause more than
50 million injuries each year on the roads of the world.
In 2018, vulnerable road users (VRUs), including pedestrians,
cyclists and motorcyclists, accounted for almost half of the
road victims [1]. It has been found through experiments
and simulations that intelligent transportation system (ITS)
applications have been successful in increasing road
safety [2], [3]. However, VRUs received less attention than
vehicles. Most recent studies which address VRU protection
focus on driver assistance systems that only rely on on-board
perception sensors to detect and locate other surrounding
traffic participants [4]–[6]. However, radar sensors, laser-
scanners and camera-based systems have critical limitations
due to the need for line-of-sight (LoS) and theweather-related
performance. To enhance safety and mobility of VRUs,
vehicle-to-pedestrian (V2P) communication enables a colli-
sion avoidance system by establishing direct communication
between vehicles and VRUs. Using V2P communication can
improve mutual detection, localization and tracking of both
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vehicles and VRUs and generate appropriate warnings to
prevent accidents.

In order to develop a reliable V2P communication system,
accurate channel models are of immense importance.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
channels were extensively studied in the last years, and var-
ious channel models were proposed. However, to the best of
our knowledge, a dedicated V2P channel model in critical
scenarios does not exist yet. To derive accurate models, V2P
channels have to be thoroughly investigated. These channel
models should be able to reproduce reliably and with low
complexity the time-variant behavior of the channel char-
acteristics. Since the vehicle is a common element in V2V,
V2I and V2P, some similarities could arise in the propagation
channel. However, also important differences are identified.
Assuming that a safety system based on V2P communication
is incorporated in the pedestrian’s smartphone, the following
characteristics will have a direct impact on the V2P propaga-
tion channel:

1) The mobility pattern of the pedestrian.
2) The changing antenna height and orientation depending

on the smartphone’s location and pedestrian’s activity
(texting, phoning, etc).
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3) The relatively low height of the pedestrian’s smart-
phone antenna, such that the LoS could be par-
tially or completely obstructed by road side objects,
e.g. trees, moving or parked vehicles and surrounding
pedestrians.

All these aspects need to be accounted for when developing
the channel model. Therefore, we conducted a wideband
V2P channel measurement campaign considering a collision
scenario between a vehicle and a pedestrian. The goal of this
work is to bring detailed characterizations of shadow fading
for the V2P channel in LoS and non-LoS (NLoS) scenarios.
The main contributions of this paper can be summarized as
follows:

1) Pathloss models for LoS and NLoS scenarios are
proposed.

2) To model the diffraction loss and gain deep insight into
the propagation under NLoS conditions, we developed
a 3D tool to detect the diffraction edges and calculate
the diffraction loss.

3) The spatial correlation of shadow fading is investigated
and modeled.

The paper is organized as follows: After a review of prior
work in Section II, we describe the channel measurement
setup and scenarios in Section III. Section IV presents the
model of the pathloss, the diffraction loss as well as the spatial
correlation of shadow fading. Finally, conclusions are drawn
in Section V.

II. RELATED WORK
Few recent studies tackled the subject of V2P communica-
tions recently. Rashdan et al. in [7] presented pathloss models
for LoS and NLoS scenarios based on a V2P wideband
channel measurement campaign. The authors found that the
two-ray pathloss model fits the measured pathloss for the LoS
scenario in case of a static receiver (Rx). In case of a moving
pedestrian, the authors reported that the multipath compo-
nents (MPCs) from the pedestrian body caused rapid fluctua-
tions of the pathloss. The extra attenuation due to surrounding
pedestrians as well as due to parked vehicles was also studied,
but the diffraction loss was not modeled. Also Makhoul et al.
performed V2P channel measurement in [8]. Based on the
measurement in LoS scenario, the authors presented a two-
ray pathlossmodel for the strongest path contribution and log-
distance pathloss model for the pathloss of discrete scatterers.
Normal and Ricean distributions for large and small scale
fading respectively were also reported. In [9], the authors
investigated the first-order characteristics of the V2P channel
at 5.8 GHz in a business district environment. The K-factor
was calculated for different locations of the transmitter (Tx)
and Rx antennas and vehicle speeds. However, their work was
based on narrowband RSSI measurements.

