IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 12, 2019, accepted July 25, 2019, date of publication August 5, 2019, date of current version October 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933265

A Comprehensive Improved Salp Swarm
Algorithm on Redundant Container

Deployment Problem

BOTAO MA“1-2, HONG NI'-2, XIAOYONG ZHU'!, AND RAN ZHAO'-2

National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

ZUniversity of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author: Xiaoyong Zhu (zhuxy @dsp.ac.cn)

This work was supported by the Strategic Leadership Project of Chinese Academy of Sciences: SEANET Technology Standardization

Research System Development under Project XDC 02070100.

ABSTRACT As a representative of lightweight virtualization, container technology has been widely used
in cloud services and edge computing applications. However, in the resource pool scenario composed by
multiple intelligent terminal devices, considering the limited resources and poor stability of these devices,
it is necessary to split the overall service into multiple microservices and deploy the backups of them in
respective containers. Traditional container scheduling policies tend to be less effective in solving such
problems. Therefore, the article used a meta-heuristic algorithm to solve this kind of problems. Based on a
newly proposed salp swarm algorithm (SSA), the paper presented a comprehensive improved SSA (CISSA).
CISSA improved the performance of the original SSA by 4 steps. To verify the performance of CISSA
in different kinds of test functions, the algorithm was compared with 7 commonly-used meta-heuristic
algorithms in 29 benchmark functions provided by the author of SSA. In addition, the article constructed
three container cluster models of different sizes, all these algorithms were used to solve these redundant
container deployment problems, the experimental results indicate that the CISSA is superior to other
algorithms in such problems of different dimensions.

INDEX TERMS Chaotic maps, microservice, redundant container deployment, salp swarm algorithm,

terminal device.

I. INTRODUCTION

With the popularization of intelligent terminal equipment,
there are a large number of intelligence terminal devices with
idle resources, These devices are closer to users, in order
to make reasonable use of these idle resources, it can be
considered to integrate these devices into a resource pool
to provide overall service, each device is responsible for
some microservices. However, different from the excellent
stability of servers in cloud service, these terminals devices
have problems such as small amount of idle resources and
poor reliability. Therefore, when building resource pools
with these unstable devices, we should consider dividing
the overall service into several fine-grained microservices.
In the meantime, in order to guarantee the stability of the
system, more redundant backups should be added for each

The associate editor coordinating the review of this manuscript and
approving it for publication was Rajesh Kumar.

136452

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

microservice. To ensure that when some devices break down,
backups on the rest of the devices can continue to complete
the work, the backups of the same microservice should be
deployed on different devices as much as possible [1].

At the same time, backups for each microservice deployed
in multiple devices need to run with the same operating envi-
ronment. In consideration of the heterogeneity of terminal
devices, virtualization techniques are usually used to build
multiple isolated running environments in a device. As a rep-
resentative of lightweight virtualization, Docker is transpar-
ent to the underlying physical machine and costs less system
resources [2]. Therefore, the common practice in the industry
is to run each microservice on a mutually independent Docker
container, the independence of each microservice is achieved
through the isolation of the container. When one microservice
upgrades or fails, the others will not be affected. In summary,
the deployment problem for microservices can be equivalent
to container deployment problem.

VOLUME 7, 2019


https://orcid.org/0000-0003-2044-754X

B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

In recent years, many researches on the container deploy-
ment problem have been made on the basis of different
evaluation indictors [3], [4]. Based on the background above,
the paper proposed a scheme to deploy multiple containers
in several terminal devices, on the premise that the total
resources of containers deployed in one device should be
less than the total resources of this device, the fitness of
redundant container deployment scheme was evaluated by the
robustness of the system and total completion time of service.

It can be seen that the redundant container deployment
problem in terminal device is a NPC problem, and there
are multiple solving solutions. When the dimensions of
the solution sets become larger as the number of container
increases, the optimization problem will be much more com-
plex. For solving these single-objective problems with multi-
dimensions, several meta-heuristic algorithms have been
proposed in recent years. These meta-heuristic algorithms are
more effective than the traditional methods.

Salp swarm algorithm (SSA) is a population-based meta-
heuristic optimization algorithm proposed by Mirjalili et al
in 2017 [5], which mimics the predatory behavior of salp
swarm. The algorithm is easy to implement due to the only
main controlling parameter. The performance of SSA is veri-
fied by 3 types of benchmark functions, according to the com-
parison of these test results, the excellent exploration ability
makes SSA be capable of solving optimization problems in
complex situations.

With its good performance, SSA has been widely used in
several areas. In [6] and [7], SSA has been used in multi-
level color image segmentation, T. K. Mohapatra and B. K.
Sahu [8] have used SSA to optimize PID control, and SSA
has also been implied in [9] to design power system stabilizer.

However, SSA still has some limitations. The excellent
exploration ability may bring the deficiency of optimization
ability, meanwhile, SSA also suffer from the shortcoming
of mediocre convergence rate. Since the algorithm is rel-
atively new, there are few corresponding improvements of
it. Tavazoei and Haeri [10] have designed a chaos-induced
and mutation-driven schemes, the algorithm is optimized at
the expense of time complexity. Werth et al. [6] have added
Levy flight in the original SSA, but the main concern is the
application scenario of the algorithm rather than algorithm
optimization.

To overcome the disadvantage and improve the accuracy of
SSA, a comprehensive improved salp swarm algorithm was
proposed in the article. At the same time, the proposed algo-
rithm would be used to solve redundant container deployment
problem. The main contributions of the work are described as
follows:

« A more suitable initial distribution is selected by com-
parison. And using revised main controlling parameter
c1 to reconstruct two-stage exploration mechanism.

« Setting two thresholds to distinguish the different roles
of these search agents during the iterations and using a
position updating method based on spiral line to replace
the original weighting scheme.

VOLUME 7, 2019

FIGURE 1. The trajectory of salp swarm.

« A redundant container deployment model was proposed,
which was judged by the robustness of the system and
total completion time of service.

The rest of this paper is organized as follows: the original
SSA is briefly introduced in Section II. Section III presents
the comprehensive improved salp swarm algorithm (CISSA).
Section IV displays experimental results and performance
of all test algorithms. Section V describes the redundant
container deployment model and some corresponding experi-
mental parameters. Section VI applies the proposed CISSA to
solve multi-sized redundant container deployment problem.
In the end, conclusions and future expectations are shown in
Section VIL

Il. A REVIEW OF SSA

The mathematical model of SSA simulates the predatory
behavior of salp swarm, which belong to the family of Salp-
idae. The algorithm divides the population of salp swarm
into two groups: leader and followers. In each iteration, all
non-leader individual follows its previous individual, rather
than move independently towards to the optimal value.

The motion trail of salp swarm is shown in Figure.1,
positions of these salp swarm are defined in a D-dimensional
search space and D is the dimensions of variables and solu-
tions, meanwhile, initial positions of N search agents are
initialized by random distribution. There is a food source in
the search space as the target of swarm, which is represented
as F = [Fy, Fy...Fp]".

The position update formula is proposed as Eq. (2.1):

Xl {F,- e (b — )2+ lby) 05Sses<1

7 Fj—c1 ((ubj — Ibj) e +1bj) 0 <c3 <0.5

where le is the position of the leader salp in the j-th dimen-
sion, Fj is the position of food source in the j-th dimension,
ubj indicates the upper bound of j-th dimension, /b; shows the
lower bound of j-th dimension, c; is nonlinear convergence
parameter and ¢, c3 are random numbers between 0 and 1.
Eq. (2.1) shows that the leader only updates its position
based on food source, the most important coefficient ¢ is
used to balance exploration and exploitation which is defined

136453



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

Initialize the salp population q
distribution d

Calculate the fitness of each
search agent

Update the ¢, using
Eq.(22)
|

A 4

 J

FoodFitness = fitmess of the best salp

FoodPosition = position of the best salp

o | Update the position of leader salp ¢
g using Eq.(2.1)

 J
Update the positions of follower N Amend the positions of salps based on N Calculate the fitness of each search No
salps using Eq.(2.4) the domain of definition agent
)
No 2 4

Fitness of salp is
smaller than
FoodFitness

YesP

Change the FoodFitness and
FoodPosition with the salp

Reach the maximum
number of function
evaluations

FIGURE 2. The flowchart of SSA.

as follows:
41 )2

¢ =2T (2.2)

where [ is the current iteration and L is the maximum number
of iterations.
The aim of generating random parameters ¢y, c3 is to make
a disturbance. These parameters are used to determine the
direction in which each individual moves around its target.
To simulate the trajectory of the swarm, basic SSA updates
the position of the swarm as Eq. (2.3):

|
X/ = Eatz + voti > 2 (2.3)
where XJ’ is the position of i-th follower salp in j-th dimension,
t represents time, vy shows the initial speed, and a is the
acceleration. In the model, time is replaced by iterations, and
vo = 0, the equation can be expressed as follows:
Xi=L(xiyx) iz2 2.4)
b \%i J = :
where in shows the position of i-th follower salp in j-th
dimension.

lll. THE IMPROVED METHOD OF CISSA

The proposed CISSA is equipped with different initial dis-
tribution and exploitation mechanism with better physical
meaning. Firstly, a kind of chaotic mapping distribution took
the place of the current random distribution. Secondly, CISSA
used two-stage exploration mechanism to control the step
length much precisely. Thirdly, disturbance factor was inte-
grated in the main parameter c; to increase the diversity
of solutions. Lastly, considering the original convergence
method of follower salps was short of physical meaning, a
kind of spiral motion was used to replace the original updating
method.

136454

T
Yes
v
Return the FoodFitness and
FoodPosition

End

A. INITIAL DISTRIBUTION WITH CHAOTIC MAP
Meta-heuristic algorithm usually initializes population distri-
bution with random solutions, then explores and exploits the
search space randomly with specific probability. However,
meta-heuristic algorithm is sensitive to the initial distribution
of search agents [10], in this chapter, our main motivation was
utilizing the sequences which were generated from various
chaotic maps to replace the random numbers in definitional
domain.

Considering the precision of original SSA is affected by its
relatively long exploration step, it performs unsatisfactorily
in unimodal test functions. However, in order to maintain its
good performance in multimodal and composite test func-
tions, we need to retain the exploratory ability of the original
algorithm, so choosing a more suitable initial distribution for
SSA can improve the accuracy of the algorithm to a certain
extent.

It’s usually difficult to evaluate the qualities of the gen-
erated sequences, in order to achieve the task [11], various
SSA algorithms with different chaotic maps were proposed to
compare the performance of each initial distribution. In this
chapter, 5 most widely used chaotic maps were used to verify
the importance of initial distribution for solving the optimal
solutions. These chaotic maps have their unique regularity of
distribution. The mathematical expressions and characters are
described in the following subsections and the visualization
figures are shown in Figure 3.

