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ABSTRACT Rotating radio transients (RRATS) are sporadically emitting pulsars which are detected only
through single pulse search. Detecting these single pulses in RRATSs observation with high detection
accuracy is a challenge due to the background noise. It is better to conduct the single pulse detection
directly on the raw time-frequency observation than on the de-dispersed data, because de-dispersion process
takes very intensive computation. In this paper, we propose to accomplish this idea by treating two-
dimensional (2D) time-frequency data as images and develop a curvelet based denoising approach after
studying the characteristics of the RRATS pulses and the noise. The denoising approach estimates the range
of curvature (orientations) and width (scales) that describe the RRAT's pulses and reconstructs cleaner images
from the selected orientations and scales. The proposed denoising approach does not require prior knowledge
of exact dispersion measures (DM) value. In addition, a framework of detecting the single pulses from the
time-frequency data, named HOG-SVM, is also proposed to further evaluate the curvelet based denoising
approach. Compared with the other four denoising approaches, the proposed curvelet based method leads to

better detection results, with detection accuracy being increased to 98.7% by HOG-SVM.

INDEX TERMS Astronomical single pulse, curvelet based denoising, DM-free, single pulse detection.

I. INTRODUCTION

In the modern era of computer science, it is of great interest
to design algorithms and methods that can be utilized in
astronomical research. Astronomical data collected by tele-
scopes are crucial for experimental astronomy, which pro-
vides the evidence to reveal the physical or environmental
properties of celestial bodies. However, these collected data
are usually polluted with celestial or terrestrial interference
and noise. Thus it is necessary to develop efficient approaches
for denoising and analyzing the astronomical data. In this
work, we focus on the astronomical data of a specific celestial
body: Rotating Radio Transients (RRATS), which is a special
kind of pulsar and is detected only through single pulse
search. Different from periodically emitting pulsars, RRATS
are sporadic pulsars that emit isolated pulses. The profiles of
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the pulses are typically a few milliseconds in duration, with
intervals between detected pulses ranging from minutes to
hours [1].

There are mainly two types of approaches to the search
of pulsars in the time domain: periodicity searching [2] and
single pulse searching [3]. Both approaches conduct search-
ing on de-dispersed time series but try to detect different
phenomena. Periodicity searching aims to detect periodic
pulses while single-pulse searching works for isolated tran-
sients, such as RRATs, fast radio burst (FRB). Generally,
the preparatory steps of both searching approaches are the
same: first is radio frequency interference (RFI) removal from
the raw time-frequency data, then is to apply de-dispersion
to the data. Dispersion is the phenomenon in which adjacent
frequency channels are shifted in time to compensate for
the frequency-dependent delay introduced as the radio wave
travels through the interstellar medium (ISM) by an amount
proportional to the dispersion measures (DM) [3]. Because
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FIGURE 1. A short slice of 11819—1458 time-frequency data which
contains a visible curve (a strong pulse). The horizontal lines in the image
are caused by interference.

DM is not known as prior knowledge, choosing the optimal
trail DM is done by a blind search from thousands of trial
DMs. This process takes very intensive computation. Thereby
it is desirable to investigate effective denoising and detection
approaches for time-frequency data (before de-dispersion)
without known of the exact DM value.

In this work, we treat the RRAT time-frequency data as
digital images. Fig. 1 shows a short slice of time-frequency
data of J1819—1458, which contains a strong (visible)
pulse. When the data is viewed in the time-frequency plane,
the pulse signal is shown as a visible curve. While most
pulses in the wild are too weak to be visible, thereby the
main aim of applying denoising to time-frequency data is to
make the invisible pulses visible. Such denoising processing
is of great benefit to the following single pulse detection.
Unfortunately, currently, there are very limited denoising
methods specially designed for RRAT's time-frequency data.
And the conventional denoising methods in image processing
area can not meet this special requirement quite well. Because
most denoising approaches in the image processing [4]-[6]
are designed for portraits or landscapes, which do not contain
such strong background noise. Thereby, this work is dedi-
cated to this research area.