Further work related to V2P communication can be found
in the literature. However, they only focus on evaluating
the performance of V2P communication systems based on
narrowband measurements and simulations. For instance the
authors in [10] conducted a study on the applicability of

WiFi-based communication for V2P scenarios. The authors
evaluated the performance of the communication in terms
of packet delivery ratio (PDR) and packet inter-reception
time. Based on experiments, they found out that, in order
to satisfy a collision avoidance application, a transmission
rate greater than 1 Hz is required. In [11], the performance
of IEEE 802.11p-based V2P communication was evaluated
and compared with WiFi and cellular-based communication.
The PDR and end-to-end latency in LoS and NLoS scenar-
ios were calculated. The authors reported that LTE-based
communication has better PDR than IEEE 802.11p while
the latter showed a lower latency. WiFi-based communi-
cation showed worse performance than the IEEE 802.11p
in terms of both, PDR and latency. Honda and Qualcomm
developed an IEEE 802.11-based pedestrian safety system
in [12]. They implemented a DSRC stack within the WiFi
chipset on a smartphone. To lower the smartphone’s power
consumption, a false-alarm suppression algorithm was devel-
oped. The communication performance was studied in terms
of RSSI and inter-reception time. Jutila et al. addressed the
use of IEEE 802.11p-based communication between VRUs
and vehicles [13]. The authors conducted experiments using
Cohda MK4 communication units. They found out that the
obstacles located between the Tx and the Rx had a severe
impact on the achievable communication range. The authors
in [14] considered an intersection scenario at which they
evaluated the performance of the IEEE 802.11p-based V2P
communication for crash avoidance application through sim-
ulations. Their results showed that even in scenarios with
relatively low channel load, there was a significant loss of
packets. The authors in [2] verify the significant packet loss
in their simulations and showed that a lower packet inter-
reception time is achieved by choosing higher-order modula-
tions in IEEE 802.11p. Several publications presented system
concepts for VRUs protection such as [15]. A number of
other studies proposed using cellular-based communication
to enable VRU protection (e.g., [16] and [17]).

III. CHANNEL MEASUREMENTS
In this section we describe the V2P measurement campaign
which is the basis to develop the V2P channel model. Further
details on the measurement campaign itself can be found
in [7].

A. MEASUREMENT SETUP
The measurement campaign was carried out in March 2017
on the runway of the airport in Oberpfaffenhofen near
Munich, Germany. The runway represents a controlled envi-
ronment due to the absence of nearby objects/buildings that
might cause reflections. LoS and NLoS propagation scenar-
ios were considered. Since our motivation is to develop a
V2P channel model to support the development of collision
avoidance systems, a collision scenario of a vehicle and
a pedestrian was emulated. Fig. 1 shows the measurement
environment and the trajectory of both, the test vehicle and the
pedestrian. According to the figure, both the vehicle and the
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FIGURE 1. Aerial view of the measurement scenario showing the
trajectories of the Tx and the Rx towards the imaginary collision point.
(Google Maps 2017 Geobasis-de/BKG.)

pedestrian trajectory intersect at an imaginary collision point.
In all experiments, the test vehicle (Mercedes G400) (Fig. 2a)
transmits signals which are received by an antenna held by a
pedestrian or mounted on a tripod (Fig. 2b). In this paper,
only the scenarios with a static tripod will be considered for
analysis.

FIGURE 2. Tx and Rx involved in the measurement campaign.