1) CHEBYSHEV MAP
Chebyshev map is formulated in Eq. (3.1).
Xkt1 = cos(Px ~ cos™ ! (xz)) (3.1)

The iterative equation of Chebyshev chaotic map is simple
and easy to implement, when the parameter P is more than 2,

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

Chebyshev Map

N M N Mo i ' N e
K Tt T
W “\‘\“/“HH\‘“\‘ \‘\‘H"Vwmr\“ u‘y AR I

L LTI e

0 20 40 60 80 100
k

Iterative Map

1
NI
X H“\\ J\\‘x\ ‘\w\f‘w’\‘\”m\w‘\\ \“‘ A\ 3‘\“\\“\‘\\"'\
|

\
k050 ! MH | ‘M\‘w

X 0.

o

! . n . L
0 20 40 60 80 100

k
; Loglstchap
M“\ muw‘ “ﬂ\ Ik ld Tk T ~¢m“ A

| I MH\\ ‘\H\ ‘\u‘ \
X I i AUV LY ‘\‘
k05| VHM ~Hv\‘~uw I \m

I / | / ”\ a
‘V/ YUy vy Y vy
0 20 40 60 80 100

k
PleceW|se Map

T 1
N J% U R Il M iy
% os| | “‘\/’v\m | \/V M /\Mm“q‘ww‘ "‘/‘\“‘4‘
ko | \/ \[1/ I \N\‘w/“/\\d I A

WLy

UV w NV T W\
0 \ n L L 1
0 20 40 60 80 100
k
y TentMap
T T ‘
ﬂ\/‘w“ W N\ Mw\ M‘A‘\ il ol
X 05 )M/ 0 0 ‘ ‘ /\‘/\ V ‘ /J‘V‘ “/ 1
AT R ST

10 20 30 40 50 60 70 80 90 100
k

FIGURE 3. Visualization of chaotic maps.

the Chebyshev map can enter the chaotic region and pro-
duce an infinite length of non-periodic chaotic real sequences
under infinite precision conditions [12]. Meanwhile, in terms
of uniformity, Chebyshev chaotic sequences are more likely
to be distributed near the boundary. For the test functions with
the optimal values near the boundary, heuristic algorithms
with initial distribution using the method always work better.

2) ITERATIVE MAP
Iterative chaotic map is between (0,1] with infinite collapses,
compared with Chebyshev map, it is more sensitive to the

initial value of iteration [13]. The equation is represented in
Eq. (3.2).

. P
sin (—)
Xk

X1 = (3.2)

where P is an adjustable parameter, the length of periodic
windows could be reduced to 0 along with the increase of
the parameter, which would make the sequences to produce
chaos easily. In the article, P is set to 2.

3) LOGISTIC MAP
The equation of logistic map is shown in Eq. (3.3)
Xi+1 = Pxp(1—xx) (3.3)

where P is an adjustable parameter, in order to generate
sequences between (0,1), P is set to 4. When k — oo, the
probability distribution density function of logistic chaotic
sequence is Chebyshev type distribution [14]. Similarly, for

VOLUME 7, 2019

those test functions with optimal values near the boundary,
using logistic map as initial distribution could help heuristic
algorithm solve the problem better.

4) PIECEWISE MAP

This kind of piecewise map is modified from Bernoulli shift
map [15]. For some test functions whose optimum values
are near the midpoint of the definition domain, using this
kind of piecewise function as the initial distribution solution
can achieve relatively good results. The piecewise map is
characterized as follows:

Xk

— O<xx <P
P
Xy — P
—_— P<xt <05
(1).5;)P
—P—x
Npr=1—— K og5<xy<1-p (34
05-P
1 —x
1—-P<x <1
P
rand (0,1) x;x = Oorxy =1

where P is a control parameter whose range is between
(0,0.5). In the article, P is set to 0.3.

5) TENT MAP

Tent map is a piecewise linear map with uniform probability
density, power spectral density and ideal correlation charac-
teristics. At the same time, there are four small periods exit
in the iteration sequence of tent map, the thresholds are (0,
0.2, 0.4, 0.6, 0.8, 1) [16]. The equation of the tent map is
formulated as follows:

0.5
xegr = K = (3.5)
u(l—xx) x>0.5

where u is set to 2 to make sure the range is (0,1).

In the initial distribution, by mapping different normal-
ized chaotic distributions to the definition domain of each
benchmark function, we could get 5 comparison algorithms.
The performances of these proposed approaches were tested
on CEC2019 benchmark functions [17]. The test results on
these 10 benchmark functions indicate that SSA with initial
distribution of piecewise map is able to significantly improve
the solution quality. These benchmark functions are shown
in Table 1.

In order to validate the performance of these algorithms,
these experimental results were averaged over fifty inde-
pendent runs. The average values and standard deviation
of 500 iterations are reflected in Table 2. Compared with
other comparative algorithms, SSA with piecewise chaotic
map could achieve mean optimization four times.

In addition, for the sake of further studying the differences
between these methods, the Friedman test was applied to test
the average ranking values of these algorithms. Based on the
ranking results in Table 3, SSA with piecewise chaotic map
has the best performance in solving these test functions of
CEC2019.

136455



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

TABLE 1. The 100-Digit challenge test functions.

No. Functions F/ = F;(x") Dim Search Range
1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [-8192,8192]
2 Inverse Hilbert Matrix Problem 1 16 [-16384,16384]
3 Lennard-Jones Minimum Energy Cluster 1 18 [-4.4]

4 Shifted and Rotated Rastrigin’s Functio 1 10 [-100,100]
5 Shifted and Rotated Griewank’s Functio 1 10 [-100,100]
6 Shifted and Rotated Weierstrass Function 1 10 [-100,100]
7 Shifted and Rotated Schwefel’s Function 1 10 [-100,100]
8 Shifted and Rotated Expanded Schaffer’s F6 Function 1 10 [-100,100]
9 Shifted and Rotated Happy Cat Function 1 10 [-100,100]
10 Shifted and Rotated Ackley Function 1 10 [-100,100]

TABLE 2. Results of CEC2019 benchmark functions.

Func_No. Type SSA SSA_chebyshev SSA_iterative SSA_logistic SSA_piecewise SSA_tent
1 Ave 2.1944¢06 3.0210¢06 4.0020e06 3.5198¢06 1.0554 2.0385¢06
Std 1.9860e06 2.4829¢06 3.1381e06 3.1185¢06 0.30346 2.4217¢06
2 Ave 1307.0179 1745.472 2028.5618 1477.9685 5.0169 1575.4535
Std 866.4961 1391.417 1494.581 1086.4072 0.35378 1088.3823
3 Ave 4.9344 5.388 5.0416 5.92 5.1224 5.5076
Std 1.865 2.0296 1.7497 2.0418 2.318 1.9924
4 Ave 25.2746 31.8719 33.2122 28.3831 27.0496 29.6587
Std 12.2134 14.4284 12.9524 10.9756 13.2118 12.8541
5 Ave 1.1763 1.206 1.2068 1.1759 1.1901 1.2061
Std 0.12675 0.12424 0.12132 0.09398 0.11793 0.14469
6 Ave 5.1298 4.1411 5.4315 5.9472 5.1814 5.0732
Std 2.0155 2.075 2.0656 2.0981 1.8074 2.0677
7 Ave 1036.0966 938.6637 1031.1713 1089.0476 924.4324 1060.8105
Std 328.4061 301.052 364.7889 383.3683 243.457 286.1128
8 Ave 4.2678 4.2737 4.2327 4.3115 4.4077 4.2456
Std 0.30338 0.37078 0.39743 0.31425 0.25845 0.47162
9 Ave 1.4228 1.4045 1.4413 1.3891 1.3427 1.4164
Std 0.15989 0.1457 0.18367 0.19239 0.15503 0.16084
10 Ave 21.065 21.0295 21.05 21.0165 21.0155 21.0334
Std 0.085318 0.054012 0.10825 0.049681 0.040905 0.073926

The above experimental data show that when SSA adopts
piecewise chaotic map as its initial distribution, its optimal
performance in unimodal function can be improved. At the
same time, in other types of test functions, due to the chaos
of the initial distribution, the accuracy of the solution set will
not deteriorate compared with the random initial distribution
of the original algorithm.

Considering that in our engineering application, it is
unlikely that the location of the optimal value will appear
near the upper or lower bounds of the definition domain, it is

136456

reasonable to choose this kind of chaotic map in practical
application. Therefore, using piecewise chaotic map as the
initial distribution of CISSA has considerable research value.

B. REVISED EXPLORATION MECHANISM

The original SSA sets the threshold to 0.5N, which means
the first half of search agents will work for global search in
Eq. (2.1), and the other part will follow the former position
to optimize the solution in Eq. (2.4), where N is the number
of search agents. After a large number of experimental

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

Parameter space Objective space

—%— SSA-random
=-==== SSA-chebyshev

5
10 SSA-iterative

—+— SSA-logistic
—O— SSA-piecewise
—A— SSA-tent

IREREEN

100 200 300 400 500
Iteration
Objective space

Best score obtained so far

_ 3000 SSA-random
S ====-= $SA-chebyshev
o 2500 —A— SSA-iterative
"f —+— SSA-logistic
o) —O— SSA-piecewise
£ 2000 SSA-tent
2
o
o 1500
o
o
1z

08
@ 1000

100 200 300 400 500
Iteration

Objective space

Parameter space

s
100 ‘o
12}
™ 3 b e e
x £ || —— ssA-random
50 £ SSA.
< 5 ||===-- ssA-chebyshev
- o SSA-iterative
o Q || —— sSA-logistic
o S || —o— ssA-piecewise
&2 || —A— ssAent
100 A
® 1SN
X, -100 -100 X 100 200 300 400 500
! Iteration
Parameter space Objective space
—— SSA-random
22 === == SSA-chebyshev
5 SSAterative
5 | —+— SSAdogistic
20 —O— SSA-piscewise
~, Z218 % - abersie
x 2
— ©
=< 10 " g 216
— o
‘C)_ (]
o S 214
O
0 - Z
100 3
R /// 100 @ 212
0 \/ 0 \So=c—
X -100 -100 100 200 300 400 500
2 x4

Iteration

FIGURE 4. Some convergence curves for SSA with different initial distributions.

TABLE 3. Average ranking values of various SSA with different initial
distribution by using friedman test.

Algorithm Ranking
SSA 3.0
SSA_chebyshev 3.5
SSA _iterative 4.6
SSA_logistic 39
SSA_piecewise 2.3
SSA_tent 3.7

comparisons, we found the threshold value 0.5N wasn’t the
best choice for most benchmark functions.

In the article, A two-stage exploration mechanism was
proposed to replace Eq. (2.1). In the first stage, the explo-
ration mechanism of SSA was maintained just to ensure the
powerful exploring ability of the original algorithm, based
on a large number of test comparisons on different types of
benchmark functions, we set the first threshold to [N /3].
The improved algorithm could keep the exploration abil-
ity of the original SSA during this phase. In the second
stage, we set the second threshold to [2N /3], the original
exploration step length could be set to a more refined value
in Eq. (3.6).