Inspired by the curvelet transform theory [7], we propose
a curvelet-based denoising method for radio observations of
RRATs. The curvature and widths of different RRATSs pulses
are various because of their distinct intrinsic properties from
one another. The curvature is determined by the DM value
of the RRATSs and is related to the magnetic field of the
RRATS. Taking into account the characteristics of the RRAT
pulses and the noise, we approximately estimate the range
of curvature (orientations) and width (scales) that describes
an RRAT pulse (curve) and use these to develop an effective
denoising approach. The proposed denoising approach does
not require prior knowledge of an exact DM value. Different
from most denoising tasks in conventional image processing
which use peak signal to noise ratio (PSNR) to evaluate
the denoising performance, the final goal of our denoising
method is to lead a higher accuracy on single pulse detection.
Therefore, to better evaluate the efficiency of the proposed
denoising approach, a single pulse detection method from
time-frequency data is also developed. Fig. 2 shows the
proposed two-stage denoising and detection methods. The
input is time-frequency data, which can be considered as
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grey images. The output is a binary decision for each image.
0 represents no single-pulse detected and 1 represents single-
pulse detected from the input image. Comparing with a tra-
ditional denoising method, curvelet based method leads to a
higher detection accuracy in the single pulse detection stage.
And the proposed detection method outperforms another
detection method.

The main contributions of this work include:

1) A curvelet-based denoising method is proposed for
radio time-frequency data of RRATs which does not
require the prior knowledge of the DM value.

2) A framework HOG-SVM is developed for single pulses
detection which effectively improves the detection
accuracy.

3) Extensive experiments are conducted on a simulated
dataset. Based on the experimental results, the pro-
posed curvelet based denoising method outperforms
the other four compared methods.

The remainder of the paper begins by providing the
related work on denoising methods for astronomical radio
observation and general denoising methods in image pro-
cessing in Section II. Section III gives details about the
proposed curvelet-based denoising approach. The single
pulse detection framework is presented in Section IV. The
simulated dataset, performance matrices, experimental set-
tings, detailed experimental results and analysis are given
in Section V. Finally, the conclusions and future works are
summarized in Section VI.

Il. RELATED WORK

In the past few years, several single pulse searching meth-
ods [8], [9], [35] are proposed which include de-dispersion.
Cordes and McLaughlin [8] first presented a general method-
ology for single-pulse search which includes de-dispersion,
boxcar filtering, thresholding and determining the real pulses.
The one-dimensional boxcar denoising method (also named
as the matched filter) was utilized to de-dispersed time
series. This conventional denoising method was employed
among others by Deneva et al. [9], Keane et al. [10],
Bagchi et al. [11] and Cui et al. [12] for single-pulse searches.
Another RRATSs searching algorithms-PRESTO was pre-
sented by [9], which utilized a matched filter similar to the
method proposed by Cordes and McLaughlin [8], but with a
sophisticated RFI excision scheme and a trial DM list. This
approach can eliminate the unique RFI generated by radar
and the non-periodic RFI detected in multi-beams. However,
PRESTO shows less sensitive to weak, narrow pulses but
resulted in a significant reduction of RFI events.

Recently, some work studied denoised methods for de-
dispersed time-series. Romeo et al. [13] designed an efficient
wavelet add-on code for removing noisy from cosmological,
galaxy and plasma N-body simulations. Eatough et al. [14]
proposed an RFI removal technique: zero-DM filtering. Since
terrestrial RFI does not have the property of dispersion,
this method filtered the radio signal with zero DM value.
It is effective for suppressing the terrestrial interference.
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FIGURE 2. The framework of two-stage denoising and detecting method for RRATs
time-frequency data. The curvelet denoising approach includes curvelet decomposition,
parameters selection and curvelet reconstruction from selective parameters.

Jiang et al. [15] presented a wavelet based denoised approach
for the de-dispersed time series which is utilized before the
single-pulse search. Based on the a priori knowledge of the
spin period of RRATsS, they applied wavelet reconstruction
and shrinkage to the selective frequency bands.

In addition to the above denoising methods used in the
astronomical study, image denoising has long been a focus
in computer vision. Many filter-based methods have been
proposed, for example, block-matching and 3D filtering
(BM3D) [16], non-local means filter and its method noise
thresholding (NLFMT) [17], and progressive image denois-
ing (PID) [18]. These filter-based methods are efficient in
suppressing the noise in slightly corrupted images. There
are numerous sparse coding based methods. For exam-
ple, Xu et al. proposed trilateral weighted sparse coding
(TWSC) [19] scheme for robust real-world image denoising.
Zhang et al. developed group-based sparse representation
(GSR) [20] to sparsely represent natural images in the domain
of group, which enforces the intrinsic local sparsity and
non-local self-similarity of images simultaneously. Lots of
supervised learning based methods are proposed for image
denoising. Yin et al. [21] proposed a model that uses a devised
cost function involving semisupervised learning based on a
large number of corrupted images with a few labeled train-
ing samples. Recently, deep learning based approaches have
shown promising results in image denoising and restoration.
Dong et al. [22] presented a deep learning method for sin-
gle image super resolution (SR) by an end-to-end mapping
between the low/high-resolution images. Mao et al. [23]
developed a very deep fully convolutional encoding-decoding
framework for image restoration which includes symmet-
rically link convolutional and deconvolutional layers with
skip-layer connections. Zhang et al. [24] proposed a denois-
ing convolutional neural network (DnCNN) model to handle
Gaussian denoising with the unknown noise level. Such deep
learning based methods require a large amount of labeled
images for training the model.