The V2P measurement campaign was carried out using the
RUSK-DLR channel sounder with parameters summarized
in Table 1. The channel sounder transmitted measurement
signals at a carrier frequency of 5.2 GHz, which is close to
the 5.9 GHz ITS band. The bandwidth was 120 MHz which
results in a delay resolution of 8.33 ns. The channel transfer
function was recorded every 1.024 ms, allowing to resolve a
maximum Doppler shift of 488 Hz.

TABLE 1. Channel sounder parameters.

GNSS receivers were used to record the position of both
the Tx and Rx antennas as a ground truth. The vehicle,
the tripod and the pedestrian were equipped with a Topcon
Legacy E+ L1/L2 GLONASS/GPS receiver. A geodetic-
grade GNSS antenna was placed on the roof of the vehicle,
on one end of the tripod and attached to the helmet of
the pedestrian (see Fig. 2). The 10 Hz recorded GPS and
GLONASS raw data was post processed to provide carrier-
fixed solutions with centimeter-level accuracy. To determine
the location of the parked vehicles during the obstructed LoS
test, an LDMRS multi-layer laser scanner from Sick was
attached to the front bumper of the test vehicle combined
with a Ublox LEA 4T GPS receiver. In post-processing,
the resulting point cloud was transformed from a vehicle
coordinate frame to a global coordinate frame using the code-
fixed solution of the Ublox LEA 4T GPS receiver.

To time synchronize the GNSS positions with the high rate
channel sounder measurement data cubic spline interpolation
has been used on the positioning data. The displacement
between GNSS and the Tx antenna of the sounder, as shown
in Fig. 3, was taken into account when computing the position
of the Tx antenna, i.e. a correction is performed to shift the
GNSS position by distance d1 and angle θ . In a similar way,
the calculation of the Rx antenna position based on the GNSS
position is performed.

FIGURE 3. Top view of the vehicle carrying the transmitter showing the
location of the channel sounder and the geodetic-grade GNSS antenna.

B. MEASUREMENT SCENARIOS
The test vehicle moved around 100 m with an average
speed of 11 ms−1 towards the collision point. The pedes-
trian equipped with the receive antenna walked around 12 m
towards the collision point with an average speed of 1.2ms−1.
To study a realistic V2P signal propagation, we measured the
channel in different LoS and NLoS scenarios, with both a
static tripod and a moving pedestrian. In this work, we focus
on the two following scenarios:
• In Fig. 4a the experiments with a static tripod are used
as a reference for ideal LoS propagation conditions.

• In Fig. 4b the NLoS scenario is shown, where six vehi-
cles of different sizes and shapes are placed parallel to
the trajectory of the test vehicle to study the impact of
parked vehicles on the signal propagation and especially
the LoS blockage. The vehicles are parked 1 m apart
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FIGURE 4. Measurement scenarios addressed in this paper.

from each other. The Rx antenna is placed on a tripod
at a height of 1.1 m and a distance from the collision
point of 7 m. The reason for choosing the scenario with
a static tripod and not a moving pedestrian is to exclude
the effect of movement and to study only the propagation
loss due to the obstruction of the LoS.

IV. CHANNEL MODEL
In this section, we present pathloss models for the LoS and
the NLoS scenarios. The diffraction loss due to blockage of
the LoS from the parked vehicles in the NLoS scenarios is
investigated and modeled. A 3D tool is developed to calculate
the diffraction loss and verify the proposed model. Finally,
shadow fading is extracted from the measurement data and
its spatial correlation is modeled in the LoS and the NLoS
scenarios.