X!+ el (Zchjl ~Xi) 0<c3 <05

X =
J le - (2C2le - in 053 =<1

(3.6)

where i > 2, X]’ shows the position of i-th follower salp in
j-th dimension, le is the position of leader salp in the j-th
dimension, c», c3 are random numbers. Compared with the
original location update formula, the shorter variable explo-
ration steps of Eq. (3.6) are able to find optimum solutions
with higher accuracy.

VOLUME 7, 2019

TABLE 4. Unimodal benchmark functions.

Function Dim Range fmin

R@=Y 30 [-100,100] 0
i=1

BO=Y W+ 30 [-10,10 0

20 =) bl +[ ] [-10, 10]

Ew=%" & 2 30 [-100,100] 0

50 Zi=1(2,-=1"f) [ 1

30 [-100,100] O

Fy(x) = max;{ |x;], 1<i<n}

Fy(x) = Z:[uw(xHl — X2+ (= 1) 30 [-30,30] 0

Fo(x) = Yy ([x; + 0.51)? 30 [-100, 100] 0

n
Fy(x) = Z ix + random[0,1) 30 [-1.28,128] O
-

C. REVISED NONLINEAR CONVERGENCE

COEFFICIENT c;,

As mentioned above, the two-stage exploratory mechanism
set the threshold value of exploration phase to |2N /3],
the enlarged threshold created a demand for slower decreas-
ing nonlinear convergence coefficient ¢, in order to make the
parameter reduce nonlinearly from 1 to 0 in the new domain
of definition, ¢ is revised in Eq. (3.7):

2
1 = (0.7 + 0.3sin (21)) e~ (.7)

where [ is the current iteration and L is the maximum number
of iterations.

Compared with original coefficient c|, we altered the index
of c1 to slow down the convergence process. In the meantime,
the lack of perturbation could lead to the lack of creativity

136457



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

Parameter space

Objective space

—»—CISSA

0
10 ——ssA

Best score obtained so far
1
i
i
o
@
o

100

%, - -100 X 100 200 300 400 500
Iteration
Parameter space Objective spac

100

—»— CISSA
——SSA
--=--PSO

10°

Best score obtained so far

100

X -100 -100 100 200 300 400 500
Iteration
Objective spal—x— cissa
SSA
—-+=:=PSO

Parameter space

—©—ALo

.................. A—DA

¢ —+—scA
My [~ © -woA

10° F
i

Best score obtained so far

! Sl
M'~~\__
)

100 200 300 400 500
Iteration

x, 200 -200 X,

FIGURE 5. Convergence curves for algorithms over some unimodal
benchmark functions.

during the search iterations. To remedy this defect, damping
motion is added in the convergence coefficient c; to increase
perturbation. After multiple tests on different test functions,
the weight ratio of damping motion was set to 0.3.

D. SPIRAL UPDATING POSITION

Original SSA updates the positions of follower salps by uni-
formly acceleration relation, and at the end it can simplify the
solution to a weighted sum in Eq. (2.4). However, we can see
that the shape of the salp chain in Figure 1 is more similar to
spiral line. To make the model be more exact in mathematics
and clear in physics, when serial numbers of follower salps
are between |[2N /3] + 1 to N, Eq. (3.8) would be used to
replace Eq. (2.4) in our mathematical model. These follower
salps spin around the leader by using a shrinking circle or a
spiral shaped path [18], and Eq. (3.8) is calculated as follows:

i el il 1
Xj’_‘Xj Xj"ecos(an)—i—Xj (3.3)

where ‘le - XJ“ indicates the distance of i-th follower salp
to the position of the first salp in the j-th dimension.

The new approach was physically closer to the trajectory of
salp swarm. In each dimension, every follower salps moved in
a kind of spiral motion around the leader salp, the magnitude

136458

of the spiral line was determined by the distance between the
follower salp and the leader salp.

E. TIME COMPLEXITY OF CISSA

The time complexity of SSA and the CISSA depends on the
number of iterations (L) and the number of search agents (V).
The overall time complexity of SSA and CISSA is combined
with these factors [9]:

1. Initializing all search agents.

2. Calculating the fitness of each search agents.

3. Selecting the best one from by fitness.

4. Calculating the fitnesses of all search agents in each

iteration.

5. Updating the positions of all search agents in each

iteration.

The time complexity of initializing with random number or
piecewise chaotic map is O (V). And the time complexities
of all remaining steps are also O (N). Hence, the result-
ing time complexities of SSA and CISSA are as shown
in Eq. (3.9):

O (SSA) = O (CISSA)
=ON)+ON)+ON)+L x (O(N)+O0N))
=L +3) x ON) (3.9)

As we can see in the time complexity calculation formula,
the improved CISSA has the same time complexity compared
with the original SSA. Although some transformative genetic
algorithms can sacrifice time complexity to get better solu-
tions, however, in the case of large-scale redundant container
deployment problem, because of the slow solving process
and the instability of the devices, we need a solution with
lower time complexity. In the experimental comparison of
the next chapter, it can be found that CISSA are capable of
achieving better solutions than SSA in most benchmark func-
tions. Therefore, the proposed CISSA has important value in
engineering application.

IV. COMPARISON OF EXPERIMENTAL RESULTS
In this work, in order to better compare the performance
differences with the original SSA, we chose the same test
functions used by the author of SSA.The improved algorithm
CISSA was benchmarked on 29 test functions with 7 meta-
heuristic algorithms, including the original salp swarm algo-
rithm (SSA) [4], whale optimization algorithm (WOA) [18],
grasshopper optimization algorithm (GOA) [19], dragon-
fly algorithm (DA) [20], sine cosine algorithm (SCA) [21],
ant lion optimizer (ALO) [22] and a classical heuristic
algorithm particle swarm optimization (PSO) [23]. Each
comparison algorithm performed well in certain areas,
the implementation details of these algorithms were set as
the papers [18]-[23] describe and the key parameters of these
comparison algorithms were shown in Table 5.

These comparison algorithms have good performance in
certain areas. WOA performs well in unimodal functions.

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

TABLE 5. Results of unimodal benchmark functions.

Func Type CISSA SSA PSO GOA ALO DA SCA WOA
Ave 1.5634e-21 2.1493e-08 1.3295e-07 3.6997 1.0062¢-04 690.2741 0.1853 2.2418e-85
Fy Std 1.5676e-21 4.3023e-09 2.2219e-07 22383 7.639e-05 391.7163 0.5019 7.0538e-85
Best 1.8966e-22 1.4767¢-08 5.0672e-09 1.0485 3.5101e-05 18.0476 0.01261 7.5604e-94
Worst 4.8083e-21 3.0263e-08 7.179¢-07 8.046 3.0036e-04 1286.6813 3.2457 2.2317e-84
Ave 6.41e-12 0.57613 5.7437¢-03 13.9631 51.3154 12.7211 1.4531e-02 1.9331e-53
F, Std 5.2858e-12 0.81178 1.6384e-02 31.0106 49.8964 7.9679 2.3361e-02 5.4905e-53
Best 6.7697e-13 8.4114e-03 5.726e-05 1.9801 0.26207 2.1563 8.4305¢-05 3.6816e-61
Worst 1.728e-11 2.6945 5.2359¢-02 102.0169 114.4436 25.8669 7.9335e-02 1.7488e-52
Ave 1.7123e-08 599.7873 67.1078 1626.0016 1556.1559 8461.9786 5681.3771 31055.6144
F; Std 3.2212e-08 315.4712 24.0251 589.3629 542.4914 5956.3839 5661.058 8362.8364
Best 5.1866e-12 140.6055 38.5589 901.6816 637.7909 825.4592 344.0423 17356.9282
Worst 9.9451e-08 1234.2766 104.2286 2760.3188 2196.1845 17798.461 19235.3112 44439.1028
Ave 3.5173e-04 6.8268 1.6793 10.0106 10.2957 24.9477 26.4767 51.236
Fy Std 4.9966e-04 2.644 0.4254 3.1368 2.5859 9.1063 6.6735 30.9855
Best 1.2409¢-06 2.9839 1.0261 2.9439 7.0206 10.5737 16.4299 1.4965
Worst 1.2535¢-03 12.0446 2.3054 13.6243 13.2154 42.8419 35.5021 89.2581
Ave 27.2086 195.799 36.4128 624.2412 315.1049 5752.4301 1.1065€05 27.2253
Fs Std 0.41997 287.1828 25.5049 523.0412 380.2442 68629.3662 3.2993e05 0.85174
Best 25.9746 21.798 15.59 204.5865 28.0971 4428.0611 50.007 26.7976
Worst 27.8929 967.1992 90.6207 1658.1765 1144.2287 217812.646 1.049.e06 28.7891
Ave 0.10317 2.0941e-08 4.288e-08 4.3867 1.3667e-04 912.3345 8.3867 0.095728
Fs Std 0.0322 6.3746e-09 4.5926e-08 3.9718 5.9304e-05 771.5354 5.3226 0.070031
Best 0.070493 1.2103e-08 1.334e-09 0.5519 5.4194e-05 121.5389 4.6469 0.01735
Worst 0.17037 3.4766e-08 1.3533e-07 12.7758 2.2406e-04 2653.1739 22.7799 0.23919
Ave 2.29103e-03 0.109 0.019639 0.026068 0.1601 0.24394 0.044349 3.8079¢-03
Fy Std 2.1327e-03 0.048845 7.8709e-03 9.8314e-03 0.0666 0.14049 0.037054 2.29412e-03
Best 1.4663e-04 0.05719 7.241e-03 0.014109 0.058673 0.04193 0.011497 9.2932¢-04
Worst 7.2938e-03 0.211002 0.036706 0.047031 0.25238 0.4954 0.12282 8.5414e-03
Parameter space y Objective space Parameter space pa Objective space
—*—CISSA

—*—CISSA
——SSA

DT . S p GOA

Best score obtained so far

500

X, -500 -500 X 100 200 300 400 500
Iteration

—— SSA

Best score obtained so far

100 200 300 400 500
Iteration

FIGURE 6. Convergence curves for algorithms over some multimodal benchmark functions.

PSO, as a classical comparison algorithm, has excellent com-
prehensive performance. SCA performs well in stability, and
GOA, ALO, DA are proposed in recent years, they are out-
standing when dealing with some multimodal test functions
and composite test functions.