The channel impulse response (CIR) can be expressed
mathematically as a sum of N (t) Dirac impulses [18]:

h(t, τ ) =
N (t)−1∑
i=0

αi(t) · δi(τ − τi(t)), (1)

where αi(t) and τi(t) are the complex amplitude and the
delay of the i-th MPC at time step t and δ(·) is the Dirac
function. The instantaneous power delay profile (PDP) is then
calculated by:

P(t, τ ) = |h(t, τ )|2, (2)

where |h(t, τ )| =
√
(Ih(t, τ ))2 + (Qh(t, τ ))2, where Ih(t, τ )

and Qh(t, τ ) are the real part and the imaginary part of the
complex amplitude αi(t) [19]. Next, the average PDP (APDP)
P(t, τ ) is obtained by applying a sliding window on the PDP
with a length of lw = 10λ,∗ which is equivalent to Nav =
lw
v·Tg
= 51 PDPs, where v = 11 ms−1 is the average velocity

of the transmitter, Tg = 1.024 ms is the time grid, and λ is
the wavelength. Within each segment of 10λ, the channel is
assumed to be quasi-stationary.

Based on the APDP, the received power Pr (t) can be
calculated as:

Pr(t) =
N (t)−1∑
i=0

P(t, τi). (3)

∗Different window sizes are tested, a window size of 10λ is found to best
fit our data. It provides a sufficient number of samples to accurately extract
the small-scale fading [20].

Thereafter, the path loss PL is obtained by:

PL =
PtGTxGRx

Pr
, (4)

where Pt, Pr, GTx, and GRx are the transmitted power,
received power, Tx antenna gain and Rx antenna gain, respec-
tively. The path loss consists of two components, namely,
the distance-dependent pathloss model and shadow fading.
This is expressed in logarithmic scale as:

PL[dB] = PL0 + 10n log10(d/d0)︸ ︷︷ ︸
log-distance pathloss model

+ χ [dB]︸ ︷︷ ︸
shadow fading

, (5)

where PL0 is the pathloss at the reference distance d0 and n
is the pathloss exponent. The first component is the signal
attenuation due to the separation between Tx and Rx. Shadow
fading is caused by shadowing processes and leads to a
change in the local mean of the path loss over relatively large
distances. Whereas the small-scale fading is the variation due
to the superposition of multiple propagation paths. It leads to
power variations when moving over relatively short distances
in the order of the signal wavelength. The small-scale fading
is extracted by applying the aforementioned sliding window.

A. PATHLOSS MODEL
The two-ray ground reflection pathloss model has been
reported to fit well to the measured pathloss in LoS scenarios
[7], [8], and [21]. Fig. 5 shows the measured pathloss versus
the Tx-Rx distance. Both the log-distance pathloss model and
the two-ray pathloss model are visualized. It can be seen
that the two-ray pathloss model provides a good fit to the
measured pathloss even at short distances with a shadow
fading standard deviation of σ = 0.68dB. We estimated the
relative permittivity for the ground as εr = 1.05 which is close
to the values reported in [22]. Details about the model can
be found in [7]. The parameters of the log-distance pathloss
model are estimated in a minimum mean square error sense
and listed in Table 2.

FIGURE 5. Measured and modeled pathloss for LoS scenario.
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TABLE 2. Log-distance pathloss model parameters based on wideband
measurement data.

FIGURE 6. Measured and modeled pathloss for NLoS scenario.

Fig. 6 shows the measured pathloss and the proposed
pathloss model for the NLoS scenario. The pathloss samples
displayed by the colored curve correspond to the pathloss
during the LoS (blue) or to an obstructed LoS by a spe-
cific parked vehicle (yellow, magenta, black, green and red).
It can be noticed that compared to the free space pathloss
(FSPL) model, the obstruction of the LoS causes an extra
loss between 10 - 20 dB depending of the size of the parked
vehicle. Between Tx-Rx distances of 7 m to 60 m the pathloss
experiences large values due to obstruction by the parked
vehicles. Therefore, we divided the pathloss model into LoS
and OLoS parts. Each part has a different pathloss exponent n
and standard deviation σ .

Table 2 summarizes the results of fitting the measured
data linearly to the log-distance pathloss model for LoS and
NLoS scenarios. Note that the FSPL model has n = 2 and
PL(d0) = 46.77dB and is plotted for comparision in Fig. 6.
The parameters of the log-distance pathloss model for both
the LoS scenario and the LoS part of the NLoS scenario
are similar to those of the FSPL model. On the other hand,
the pathloss exponent n = 1 during the obstruction of the
LoS indicates that the power decreases slower than during
LoS situation, however, with more shadowing caused by
the parked vehicles, i.e., a higher value of PL(d0) = 73dB.
A similar inverse proportional relation between n and PL(d0)
is reported in [7].

B. DIFFRACTION
When the LoS path between the Tx and the Rx is obstructed
in the Fresnel zone by an obstacle whose dimensions are

larger than the wavelength of the radio wave, the measured
propagation pathloss is increased. The additional increase in
attenuation is due to the blockage of the LoS by the obstacles
and the signal is received by diffraction of the electromagnetic
waves. According to Huygens principle, the electric field is
the sum of the Huygens sources located in the plane above
the obstruction [23]. The calculation of the diffraction loss
can be done by treating the obstacles as absorbing knife-
edges [23]. Applying this simplification, the diffraction loss
(in dB) becomes a function of only the Fresnel-Kirchoff
parameter v as:

Li = −20 log

(√
[1− C(v)− S(v)]2 + [C(v)− S(v), ]2

2

)
(6)

where C(v) and S(v) are the Fresnel cosine and sine integrals.
The complex Fresnel integral is given by:

F(v) =
∫ v

0
exp

(
j
π t2

2

)
dt = C(v)+ jS(v), (7)

The Fresnel cosine and sine integrals are given by:

C(v) =
∫ v

0
cos

(
π t2

2

)
dt (8)

S(v) =
∫ v

0
sin
(
π t2

2

)
dt (9)

The sine and cosine integrals can be calculated by using their
Taylor expansions as in [24],

C(v) =
∞∑
m=0

cmv4m+1, c0 = 1,

cm+1 =
−π2(4m+ 1)cm

4(2m+ 1)(2m+ 2)(4m+ 5)
(10)

S(v) =
∞∑
m=0

smv4m+3, s0 =
π

6
,

sm+1 =
−π2(4m+ 3)sm

4(2m+ 2)(2m+ 3)(4m+ 7)
(11)

The Fresnel-Kirchoff parameter v depends on the dis-
tance d1 from the Tx to the diffracting edge, the distance d2
from the diffracting edge to the Rx and the effective height h
of the diffracting edge:

v = h

√
2(d1 + d2)
λd1d2

. (12)

To calculate the diffraction loss over multiple knife edges,
the Epstein-Peterson method is used [25], which is illustrated
in Fig. 7. This method is found to give the best results for the
given geometry. In this method, the total diffraction loss is the
sum of the k losses on all edges:

Ltot =
k∑
i=1

Li. (13)
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FIGURE 7. The Epstein-Peterson method for four edges. For the edge B,
the geometrical parameters (d1, d2, h) in (12) are (d1, d2, hB). Similarly,
for edge C, the geometrical parameters (d1, d2, h) in (12) are (d2, d3, hC).
This figure can be seen as a 2D projection of the 3D model in Fig. 9.

When calculating the loss due to diffraction from the first
edge, the second edge is considered as a receiver and then
to calculate the loss on the second edge, the first edge is
considered as a transmitter and the third edge as a receiver
and so forth.

Hence, modeling the diffraction loss requires computing
the geometrical parameters d1, d2 and h for the diffraction
process at each edge. This can be done by accurately mod-
eling the size of the objects and their distribution in the
propagation environment. To this end, we have developed a
3D tool as illustrated in Fig. 8, which comprises the following
steps:

FIGURE 8. Snapshot from the 3D modeling tool.

(a) Modeling static objects in the environment is done by
importing the objects dimensions and locations from
the laser scanner measurements and the positions of
Tx and Rx from the GNSSmeasurements. The vehicles
are represented by a cuboid and the vehicle front-end is
represented by a triangular prism.