VOLUME 7, 2019

These 29 benchmark functions are divided into 4 types,
which are used to test search ability of the proposed algo-
rithm. These functions are listed in Table 4, Table 7,
Table 8 and Table 10, where dim indicates dimension of each
function. Search space of each function are limited by domain

136459



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

Algorithm 1 Pseudo-Code of Comprehensive Improved Salp Swarm Algorithm

(1) Initialize the N salp swarm population X;(i = 1, 2, ..., N) with chaotic map by Eq. (3.4)
(2) Calculate the fitness of each search agent and mark the target position

(3) while(current iteration < maximum iteration number)
(4) for each search agent
(5) Update the random number cy, c3

(6) Set the nonlinear convergence coefficient c; by Eq. (3.7)

(5)  forl0<i<N/3

7 Update the position with longer step length in exploration phase by Eq. (2.1)

(8) Calculate the fitness of current search agent
(10) end forl
(11) for2 0.2N < i < 2N/3

(12) Update the position with refined step length in exploration phase by Eq. (3.6)

(13) Calculate the fitness of current search agent
(14) end for2
(15) for2N/3 <i< N

(16) Update the position with spiral motion formula in exploitation phase by Eq. (3.8)
a7 Calculate the fitness of current search agent

(18) end for3

(19) if position of salp is not in the domain of definition

(20) Modify the position to the upper or lower limit of the domain

210 end if

(22) Choose the best fitness of all search agents, replace target fitness if it is a better solution

(23) Record position of target

(24)  end for

(22) end while

(23) current iteration+1

(24) end while

(25) return target fitness and target position

TABLE 6. Main parameters of comparison algorithms.

Algorithm Main parameters
4l
SSA o =27’
PSO ¢ = ¢, = 14961, 0 = 0.7298
GOA Cmax = 1, Cin = 0.00001
1 0<t<01T
2 01T <t<0.5T
t 3 05T <t <0.75T
— 1005 . = <
ALO 1=10%0.0 =3 0757 <t < 09T
5 09T <t <095T
6 095T <t<T
B=15w=09-02s=0.1,
DA
a=01c=07f=1e=1
t
SCA a:2,r1:a(1—?),rz:2n*rand
13 =2 *rand, v, = rand
t
WOA a=2(1—F),b=1,l=2*rand—1

of definition [lb;, ub;], and fi;, is the optimum value of each
test function. In F1-F23, 30 search agents were employed
by each algorithm to conduct optimization over 500 itera-
tions, these algorithms were tested for 50 times. In F24-F29,
because of the complexity of benchmark functions, each
algorithm ran 100 iterations with 30 search agents, and these
algorithms would be tested for 30 times.

A. EVALUATION OF EXPLOITATION ABILITY
The first type of benchmark functions is unimodal functions,
which has only one global optimum. In Table 4, the unimodal

136460

functions F1-F7 are designed to test the exploitation ability
of the algorithms. When an algorithm finds a more precise
solution close to the global optimum, it indicates that the
algorithm has a stronger exploitation ability.

Comparison data are shown in Table 5. In the table,
CISSA works best in 4 of the 7 unimodal benchmark
tests, and reaches second place twice. As for standard devi-
ation and worst value, CISSA also perform better than
the other algorithms in most cases, which means the pro-
posed algorithm is able to produce an optimal solution with
stability.

B. EVALUATION OF EXPLORATION ABILITY

The second and third types of benchmark functions are
multimodal functions which own several local optimums.
In Table 7 and Table 8, these multimodal functions F8-F23
are designed for evaluating the exploration capability of the
algorithms. In the solving process, the solutions may fall into
local optimums frequently. Only when the algorithms have
excellent exploration abilities, can they avoid involving local
optimums as much as possible.

According to the results in Table 9 and Table 11, CISSA
outperforms all the other comparison algorithms in terms of
average values in 10 of 16 benchmark tests and achieves
12 best values, as for the worst case, CISSA also performs

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

Parameter space Objective space
—%— CISSA

Best score obtained so far

Iteration
Objective space —*— cissa
s

Best score obtained so far

X, 5 5
Iteration
Parameter space X Objective spaq —»— cissa

F23(><1 ’Xz)

Best score obtained so far

100 200 300 400 500
Iteration

FIGURE 7. Convergence curves for algorithms over some fixed-dimension
multimodal benchmark functions.

TABLE 7. Multimodal benchmark functions.

Function Dim Range fmin

R =Y ~xsin(yTxd) 30 [-500,500] 188
i=1

o) =Z" [x2 — 10 cos( 2x;) + 10] 30 [-5.12,512] 0
i=1

Fio(x) = —20 exp(— 0.2 [T 3L, ) — 20 (32.32] 0

exp(%zl":l cos(2mx;)) +20 +e
1 n n X;
Fu@) = MZ,—=1 - l_L=1cos(ﬁ) +1 30 [-600, 600] 0

n
Fip(x) = ;{10 sin?(my,) +

n-1
D = D[+ 1050 (nyi, )]
+(n — )3 + I8, ulx;, 10,100,4) 30 [-50, 50] 0

x+1

=1+
k(xi—a)™ x;>a

={0 —a<x<a
k(—x;—a)™ x; < —a

u(x;, a,k,m)

Fi5(x) = 0.1{sin?(3mx,) +

Zn (= D21 + sin?(3mx, + 1)]
=1 30 [-50, 50] 0

+ (x, — D?[1 + sin?(2nx,)]}
n
+ i 5, 100, 4
D )

best in 12 benchmark tests. At the same time, CISSA behaves
better than the original algorithm in 12 sets of data, which
means the proposed CISSA behaves better in exploration
phase compared with the original SSA.

VOLUME 7, 2019

F24 Objective space

Best score obtained so far
5
S

20 40 60 80 100

Objective space
—»—CISSA
——SSA

F27(x1 ) Xy )

20 40 60 80 100
Iteration
Objective space
—*— CISSA
——SSA
—-=--PSO

—o—ALO
—A—DA

—+—SCA
—&-- WOA

Best score obtained so far

20 40 60 80 100
Iteration

FIGURE 8. Convergence curves for algorithms over some composite
benchmark functions.

TABLE 8. Fixed-dimension multimodal benchmark functions.

Function Dim Range S[min
! ® ! -1 2 [-65,65] 0
Fia() = (= + . -65,
1400 (500 zi=11' + X — aij)é)
G+,
- 20 * bixa). 4 [55 0.00030
Fs@ =)l b b ) [-5. 51
1
Fio(x) = 4x? — 2.1x} + = xf + xx, — 4x3
3 2 [-5,5] -1.0316
+4x3
P = (o= 5L 1Sy e
X) = (X ——=x{ +=x; —
v LA T 2 55 0398
+10(1 — ﬁ) cosx; + 10
Fig(x) = [1+ (x; +x, + 1)2(19 — 14x, + 3x?
—14x, + 6x,%; + 3x2)] X [30 + (2%, — 3x,)? 2 22 3
X (18 — 32x; + 12x7 + 48x, — 36x,x, + 27x3)]
3
4
Fu@ ==Y cem(- Z ayG-p)) 3 (L3 386
1 3.32
Fao(x) = = Tt ciexp( = Zf=1 i (% = pij)®) 6 0. 1] 33
5
Fa@® ==Y [(X-a)X-a) +c]™ 4 [0,10]  -101532
i=1
7
Fa(® ==Y [(X-a)X-a) +c]™ 4 [0,10]  -104028
i=1
10
Fa@® == [(X-a)X -a) +c]™ 4 [0,10] 105363
=1

C. EVALUATION OF AVOIDING LOCAL OPTIMUMS

Composite functions are the combination of several some
basic benchmark functions with same domain of defini-
tion [24]. Compared with the multimodal test functions, this
kind of functions have much more local optimal solutions,

136461



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

TABLE 9. Results of multimodal benchmark functions.

Func Type CISSA SSA PSO GOA ALO DA SCA WOA
Ave -7862.1735 -7013.2794 -6513.9984 -7692.1739 -5503.8875 -5488.4604 -4027.3611 -10518.0296
Std 689,9675 762.5983 754.2618 758.6933 65.2731 574.0214 282.3384 1871.2576
Fs Best -9521.2833 -8735.6871 -7682.9305 -8695.9302 -5751.2842 -6743.3691 -4985.6271 -12569.0502
Worst -6249.8003 -5304.9362 -5033.2861 -6031.5517 -5403.9675 -4502.6918 -3118.2463 -7562.2803
Ave 0.40369 44.2756 45.2777 86.5068 69.9456 165.532 36.0698 5.6843e-15
Std 0.97473 15.2289 15.3878 22.6649 15.126 32.6436 45.1902 1.7975e-14
Fo Best 0 28.8538 29.8488 51.8451 49.748 92.7266 1.116e-03 0
Worst 3.0265 76.6117 74.6928 121.5069 87.5563 210.8159 153.4426 5.6843e-14
Ave 2.3093e-14 1.7417 1.1296 3.7358 2.1993 7.4515 17.2497 4.4519¢-14
Std 1.1782¢-14 1.1229 1.2903 0.58767 0.62255 1.8275 6.2695 1.8346e-14
Fo Best 1.6606e-14 3.5226e-05 2.6161e-05 2.7586 1.64663 5.279 2.2611e-02 8.8818e-16
Worst 3.1117¢-14 3.5177 3.1582 4.4675 3.4617 11.0779 20.3186 4.4409¢-14
Ave 0 0.12539 0.017431 0.69623 0.018197 4.6281 0.82824 0.019449
Std 0 0.011164 0.018222 0.16024 0.010298 1.9089 0.3256 0.041441
Fu Best 0 ..3545¢-06 1.293e-08 0.56481 3.5989¢-03 2.2632 0.26164 0
Worst 0 0.029707 0.044058 1.0766 0.035149 9.1856 1.1421 0.11
Ave 2.6674e-03 4.279 0.2389 6.2375 9.5421 136.5521 4.5883 5.9864e-03
Std 2.3245¢-03 2.4211 0.41579 2.5468 3.0934 386.6621 3.3128 5.3882¢-03
Fr Best 5.9608¢-04 1.5457 7.4629¢-10 3.2373 5.0669 3.3231 1.2458 9.2701e-04
Worst 7.7207e-03 8.9211 1.0406 9.8671 13.1219 1236.2374 11.2189 0.019135
Ave 0.18562 4.7385 0.11028 14.3416 4.3452 11648.2322 7632.2918 0.19281
Std 0.10497 12.39 0.38859 20.3789 13.382 20732.7869 22561.7784 0.13032
Fis Best 0.38596 1.83e-05 2.063e-09 0.34126 0.014011 20.9492 2.9854 0.065653
Worst 0.42339 39.7499 2.1804 51.9456 42.4295 60655.8721 71726.8536 0.43455

at the same time, it’s hard to find the correlations among local
optimal solutions and global optimal solution. Only when the
algorithms strike the balance between exploration ability and
exploitation ability, can they find solutions closer to the global
optimal solutions.

The results in Tables 12 show that compared with other
7 meta-heuristic algorithms, CISSA still outperforms other
algorithms on F24, F27, F28, and it ranks second among the
other test functions, which means the proposed algorithm
provides very competitive performance in the composite
functions.