(b) A direct ray from the Tx to the Rx is created, then
intersections between this ray and the objects in the
environment are detected as illustrated in Fig. 9.

(c) If the ray intersects with an object, two intersection
points will result, entering point and exiting point. The
diffraction points are found by projecting the intersec-
tion points on the roof of the object. For simplicity, only
roof diffraction is considered.

FIGURE 9. 3D illustration of the modeling procedure.

(d) The exiting point is then treated as a secondary
transmitter and the previous step is repeated to check
further intersections with other objects and find the
other diffraction points.

(f) The diffraction loss is then calculated at each diffrac-
tion point and summed up to get the total diffraction
loss.

(g) The diffraction loss is combined with two-ray pathloss
model or a FSPL to get the total propagation loss.

In Fig. 10 we compare the measured pathloss within the
obstruction region to the modeled pathloss using the com-
bined two-ray pathloss model and the multiple knife-edge
diffraction model. Despite its simplicity, the proposed model
is able to provide a match for the pathloss with a standard
deviation σ = 4 dB when considering a line of parked vehi-
cles between a vehicle and a pedestrian. The discontinuity
of the model’s curve occurs when the the number of parked
vehicles blocking the LoS is changed due to the movement
which will result in an increase or decrease in the number of
diffraction edge.

FIGURE 10. The measured pathloss during obstruction of the LoS, and the
modeled pathloss as a summation of the multiple knife-edge diffraction
model and the two-ray pathloss model.
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C. SPATIAL CORRELATION OF SHADOW FADING
Shadow fading is extracted by removing the impact of the
small-scale fading and subtracting the path loss model from
the measured PDPs by averaging using a sliding window of
length lw = 10λ. This window size is found to provide a suffi-
cient number of samples to accurately extract the small-scale
fading and calculate the decorrelation distance of shadow
fading. Fig. 11 shows the extraction of shadow fading from
the measured pathloss for the NLoS scenario using a window
size of 10λ.

FIGURE 11. An exampale of the extraction of shadow fading from the
measured pathloss for the NLoS scenario using a window size of 10 λ.

Shadow fading is strongly dependent on the environment,
i.e. it varies from one area to another. Movements of the
vehicle, the pedestrian and the surrounding scatterers result
in a dynamic environment. When the receiver moves to a
shadowed area, it remains shadowed for some time or cor-
responding traveled distance. This implies that shadowing
is spatially correlated. Due to this underlying correlation,
consecutive packet losses can occur during this interval. As a
result, communication performance will be affected. There-
fore, accurate modeling of the spatial correlation of shadow
fading is important to design reliable V2P communication
system. Models are used to generate realizations of shadow
fading process with the desired correlation in simulations.
Different techniques for generating shadow fading based
on the correlation models can be found in literature, such
as [26], [27]. In what follows, we investigate the spatial corre-
lation of shadow fading for the LoS and the NLoS scenarios.
The NLoS scenario is further divided into LoS part (parked
vehicles are not obstructing the LoS) and OLoS part (six
parked vehicles are obstructing the LoS). The LoS part covers
the Tx-Rx distance which is larger than 60m, while the OLoS
part covers the Tx-Rx distance equal to or less than 60 m. The
spatial correlation can be obtained by the autocorrelation of
shadow fading as:

r(1d) = E [χ (d)χ(d +1d)] , (14)

where d is the distance between Tx and Rx, and 1d is the
distance between two observed positions. E [·] denotes the
expected value of [·]. The estimation of the autocorrelation
function of any random process requires having a large set of
samples at every observation time t to calculate the statistical
average or the so called ensemble average. By assuming
ergodicity of a random process i.e., the sample average
over time t for one realization (measurement runs) of the
random process converges to the ensemble average as the
length of the realizations tends to infinity, the autocorrelation
function can be calculated by using samples collected from
one measurement run.