D. SIGNIFICANCE OF THE RESULTS
Simply comparing the average values couldn’t reflect the
difference between the results of each algorithm. Heuris-
tic algorithms have some regularity in the results of test
function, however, the distribution laws of these results are
complex and they can’t fully fit the normal distribution [25].
Therefore, researchers usually use non-parametric methods
to statistic the results [26]. As two commonly-used methods
of non-parametric statistics, Wilcoxon test and Friedman test
are widely used in many areas.

In the article, in order to judge whether the results of
CISSA were significantly different from results of other
algorithms, the Wilcoxon test with 0.05 significant level

136462

was applied to investigate the statistical significant differ-
ences [27]. The result calculated in this way is marked as
p-value. In this work, p-values were calculated based on
averaged values between CISSA and the other algorithms.

When p-value is less than 0.05, it could be considered that
difference between two samples is significant by definition.
The results shown in Table 13 indicate that p-values between
CISSA and other algorithms are less than 0.05 in most cases,
which means the solutions of CISSA and the other could be
regarded uncorrelated.

Meanwhile, we ranked the average performance of all
algorithms by Friedman test [28]. The ranking results are as
shown in Table 4 11, according to these statistical results,
we can see that by improving the original SSA in 4 steps,
CISSA can achieve better performances than the other com-
parison algorithms in all kinds of test functions.

E. COMPARISON OF CONVERGENCE PERFORMANCE
BETWEEN CISSA AND SSA

In the chapter, we chose Page’s trend test to compare the
convergence performance between CISSA and the original
SSA [29]. The procedure works by considering the null
hypothesis of equality between the 10 treatments analyzed,
which can be rejected in favor of an ordered alternative [30].

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

TABLE 10. Composite benchmark functions.

Function Dim _Range fp.,
Fpu(CF1)

fi,f2r f3r wes fro = Sphere Function, 30 [-5,5] ©
[61,05,05, ...,000] =[1, 1, 1,..., 1]

Au s As ..., Aro] = [5/100, 5/100, 5/100, ..., 5/100]

Fp5(CF2)

fi for far w0 fro = Griewank's Function, 30 [5,5] 0
[0y,05,05,...,000] =[1, 1, 1, ..., 1]

(A1 A2 A3, Ao] = [5/100, 5/100, 5/100, ..., 5/100]

Fy6(CF3)

fuir for far or fro = Griewank's Function 30 [5,5] 0
[01,02,03,.,000l = [1, 1, 1, ..., 1]

[A1, A2, A3, ..., A0l=11, 1,1, ..., 1]

F,,(CF4)

fi. fo = Ackley's Function,

fs, fu = Rastrigin’s Function,

fs, fo = Weierstrass Function,

fo, fs = Griewank's Function, 30 [-5.5] 0
fo. fio = Sphere Function,

[01,02,05,...,000] = [1, 1, 1,..., 1]

[A1, Az 5,0, A0 = [5/32, 5/32, 1, 1, 5/0.5,
5/0.5, 5/100, 5/100, 5/100, 5/100]
F,4(CF5)

fu. fo = Rastrigin’s Function,

f3, fa = Weierstrass Function,

fs, fs = Griewank's Function,

fo. fs = Ackley's Function, 30 [-5,5] ©
fo, fio = Sphere Function,

[o1,05,05,...,000] =[1, 1, 1, ..., 1]

[A1, 2, 25,..., A10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100,
5/100, 5/32, 5/32, 5/100, 5/100]

F,4(CF6)

fu fo = Rastrigin’s Function,

f3, fa = Weierstrass Function,

fs, fs = Griewank's Function,

fo. fs = Ackley's Function,

fo f10 = Sphere Function 30 [-5,5] 0
[64,0,, 03, ..., 010]

=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[A1, 22, A3, .., A10] = [0.1 % 1/5, 0.2%1/5, 0.3 *5/0.5,

0.4 %5/0.5, 0.5 5/100,0.6 * 5/100, 0.7 * 5/32, 0.80.9

*5/32,x5/100, 1+ 5/100]

The average values of CISSA and SSA on 23 test functions
were used as input data in Page’s trend test. Table 4.12 shows
the treatments’ ranks computed for the (CISSA-SSA) differ-
ences in fitness values. For completeness, the relevant data

VOLUME 7, 2019

Overall Service
‘ Microservice 1 ’ G/Iicmservice D G/Iicmservicea

Microservice 4

——Request 3-

[¢—Return 1——

Time:

[¢—Return 3

L Return Success

FIGURE 9. Process diagram of microservice architecture.

of the opposite comparison (SSA-CISSA) is also included.
On each test function, the convergence curves of the two
algorithms were divided into 10 equal parts, and the slope
of tangent between adjacent equal points were calculated.
Meanwhile, the test set the ranks’ values from 1 to 10 accord-
ing to the order of slope from small to large [31].

By adding the k-th slopes’ ranking values of each test func-
tion, we could get the k-th parameter of differences in Table
15. After obtaining these values, the Page L statistic can be
computed using Eq. (4.1):

10
L= Zk:l kCi 4.1)

where Cy is the sum of k-th slopes’ ranking values of all test
functions, where 1 < k < 10.

The comparison (CISSA-SSA) shows roughly increasing
trend in the ranks, which is confirmed by a very low p-value.
At the same time, the opposite comparison (SSA-CISSA),
shows clearly that the ranks are not increasing, which is
rejected by a p-value near to 1.0. These results show that the
CISSA is converging faster than the original SSA.

V. REDUNDANT CONTAINER DEPLOYMENT MODEL

In microservice architecture, the overall service is divided
into multiple microservices with corresponding functions.
Microservices call each other though lightweight communi-
cation mechanisms [1]. A simple example diagram is shown
in Figure 9, in the diagram, the red square represents the
completion time for series of tasks on each microservice, and
the dotted line represents the start time.

The total completion time depends on the microservice
with the longest completion time and the total communication
overhead [32]. For fixed business service, the number of calls
between microservices is constant [33].

Simultaneously, considering that all microservices work
on devices within the same LAN, communication overhead
between devices could be assumed to be the same [34]-[36].

Figure 10 displays an example of microservice scheme.
In the diagram, each microservice runs in the separate con-
tainer. For example, microservice 2 runs in container 2, which

136463



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

TABLE 11. Results of fixed-dimension multimodal benchmark functions.

Func Type CISSA SSA PSO GOA ALO DA SCA WOA
Ave 1.0973 1.2853 3.1136 0.998 1.9565 1.4277 1.1971 1.8197
F Std 0.39953 0.31258 2.9817 5.0824e-16 1.1175 0.88946 0.60516 1.8725
1 Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Worst 2.9821 1.992 11.7187 0.998 4.9505 3.9683 2.9821 10.7632
Ave 9.6215¢-04 2.9635¢-03 6.1483¢-04 8.3279e-03 3.6735¢-03 1.3971e-03 6.5871e-03 9.0263¢-04
F Std 4.4982¢-04 7.5627e-04 5.8846¢-03 7.9179e-04 9.5532¢-03 6.5757¢-03 5.7726¢-04 6.2958¢-04
* Best 3.0749¢-04 3.7476e-04 3.6295¢-04 3.0823¢-04 4.3143¢-04 4.7354e-04 4.2984¢-04 3.1366¢-04
Worst 1.0583¢-03 9.0597e-03 1.9753e-03 0.020367 0.020513 0.019222 1.7815¢-03 1.6624¢-03
Ave -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
F Std 2.2056e-10 1.8467e-16 6.5195¢-16 5.5669e-13 1.5017¢-13 3.0768e-11 3.1238¢-05 9.7031e-11
6 Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Worst -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Ave 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
F Std 1.8355¢-10 9.3729¢-14 0 8.6237-13 1.2135¢e-13 8.2854¢-07 1.2863¢-03 2.3657¢-05
7 Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Worst 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.40265 0.39789
Ave 3 3 3.9 8.4 3 3 3 3.0001
F Std 7.1321e-07 2.3159%¢-13 5.1089 21.3316 3.5836e-13 3.5784e-06 1.5182e-04 1.4069e-04
18 Best 3 3 3 3 3 3 3 3
Worst 3 3 3 84 3 3 3.0003 3.0006
Ave -3.8628 -3.8628 -3.8628 -3.7148 -3.8628 -3.8627 -3.8551 -3.8597
F Std 7.1328e-06 7.5284e-12 2.7925¢-15 0.3114 1.2237e-12 2.6491e-04 2.8834e-03 9.7328e-03
® Best -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628
Worst -3.8628 -3.8628 -3.8628 27125 -3.8628 -3.8615 -3.8622 -3.8611
Ave -3.2789 -3.2238 -3.2743 -3.2778 -3.2704 -3.2383 -2.9778 -3.2745
F Std 0.059643 0.062036 0.04225 0.061051 0.061197 0.092459 0.025686 0.094857
2 Best -3.322 -3.322 -3.322 3322 -3.322 -3.322 -3.2596 -3.3216
Worst -3.1518 -3.1519 -3.1376 -3.1859 -3.2019 -2.9165 -2.0354 -3.0735
Ave -8.2967 -7.982 -4.4834 -5.9692 -6.7064 -7.9522 -3.1166 -7.4474
F Std 2.7312 3.2007 2.7712 3.3753 2.9855 2.7832 2.9923 3.0323
" Best -10.1532 -10.1532 -10.1532 -10.1532 -10.1532 -10.1532 -6.5391 -10.1528
Worst -2.6305 -2.6305 -2.6305 -2.6305 -2.6305 -2.6305 -0.49726 2.6294
Ave -9.7261 -9.5517 -4.1653 -8.8142 -6.6108 -6.4231 -3.2905 -6.8745
F Std 2.4925 3.2012 3.4315 3.498 3.5186 2.893 2.6523 2.7518
2 Best -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 -10.4024
Worst -2.7609 -1.8376 27519 -2.7519 -1.8376 2.7519 -1.8371 -1.8376
Ave -10.0003 -9.4643 -5.9379 -7.1109 -7.2008 9.1123 -5.2768 99114
F Std 1.6952 2.2603 3.9764 3.7181 3.6154 2.7792 1.1582 1.9434
23 Best -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 -7.513 -10.5364
Worst -5.1756 -5.1756 24217 24273 24273 -2.8066 -3.1584 -4.3804

is deployed in terminal device 1. Therefore, the deployment
mode of microservices is equal to the deployment mode of

corresponding containers.

136464

Considering the instability of the terminal devices, the con-
tainer where each microservice resides should be backed
up on different devices to ensure the robustness of the

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

TABLE 12. Results of composite benchmark functions.

Func Type CISSA SSA PSO GOA ALO DA SCA WOA
Ave 30.0053 110.2327 155.8776 90.8453 207.4952 194.1754 177.7113 279.1412
F Std 48.3032 128.4497 71.736 98.4356 117.9897 122.083 22.0105 152.4998
24 Best 1.7424e-04 1.9503¢-03 95.0093 6.1901e-04 5.7448e-03 30.6855 143.6707 37.4585
Worst 100.0057 400.0002 300.0004 300.001 400.037 400.7501 207.9961 433.2938
Ave 136.7543 115.1595 195.8424 226.950 159.9945 237.4597 141.9592 236.0729
Std 81.2607 95.2572 162.658 115.3919 110.7163 141.8029 24.9221 66.6575
Fas Best 15.148 15.4722 32.0426 130.7801 19.0267 84.7149 130.7801 119.3591
Worst 214.5828 209.8059 400.3332 425931 293.2121 403.0255 209.8059 287.0019
Ave 314.6852 333.6369 294.4965 417.2032 323.5607 456.8633 513.6812 485.5221
Std 41.7187 82.533 108.8329 150.6854 84.5351 157.066 79.3718 171.0242
Fas Best 221.2605 206.9833 157.13 243.4726 254.8953 310.9156 411.1139 340.898
Worst 411.1139 438.033 411.1139 635.9919 460.4438 706.5522 700.3358 739.0262
Ave 429.933 433.5041 452.8456 498.8176 565.1525 520.2384 492.3794 603.2559
Std 108.1088 139.5072 126.4346 139.6885 133.1088 170.8394 30.9326 132.7753
Fa Best 299.2959 309.7755 319.2001 334.0825 426.6405 333.541 461.1001 398.8769
Worst 695.0759 720.4287 705.7962 727.9242 753.2168 785.0839 567.53 753.2168
Ave 81.1352 92.4789 242.4538 227.3485 130.5133 243.0856 148.4005 197.8198
F Std 94.3711 137.0837 210.5017 170.4024 105.6583 169.8291 59.3569 112.7564
2 Best 4.725 5.424 22.5445 20.4809 23.9793 59.8906 98.0655 105.0495
Worst 301.3921 413.6859 539.1734 511.4358 270.0358 535.6988 309.3857 472.0563
Ave 743.5929 745.2853 824.4995 909.4391 749.5765 905.3214 781.6804 758.4001
F Std 219.9683 220.9136 174.9161 3.5473 216.9906 1.6295 196.4364 211.0174
» Best 500.7066 500.7424 511.6002 905.2314 505.3516 903.4708 502.0492 526.3388
Worst 903.4629 907.0808 903.0404 912.9092 908.6582 907.8138 939.9401 918.2034

resource pool. At the same time, on account of the limited
resources of terminal devices, the maximum number of con-
tainers per terminal device is also far less than the number of
containers that can be deployed on the server [32].

In the article, we assume that there are N microservice
and each one handles a series of similar tasks. The total
size of these tasks on each microservice are defined as
{T;,Ts,...Ty}. Based on the above introduction, we added
two backups for every container, therefore, there are 3N con-
tainers and M terminal devices for deploying these containers.
The redundant container deployment model is described as
follows:

1. There are N types of all the tasks, which are processed
in N container, everyone is added 2 backups and runs
in the corresponding backup container. The set of 3N
tasksis {77, T2, ... T3y}, T; represents the total size of
tasks to be processed by the i-th container, and 7; =
Tn+i = Ton+i, where 1 < i < N, the total size of each
tasks is as shown in Table 18.

2. The set of 3N resources is {R;,R»,...R3ny} and R;
represents the pre-allocated resources of the i-th con-
tainer, and R; = Ry4+; = Ron4i, where 1 < i < N,
the normalized resource of each container is as shown
in Table 17.

VOLUME 7, 2019

(Task type 1 )(Task type 2)( Task type 3 )( Task type 4 )
@icroservice D@icroservice a@icroservice a@icmservice D

( Container 1 )C Container 2 )( Container 3 )( Container 4 )

&@®

Terminal Devicel

Tcrmmal Device2 Terminal Device3

FIGURE 10. Diagram of container deployment relationships in
microservice architecture.

3.

We use X(k) to represent the device, in which k-th

container is deployed, and 1 < X&k) < M,
1 <k <3N.
The set of M resources is {S7,S2,...Sy} and Sx

represents the maximum amount of resources that
the x-th terminal device can provide. To simplify the
model, we only consider memory resource to reduce
the dimension of resources, the normalized resource of
each device is as shown in Table 16.

136465



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

TABLE 13. p-Values of the Wilcoxon rank-sum test between CISSA and the other algorithms.

Func SSA PSO GOA ALO DA SCA WOA
F1 3.0199-11  3.0199%-11 3019911  3.0199-11  3.0199%-11  3.0199%-11  3.0199¢-11
F2 3.0199-11  3.0199-11  3.0199%-11  3.0199%-11  3.019%-11  3.019%-11  3.0199%-11
F; 3.0199-11  3.0199-11  3.0199%-11  3.0199%-11  3.0199%-11  3.0199%-11  3.0199%-11
F4 3019911 3.0199%-11 3019911 3019911  3.0199%-11  3.0199-11  3.0199¢-11
Fs 0017257 53903¢-05  3.0199%-11  12683¢-10  3.0199%-11  3.0199%-11  9.0972¢-03
Fs 3.0199%-11  3.0199%-11  3.0199%-11  3.0199%-11  3.0199%-11  3.0199%-11  0.042736
F7 3019911  6.8265e-11  3.0199%-11 3019911 3019911  3.0199%-11  0.027304
Fs 18267e-11  24613e-11  1.8267e-11  1.8267e-11  1.8267e-11  1.8267e-11  0.027304
Fy 1.7168e-11  1.7168e-11  1.7168e-11  1.7168e-11  1.7168e-11  8.6583¢-11  1.1055¢-09
F1o 3.0199-11  3.0199%-11  3.0199%-11  3.0199%-11  3.019%-11  3.0199%-11  1.1055¢-12
Fu 6.3864¢-05  6.3864¢-05  6.3864c-05  6.3864c-05  6.3864c-05  6.3864c-05  0.016808
Fi2 18267¢-07  1.4047¢-04  1.8267¢07  1.8267e07  1.8267e-07  1.8267e-07  0.075662
Fi3 6.7758¢-04  1.8267¢-07  3.2984¢-07  2.4132¢-03  18267¢-07  1.8267¢-07  0.062318
Fu4 1.1717e-11  13206e-05  22319e-11  5.8909¢-07  1.0921¢-04  4.998¢-09  1.4918¢-06
Fis 0016238 1473307  3.6709¢-03  0.021702  24905¢-06  0.048413 0.077312
F16 3.0142¢-11  4.0806e-12  3.0199%-11  3.016le-11  6.8593¢-06  3.0199%-11  7.2208¢-06
F17 3019911 1211812 3.0199%-11  4.1997¢-10  4.9818¢-04  6.0584c-11  42911c-10
Fis 3.0199-11  1.2379-11  3.0199-11  1.689-08  53686c-10  1.3594¢-07  0.012212
F1o 3.0142¢-11  1.7203¢-12  9.049¢-05  3.016le-11  8.883¢-04  3.0199-11  3.0199%-11
F2o 27086¢-08  23302¢-09  9.8834c-09  1.1228¢-08  1.3832¢-08  12057¢-12  1.0035¢-09
Fu 28913¢-04  4.1082¢-04 6414203  6.735¢-03  18349e-06  23897e-11  6.765¢-08
F2 9.6283¢-05  5.8346¢-07  3.5573¢-07  34029¢-04  54133¢-04  3.6328¢-04  1.8724¢-04
F23 0017257 0047218  3.8345c-03  3.0199%-11  5.8282¢-03  2.1544e-10  6.387c-12
F24 2.7304c-04  1.1706¢-08  42736¢-04  1.008¢-06  22022¢-06  1.8267¢-09  4.3964¢-09
Fas 5.4133¢-04  8.4848¢-00  3.0142¢-11  7.8759¢-07  9.3519¢-08  1.698¢-08 0.12967
Fa6 1.6079¢-07  7.9365¢-04  7.861e-03  33342e-11  3.016le-11  1.9527¢-03  7.0881e-08
Fz 9.6985¢-03  5.7075¢-04  1.8588¢-04  1.7257¢-06  1.4047¢-05  2.5748¢-06  7.2846¢-08
Fas 3.8467¢-08  4.5864c-10  4.5864c-10  14019¢-08  3.6105e-10  2.1134¢-08  1.133¢-08
Fa9 7.8367¢-04  5.6958¢-06  7.9365¢-04  2.2674e-07  83146¢-08  34783¢-03  6.9048¢-03

A container can be operated at any device in the 10. Given the fixed resource cap for each container,

resource pool as long as the device can provide enough
3N
resource, which means ) Ri < Sx and Ri represents

k=1
the k-th container is deployed in the x-th device.
The paper use matrix P[3N,M] to represent the unique-
ness of containers, P}‘c = 1 when k-th container is

deployed in the x-th device, otherwise P} = 0.
3N
The article uses F (X (k)) to represent whether ) R <

Sx, when the condition is met, F(X(k)) = 1, (ftﬁlerwise
F(X(k)) = inf.

Containers running in the same device work in parallel,
and the operating speed of each container will not be
influenced by other containers, because the resource of
each container is pre-allocated.

Different microservices handle tasks at different start-
ing times, we use time set {77, t2, ...t3y } to represent
them, #; represents the starting time of task on the
i-th container, and t; = t;; = 13, where 1 < [ <
N, the starting time of each container is as shown
in Table 19.

136466

11.

the abilities of each device to handle different type
of tasks on each container are different [35], [37].
The matrix of operating speed is set as mips[3N,M],
mips; tepresents the instruction processing speed of
x-th device for similar tasks on k-th container. Con-
sidering that there is a positive correlation between
instruction number and task size [38], the working time
for the k-th container running on the x-th device is efy,
which is calculated as follow:

aTy

— Tk
mipsy,
Clioc = container k is deployed on device x

0 container k isn’t deployed on device x
5.1

where « is a constant coefficient, to simplify the model,
assuming @ = 1 in the calculation process.

The article set penalty factors to avoid backup con-
tainers being deployed on the same device as much as

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

TABLE 14. Average ranking values using friedman test in different types
of test functions.

Fixed-

Ngoritm et Mo raimoaa P T
Function
CISSA 1.8571 1.5 2.05 1.3333 1.7414
SSA 3.8571 4.3333 3.55 2 3.4655
PSO 2.7143 3.1667 5.1 5 4.1035
GOA 5.5715 5.6667 5 5.5 5.3793
ALO 5.2857 5.1667 4.55 4.6667 4.8793
DA 7.1429 7.6667 435 7 6.2586
SCA 6.1429 6.3333 5.95 3.8333 5.6379
WOA 3.7143 2.1667 4.2 6.6667 4.1724

TABLE 15. Results of Page’s trend test between CISSA and SSA in F1-F23.

Differences CISSA-SSA SSA-CISSA
C, 104 149
C; 97 156
Cs 102 151
Cy 117 136
Cs 125 128
Cs 139 114
C, 122 131
Cs 148 105
Cy 156 97
Cyo 155 98

L-statistic 7523 6392

p-value 0.0012 0.9990

TABLE 17. Memory about each type of terminal device.