1) STATIONARITY TEST
A random process is called wide sense stationary (WSS)
when the mean and the autocorrelation do not vary with time.
Shadow fading can be assumed stationary since the distance-
dependent part is subtracted from the measured pathloss
when extracting shadow fading [28]. However, to prove the
stationarity assumption, we put the shadow fading under test,
namely, the modified reverse arrangement test (MRA) [29].
The MRA test is performed by dividing the shadow fading
sample record intoNs equal segments and calculate the square
mean value in each segment (x21 , x

2
2 , x

2
3 , . . . x

2
Ns). In a sta-

tionary random process the square mean values of adjacent
segments are independent [29] and any time trend will result
in non-stationarity. The test checks if the examined random
process has a time trend by calculating how many times,
starting with x21 , that each subsequent square mean value
(x22 , x

2
3 , . . . x

2
Ns) is less than x21 . This step is repeated with

each square mean value. Each inequality is called a ‘reverse
arrangement’. Fig. 12 shows an example of the mean square
values of shadow fading (SF) for Ns = 10 segments and Ns =
20 segments which correspond to distance interval of 5 m and
10 m for both the LoS and the NLoS scenarios. It can be seen
that the changes in the mean value do not follow a specific
trend. The total number of the reverse arrangements A is then
used to calculate the total score as

z =
A−

[
Ns(Ns−1)

4

]
√

2N 3
s +3N 2

s −5Ns
72

. (15)

FIGURE 12. Mean square value of shadow fading calculated within
intervals of 5 m and 10 m for the LoS and NLoS scenarios.
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The stationarity hypothesis is then verified with 5%
significance if the absolute value of the total score
−1.96 ≤ z ≤ 1.96. Fig. 13 shows the z score of the MRA
test for 60 different number of intervals Ns. It can be seen
from that both LoS and NLoS scenarios as well as the two
parts of the NLoS scenario pass the stationarity test.

FIGURE 13. Score of the MRA stationarity test.

We estimated the autocorrelation functions from the
measurement data using (14). Fig. 14 shows the estimated
autocorrelation functions with respect to 1d .
The decorrelation distance dc is defined as the value of1d

at which the value of the normalized autocorrelation func-
tion drops to e−1. The decorrelation distance is scenario-
dependent and indicates how fast shadow fading is changing
over distance. Shadow fading can be assumed to stay constant
within the decorrelation distance dc. Applying this assump-
tion, shadow fading can be considered as a block fading
which leads to a simplification of shadow fading modeling
in simulators.

Fig. 14a illustrates the spatial autocorrelation function of
shadow fading for the LoS and NLoS scenarios. It can be seen
that the decorrelation distance in the LoS scenario is 7.2 m.
Blocking the LoS by parked vehicles leads to larger decorre-
lation distance of 10.4 m. This implies that compared to the
LoS, shadow fading in the NLoS experiences less variation
i.e., similar diffraction loss, when the LoS is obstructed by
the same object. The oscillation pattern in both scenarios can
be explained by the constructive and destructive interference
which are due to the superposition of the direct and the
ground-reflected rays, (see Fig. 5 and Fig. 6).

FIGURE 14. Normalized empirical spatial autocorrelation function of
shadow fading for the LoS, NLoS scenarios and the two parts of the NLoS
scenario.

The spatial autocorrelation function of shadow fading for
both LoS and OLoS parts of the NLoS scenario are illustrated
in Fig. 14b. Both the LoS and the OLoS parts have nearly
similar decorrelation distances of 10.7 m and 10.9 m, respec-
tively. However, shadow fading in the OLoS part experiences
less correlation than the LoS part when 1d < 10 m. This
indicates that shadow fading varies faster compared to the
LoS part within 1d < 10 m, as can be seen in Fig. 11.
We fitted the empirical autocorrelation function to three

theoretical autocorrelation function models, the first model
is the classical model proposed by Gudmundson [30] which
is based on a single negative exponential function,