Device type 1 2 3 4 5
S:1-5 (GB) 2 2.5 2 1.8 1.5

TABLE 18. Total size of tasks on each container.

Container type 1 2 3 4 5 6 7 8
T:1-5 (GB) 5 4.5 4 3 4 38 46 2.5

TABLE 19. Starting time of tasks on each container.

Container type 1 2 3 4 5 6 7 8
t:1-8 (s) 100 200 150 0 180 100 20 100

TABLE 20. Mips about each type of container and device.

Mips} k:1-8

x:1-5 6 2 7 3 2 6 7 7

TABLE 16. Pre-allocated memory about each type of container.

Container type 1 2 3 4 5 6 7 8
R:1-8 (MB) 300 200 300 400 500 600 600 400

possible, the relationship is shown as follows:

penaltyf(i)

0  node x only has one or zero container of i
=110
inf node x has all three identical containers of i

(5.2)

node x has two identical containers of i

where 1 < i < N, and the total penalty is calculated as
follows:

N .
total pepairy = 1 + Zi:l penaltyf(l) (5.3)

12. The total completion time of all microservices depends
on the maximum work time of container, which is
shown as:

total e =max (etyy) 1 <k <3N, 1<X(k)<M
54

In consideration of the resource limitation relationship
between containers and devices, Eq. (5.4) should be
revised as follows:

totalime = max (ety) % F (X (k) % LY (5.5)

VOLUME 7, 2019

13. Based on the above descriptions and assumptions,
the quality of the redundant container deployment
model is mostly depended on the total completion time
and whether multiple backup containers are deployed
on the same device. Hence, the overall evaluation indi-
cator can be expressed as follows:

fitness = total sjme * totalpenairy (5.6)

VI. EXPERIMENT OF CISSA ON REDUNDANT

CONTAINER DEPLOYMENT MODEL

In the chapter, we have designed multi-sized redundant
container deployment scenarios, which roughly cover the
commonly-used size of terminal device cluster [39], [40].
To simplify the description, all containers and termi-
nal device are composed by the basic types described
in Table 16-Table 20.

In scenario 1, there are 8 containers which involve con-
tainer type 1-8 in Table 16, and each container has 2replicas
as backup containers, these backup containers are num-
bered as 9-16 and 17-24, therefore, there are 24 contain-
ers in all. Besides, there are 10 terminal devices, each
device type in Table 17 has 2 terminal devices, for exam-
ple, terminal device 7 and terminal device 8 are device
type 4.

In scenario 2, there are 96 containers in total, including
32 containers and their replicas, the sequences of container

136467



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

Container typel Container type8 TABLE 21. Results of redundant container deployment model by using
docker swarm.
1 2 3 4 o 2 30 31 32 Strategy Scenario 1 | Scenario 2 Scenario3
— Binpack Inf Inf Inf
replical Container typel Container type8
Average Spread Inf Inf Inf
replica2 33 34 35 36 e 61 62 63 64 Random inf inf Inf
Binpack Inf Inf Inf
Container typel Container type8
/—'Iﬁ Std Spread Inf Inf Inf
» 65 66 67 68 o 93 94 95 96 Random inf inf Inf
FIGURE 11. Diagram of container number in scenario 2. Binpack inf Inf Inf
Best Value Spread 422180 Inf Inf
number are as shown in Figure 11. And each device type has Random 26950 inf Inf

8 terminal devices, which means there are 40 terminal devices
in all.

In scenario 3, there are 1008 containers in all, including
336 containers and their replicas, each container type has 40
containers, and all these containers have 2 replicas of their
own. And there are 420 devices in total with 84 terminal
devices per type.

Considering that in real application scenarios, the resource
pool composed by terminal devices is more prone to fluc-
tuations compared with commonly-used cloud environments
due to the instability of terminal devices, it’s necessary to
solve the problem by using an algorithm with lower time
complexity [32].

In terms of container cluster scheduling systems, two of
the most popular tools in industry are Kubernetes and Docker
swarm [41]. However, in the terminal resource pool scenario
where device resources are limited, deploying Kubernetes
may consume a lot of resources [42], for example, the recom-
mended memory reserve configuration should be up to 2G,
such large resource consumption is intolerable for terminal
devices. Considering the resource usage, we chose Docker
swarm for practical application scenarios [43].

The backup strategy of Docker swarm is implemented
by data volume mounting [37], but the recovery speed of
this method is slow when the terminal device fails. There
are no pre-reserved resources for backup containers. When
failure occurs, the corresponding data needs to be transferred
from the shared volume, and new container will restart.
In resource-constrained embedded devices, these processes
often take a lot of time. However, when the way of data
volume sharing is not considered, redundant containers are
deployed by using its own deployment strategies, the results
are often unsatisfactory.

Docker swarm contains three default container deployment
strategies, which are Binpack, Spread and Random [44].
In the process of experiment, each native functionality of
Docker swarm is tested for 100 times, we found that all
these default container deployment strategies of Docker
swarm were uncapable to handle such complex problem.

136468

In these scenarios, containers and their own backups would
be deployed in the same device inevitably. After multiple
experiments, the mean values and standard deviations on the
evaluation function measured by the three basic methods are
all inf, the experiment results are shown in Table 21. These
results indicate that simply using the native functionality
of these common scheduling tools couldn’t solve the real
problem of these scenarios.

Meanwhile, considering that the terminal devices in the
resource pool switch frequently, the corresponding container
deployment method should have low time complexity. Com-
pared to a series of algorithms that sacrifice time complexity
for higher accuracy, we incline to use CISSA and these
comparison algorithms, which can guarantee the accuracy
of solving redundant container deployment problem while
considering the time complexity.

In each scenario, 7 algorithms are compared with the pro-
posed CISSA, and every algorithm runs 1000 iterations with
100 search agents. In order to reduce the accidental factors,
every algorithm is tested for 100 times. In Table 22, we record
the statistical data such as average values, standard deviations
and best values.

As can be observed from Table 21 that CISSA have indi-
cated an obvious advantage over the other 7 comparative
algorithms on solving redundant container deployment prob-
lem. For example, in scenario 1, the best value obtained
by CISSA is 2180, and the corresponding terminal devices
number of containers are (5, 2,2, 5,6,6,3,5,3,9,6,9,3,9,
5,8,3,10,1,2,9,4,9,6).

In the model, the penalty factor as a multiplier will greatly
affect the fitness of the final solution, therefore, the solutions
obtained by these algorithms inevitably deteriorate when the
problem dimension increases, that’s to say, there are contain-
ers and their backups deployed on the same device. Although
the tendency of the solutions is to deteriorate as the dimension
increases, however, in each scenario, CISSA can still obtain
the minimum average value and minimum standard deviation
in all dimensions.

VOLUME 7, 2019



B. Ma et al.: CISSA on Redundant Container Deployment Problem

IEEE Access

TABLE 22. Results of redundant container deployment model by using
meta-heuristic algorithms.

Function Scenario 1 Scenario 2 Scenario3
CISSA 2.1908e03 2.5334e03 6.4926¢03
SSA 2.2497e03 2.7528e03 7.1974e03
PSO 2.2162e03 2.7231e03 6.6154¢03
Average GOA 2.2751e03 6.9192¢03 1.1551e05
ALO 2.2551e03 3.9932¢03 5.0810e04
DA 2.3113e03 7.3154e03 6.3664¢04
SCA 2.2951e03 4.2074e05 5.2897¢04
WOA 2.2108e03 2.6859¢03 6.9742¢03
CISSA 53.1755 839.3206 1.1879¢04
SSA 369.4234 2.0752e03 1.2839¢04
PSO 208.5653 2.0813e03 1.1977¢04
Std GOA 417.2795 4.1535e04 4.7616e05
ALO 370.3465 1.2302e04 3.0603e05
DA 561.7930 4.1689¢04 5.0554¢05
SCA 458.5627 4.1797e06 3.0567¢05
WOA 205.8914 1.8264¢03 1.2729¢04
CISSA 2180 2180 2180
SSA 2180 2180 2180
PSO 2180 2180 2180
Best Value GOA 2180 2180 2450
ALO 2180 2180 2180
DA 2180 2180 4180
SCA 2180 2180 2450
WOA 2180 2180 2180

VII. CONCLUSION AND FUTURE WORKS

The article proposed a comprehensive improved salp swarm
algorithm, which was modified in 4 mechanisms on the basis
of the original SSA. The proposed CISSA was designed to
improve the exploitation capacity and slow convergence rate
without increasing the time complexity. In order to more
convincingly compare the performance of CISSA and the
original SSA, this article used the same benchmark functions
used by SSA. The performance of the algorithm was superior
to the other 7 comparison algorithms in most benchmark
functions, and p-values of Wilcoxon rank-sum statistic tests
were also used to prove the irrelevances of the results.

At the same time, this paper designed an evaluation index
of redundant container deployment model, which was based
on the total completion time and the robustness of the sys-
tem. To verify the availability of the scheme, we used con-
tainer clusters of different sizes. When CISSA was applied to
redundant container deployment problem of different sizes,
it could promote the performance of the original SSA and
outperformed all the other comparison algorithms.

The research of CISSA and its application on redundant
container deployment problem still remain many issues wor-
thy of further study. Firstly, we should enunciate a theoretical

VOLUME 7, 2019

model of convergence to the optimum [45], and the perfor-
mance of CISSA needs further improvement. Then, given
the varying importance of the various tasks running on the
containers, we could set up different number of backups
for each container. Lastly, in order to meet the increasing
industrial demand, the optimized algorithm could be applied
in multiple terminal devices located in different network seg-
ments, with the additional consideration of communication
overhead between devices [46], [47].

REFERENCES

[1]
[2]
[3]

[4

=

[5

—

[6

—

[71

[8

—

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

R. Zhao and X. Zhu, “A review of the microservice architecture,” J. Netw.
New Media, vol. 8, no. 1, pp. 58-61 and 65, 2019.

D. Bernstein, ““Containers and cloud: From LXC to docker to kubernetes,”
IEEE Cloud Comput., vol. 1, no. 3, pp. 81-84, Sep. 2014.

R. Morabito, “A performance evaluation of container technologies on
Internet of Things devices,” in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, Apr. 2016,
pp. 999-1000.

S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for
engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163-191,
Dec. 2017.

Z. Xing and H. Jia, “Multilevel color image segmentation based on
GLCM and improved Salp Swarm algorithm,” IEEE Access, vol. 7,
pp. 37672-37690, 2019.

M. Werth, R. Holmes, M. Roggemann, J. Lucas, M. Abercrombie, and
D. Thompson, “Improving optical imaging of dim SSA targets with sim-
plified adaptive optics systems,” in Proc. IEEE Aerosp. Conf., Big Sky,
MT, USA, Mar. 2018, pp. 1-12.