r(1d) = exp
(
−
|1d |
dc1

)
, (16)

where dc1 is the decorrelation distance. The second model is
the double exponential model which is also a well-known and
widely used model [31]. It models the spatial correlation as a
sum of two negative independent exponential functions,

r(1d) = α exp
(
−
1d
dc2

)
+ (1− α) exp

(
−
1d
dc3

)
, (17)

where dc2 > 0, dc3 > 0 and the weight factor 0 ≤ α ≤ 1
are tunable parameters. The third model is the exponential
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decaying sinusoid model [32] and is given by

r(1d) = exp
(
−
1d
dc4

)[
cos

(
−
1d
dc5

)
+
dc5
dc4

sin
(
−
1d
dc5

)]
,

(18)

where dc4 > 0 and dc5 > 0 are tunable parameters. The
tunable parameters in (17) and (18) are estimated in a MMSE
sense.

From Fig. 15 and Fig. 16 and Table 3, it can be found
that the single and the double exponential model can loosely
follow the trend of the empirical autocorrelation function.
The double exponential model performs slightly better than
the exponential model with two parameters to be estimated
rather than one. The exponential decaying sinusoid model
provides better match to the empirical autocorrelation func-
tion in all scenarios except for the OLoS part in Fig. 16b
where all three models provide a fit with a nearly similar
standard deviation σ .

FIGURE 15. Normalized empirical spatial autocorrelation function of
shadow fading for the LoS and NLoS scenarios, and the corresponding
fitting models.

D. MODEL IMPLEMENTATION
The pathloss models included in this work can be applied in
simulations for the given scenarios to predict the pathloss and
the received power at each Tx and Rx position. The additional

FIGURE 16. Normalized empirical spatial autocorrelation function of
shadow fading for the LoS and OLoS parts of the NLoS scenario, and the
corresponding fitting models.

TABLE 3. Spatial correlation models’ parameters.

loss due to the obstruction of the LoS can be calculated by
implementing the method of detecting the diffraction edges
provided in this paper and then calculating the knife-edge
diffraction loss. This provides a more accurate prediction of
the received power in the presence of an obstruction from a
parked vehicle. Additionally, for more realistic simulation,
the spatial correlation of shadow fading need to be con-
sidered when generating shadow fading map. To generate
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spatially correlated shadow fading, the uncorrelated shadow
fading is generated with a resolution equal to the decorrela-
tion distance. The spatial correlation is then introduced by a
spline interpolation. Alternatively, to generate more accurate
shadow fading map, the provided autocorrelation models can
be used to introduce the correlation.

V. CONCLUSION
In this paper, V2P channel measurements have been pre-
sented and a detailed analysis on the large-scale fading in LoS
and NLoS scenarios for V2P channel has been introduced.
It has been found that the two-ray pathloss model fits well
the measured pathloss in the LoS scenario. In the NLoS
scenario, a log-distance pathloss model has been proposed.
Due to the obstruction of the LoS, the pathloss exponent is
equal to 1 implying that the pathloss not only depends on the
propagation distance but also on the size of the obstruction.
To study the propagation loss due to the obstruction of the
LoS, a 3D tool has been developed. The tool detects the
diffraction edges and calculates the Fresnel-Kirchoff param-
eter that is used to calculate the knife-edge diffraction loss.
The results show a good match between the model and the
measured pathloss with a standard deviation of 4 dB. Finally,
the spatial autocorrelation of shadow fading is investigated.
In order to study the spatial autocorrelation, shadow fad-
ing need to be assumed stationary. Therefore, the modified
reverse arrangement test is applied to test the stationarity.
According to the test, the stationarity hypothesis is verified
with 5% significance. Three different models have been pro-
posed for the spatial autocorrelation function. The results
show that the exponential decaying sinusoid model provides
a good match to the empirical spatial autocorrelation function
in both scenarios.
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