T. K. Mohapatra and B. K. Sahu, *“ Design and implementation of SSA
based fractional order PID controller for automatic generation control
of a multi-area, multi-source interconnected power system,” in Proc.
Technol. Smart-City Energy Secur. Power (ICSESP), Bhubaneswar, India,
Mar. 2018, pp. 1-6.

S. Ekinci and B. Hekimoglu, ‘“Parameter optimization of power system sta-
bilizer via Salp Swarm algorithm,” in Proc. 5th Int. Conf. Electr. Electron.
Eng. (ICEEE), Istanbul, Turkey, May 2018, pp. 143-147.

Q. Zhang, H. Chen, A. A. Heidari, X. Zhao, Y. Xu, P. Wang, Y. Li, and
C. Li, “Chaos-induced and mutation-driven schemes boosting Salp chains-
inspired optimizers,” IEEE Access, vol. 7, pp. 31243-31261, 2019.

M. S. Tavazoei and M. Haeri, “Comparison of different one-dimensional
maps as chaotic search pattern in chaos optimization algorithms,” Appl.
Math. Comput., vol. 187, no. 2, pp. 1076-1085, Apr. 2007.

S. Arora and P. Anand, “Chaotic grasshopper optimization algorithm for
global optimization,” Neural Comput. Appl., pp. 1-21, Jan. 2018.

Y. Zhen and Z. Hongyan, ‘‘Research on uniformity based on the chebyshev
chaotic map,” in Proc. IEEE Int. Conf. Comput. Intell. Commun. Technol.,
Ghaziabad, India, Feb. 2015, pp. 177-179.

D. He, C. He, L.-G. Jiang, H.-W. Zhu, and G.-R. Hu, “Chaotic charac-
teristics of a one-dimensional iterative map with infinite collapses,” IEEE
Trans. Circuits Syst. I. Fundam. Theory Appl., vol. 48, no. 7, pp. 900-906,
Jul. 2001.

Y. Dai and X. Wang, “Medical image encryption based on a composition of
logistic maps and chebyshev maps,” in Proc. IEEE Int. Conf. Inf. Automat.,
Shenyang, China, Jun. 2012, pp. 210-214.

J. Meng, “Realization of periodic orbits of Bernouilli shift map in a digital
computer,” J. Zhejiang Univ. Eng. Sci., vol. 35, no. 4, pp. 111-114, 2001.
A. G. Radwan and S. K. Abd-El-Hafiz, “Image encryption using gen-
eralized tent map,” in Proc. IEEE 20th Int. Conf. Electron., Circuits,
Syst. (ICECS), Abu Dhabi, United Arab Emirates, Dec. 2013, pp. 653-656.
K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan, “The 100-digit
challenge: Problem definitions and evaluation criteria for the 100-digit
challenge special session and competition on single objective numerical
optimization,” Nanyang Technol. Univ., Singapore, Tech. Rep., 2019.

E. S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv.
Eng. Softw., vol. 95, pp. 51-67, May 2016.

S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper optimisation algo-
rithm: Theory and application,” Adv. Eng. Softw., vol. 105, pp. 30-47,
Mar. 2017.

136469



IEEE Access

B. Ma et al.: CISSA on Redundant Container Deployment Problem

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Mirjalili, ‘“Dragonfly algorithm: A new meta-heuristic optimiza-
tion technique for solving single-objective, discrete, and multi-objective
problems,” Neural Comput. Appl., vol. 27, no. 4, pp. 1053-1073,
May 2016.

S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization
problems,” Knowl.-Based Syst., vol. 96, pp. 120133, Mar. 2016.

S. Mirjalili, “The ant lion optimizer,” Adv. Eng. Softw., vol. 83, pp. 80-98,
May 2015.

M. R. AsadiandS and S. M. Kouhsari, * Optimal overcurrent relays coordi-
nation using particle-swarm-optimization algorithm,” in Proc. IEEE/PES
Power Syst. Conf. Expo., Mar. 2009, pp. 1-7.

W. Xiao, H. Deng, Y. Sheng, and L. Hu, “Factored grey wolf opti-
mizer with application to resource-constrained project to scheduling,” Int.
J. Innocative Comput. Inf. Control, vol. 14, no. 3, pp. 881-897, 2018.

Q. Yue and S. Feng, “The statistical Analyses for computational per-
formance of the genetic algorithms,” Chin. J. Comput., vol. 32, no. 12,
pp- 2389-2392, 2009.

M. Coffin and J. Matthew Saltzman, “Statistical analysis of computational
tests of algorithms and heuristics,” Informs J. Comput., vol. 12, no. 1,
pp. 24-44, Feb. 2000.

F. Wilcoxon, S. K. Katti, and R. A. Wilcox, “Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test,”
Sel. Tables Math. Statist., vol. 1, pp. 171-259, Jun. 1970.

J. Derrac, S. Garcia, D. Molina, and F. Herrera, ““A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3-18, Mar. 2011.

E. B. Page, “Ordered hypotheses for multiple treatments: A signifi-
cance test for linear ranks,” J. Amer. Stat. Assoc., vol. 58, no. 301,
pp. 216-230, 1963.

J. Derrac, S. Garciab, S. Hui, P. N. Suganthan, and F. Herrera, “Ana-
lyzing convergence performance of evolutionary algorithms: A statistical
approach,” Inf. Sci., vol. 289, pp. 41-58, Dec. 2014.

J. Derrac, S. Garcfa, S. Hui, F. Herrera, and P. N. Suganthan, “Sta-
tistical analysis of convergence performance throughout the evolution-
ary search: A case study with SaDE-MMTS and Sa-EPSDE-MMTS,”
in Proc. IEEE Symp. Differ. Evolution (SDE), Singapore, Apr. 2013,
pp. 151-156.

B. I. Ismail, E. M. Goortani, M. B. A. Karim, W. M. Tat, S. Setapa,
J. Y. Luke, and O. H. Hoe, “Evaluation of docker as edge computing plat-
form,” in Proc. IEEE Conf. Open Syst. (ICOS), Bandar Melaka, Malaysia,
Aug. 2015, pp. 130-135.

C. Kaewkasi and K. Chuenmuneewong, “Improvement of container
scheduling for docker using ant colony optimization,” in Proc. 9th
Int. Conf. Knowl. Smart Technol.(KST), Chonburi, Thailand, Feb. 2017,
pp. 254-259.

M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, and M. Steinder,
“Docker containers across multiple clouds and data centers,” in Proc.
IEEE/ACM 8th Int. Conf. Utility Cloud Comput. (UCC), Limassol, Cyprus,
Dec. 2015, pp. 368-371.

M. Sureshkumar and P. Rajesh, “Optimizing the docker container usage
based on load scheduling,” in Proc. 2nd Int. Conf. Comput. Commun.
Technol. (ICCCT), Chennai, India, Feb. 2017, pp. 165-168.

A. Dusia, Y. Yang, and M. Taufer, “Network quality of service in
docker containers,” in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2015,
pp. 527-528.

A. Azab, “Enabling docker containers for high-performance and many-
task computing,” in Proc. IEEE Int. Conf. Cloud Eng. (IC2E), Vancouver,
BC, Canada, Apr. 2017, pp. 279-285.

J. Wu and T.-I. Yang, “Dynamic CPU allocation for Docker containerized
mixed-criticality real-time systems,” in Proc. IEEE Int. Conf. Appl. Syst.
Invention (ICASI), Chiba, Japan, Apr. 2018, pp. 279-282.

S. K. Pentyala, “Emergency communication system with Docker con-
tainers, OSM and Rsync,” in Proc. Int. Conf. Smart Technol. Smart
Nation (SmartTechCon), Bengaluru, India, Aug. 2017, pp. 1064—1069.

G. Bhatia, A. Choudhary, and K. Dadheech, “Behavioral analysis of
docker Swarm under DoS/ DDoS attack,” in Proc. 2nd Int. Conf. Inventive
Commun. Comput. Technol. (ICICCT), Coimbatore, India, Apr. 2018,
pp. 985-991.

J. Shah and D. Dubaria, “Building modern clouds: Using docker, kuber-
netes & Google cloud platform,” in Proc. IEEE 9th Annu. Comput.
Commun. Workshop Conf. (CCWC), Las Vegas, NV, USA, Jan. 2019,
pp. 184-189.

136470

(42]

[43]

[44]

[45]

[46]

(47]

A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate, “Techniques
to secure data on cloud: Docker swarm or kubernetes?”” in Proc. 2nd Int.
Conf. Inventive Commun. Comput. Technol. (ICICCT), Coimbatore, India,
Apr. 2018, pp. 7-12.

M. R. M. Bella, M. Data, and W. Yahya, ‘““Web server load balancing based
on memory utilization using docker Swarm,” in Proc. Int. Conf. Sustain.
Inf. Eng. Technol. (SIET), Malang, Indonesia, Nov. 2018, pp. 220-223.

N. Naik, “Building a virtual system of systems using docker swarm in
multiple clouds,” in Proc. IEEE Int. Symp. Syst. Eng. (ISSE), Edinburgh,
U.K., Oct. 2016, pp. 1-3.

G. Xu and G. Yu, ““On convergence analysis of particle swarm optimization
algorithm,” J. Comput. Appl. Math., vol. 333, pp. 65-73, May 2018.

B. Xie, G. Sun, and G. Ma, “Docker based overlay network performance
evaluation in large scale streaming system,” in Proc. IEEE Adv. Inf. Man-
age., Commun., Electron. Autom. Control Conf. (IMCEC), Xi’an, China,
Oct. 2016, pp. 366-369.

Y. Li and Y. Xia, “Auto-scaling Web applications in hybrid cloud based
on docker,” in Proc. 5th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT),
Changchun, China, Dec. 2016, pp. 75-79.

BOTAO MA received the B.S. degree from the
University of Electronic Science and Technol-
ogy of China, in 2014. He is currently pursuing
the Ph.D. degree with the University of Chinese
Academy of Sciences. His current research inter-
ests include distributed computing, evolutionary
algorithms, and virtualization technology.

HONG NI received the M.S. degree from the
Institute of Acoustics, Chinese Academy of Sci-
ences, in 1989, where he is currently a Researcher,
a Doctoral Tutor, and the Deputy Director. His
research interests include broadband multimedia
communication, network new media technology
and application, embedded systems, and middle-
ware technology.

XIAOYONG ZHU received the Ph.D. degree in
signal and information processing from the Uni-
versity of Chinese Academy of Sciences, in 2009.
He is currently a Professor with the Chinese
Academy of Sciences. His current research inter-
ests include embedded systems, virtualization
technology, and new network communication.

RAN ZHAO received the B.S. degree in automa-
tion from Tsinghua University, in 2014, and the
Ph.D. degree in signal and information process-
ing from the University of Chinese Academy of
Sciences, in 2019. His current research interests
include evolutionary algorithms and cloud com-
puting architecture.

VOLUME 7, 2019