Different from the above methods, our denoising method is
specially designed for the time-frequency RRAT's observation
data (before de-dispersion) and works for data including weak
pulses and the DM values are unknown. The proposed denois-
ing method aims to make curve invisible curve (pulse) visible
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but not only RFI removal. To the best of our knowledge,
there is no existing denoising framework which is specially
designed for the time-frequency RRATs data before single
pulses detection.

IIl. CURVELET DENOISING

As shown in Fig. 2, the proposed method has two stages:
denoising and detection. In this section, we introduce the
denoising method. Considering the dispersion property of
radio astronomical signal is shown as a curve in time-
frequency plane, and the dispersed curve can be well defined
by applying curvelet decomposition together with parame-
ter selection and reconstruction to the time-frequency data,
we propose a curvelet based denoising method for radio
observation of RRATs. The proposed curvelet denoising
approach includes curvelet decomposition, parameters selec-
tion and curvelet reconstruction from selective parameters
which are presented in Sections III-A and III-B.

A. CURVELET TRANSFORM

Curvelet analysis was first proposed by [27], and then was
further implemented on digital data by [28]. It is widely used
in image processing, compressed sensing and fluid mechan-
ics, etc [29]. In the two-dimensional (2D) domain R?, @;j is
considered as a mother cuevelet in the sense that all curvelets
at scale 27/ are obtained by rotations and translations of
@; [30], where the rotation angle ¢; = 27 - 27 U2l . 1, with
| = 0,1,..., such that 0 < 6; < 2m. The transla-
tion parameter is k = (k1,ky) € 7Z2. With these nota-
tions, the curvelets at scale 27J, orientation 6; and position
x,’(’l = Re_ll(kl 27, ky - 279/2) are defined as:

@1k(x) = gj(Ro (x — x")), (M
where Ry is the rotation by 6 radians and R, Lis its inverse,
Ry — < co.sé‘ sind > )
—sinf cosf

Given a mother curvelet and a set of scales, orientations
and positions, the continuous curvelet transform (CCT) of a
function f € L2(R?) is given as:

c(j, 1, k)= Azf(X)wj,z,k(X)dx, 3
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FIGURE 3. The pipeline of digital curvelet transform, where 2D WT stands for the two-dimensional wavelet transform. 2D
FFT, 1D IFFT and 1D WT are short for two-dimensional fast fourier transform, one-dimensional inverse fast fourier

transform and one-dimensional wavelet transform, respectively.

Because the CCT has three parameters—scale (277), rotation
angles (6;) and translation (k), signal analyzed and synthe-
sized by the CCT yields an output signal controlled by the
three parameters.

As shown in Eqn. (3), when taking input as Cartesian
arrays of the form f [t1, 2], 0 < t1,t» < n, the output of
digital curvelet transform (DCT) is a collection of coefficients
cP@, 1, k):

PG L=Y flun)ed, nnl. @
0=t1,12=n

Curvelets are based on multiscale ridgelets combined with

a spatial bandpass filtering operation to isolate different

scales. Fig. 3 shows the pipeline of DCT, which can be

summarized as the following two steps: applying 2D WT

to the input image, and then applying digital ridgelet trans-

form to the decomposed 2D wavelet sub-bands at different
scales.

B. PARAMETER SELECTION

In Eqn. (3), we can see there are three parameters: scale
(277), rotation angle (6;) and translation (k). The scale and
the rotation angle represent the width and orientation of
the input function f(x), respectively. For a dispersed curve,
the curve width depends on the duration of the pulse and the
orientation of the curve depends on the DM value of the pul-
sar, the observation frequency and the bandwidth. Therefore,
we select the curvelet parameters (scales and rotation angles)
based on the width of the pulse, the DM value of the RRAT,
the observation frequency and the bandwidth, and then use
the selected parameters for reconstructing the RRAT signal.
It should be noted that the exact values of the pulse width and
DM are not necessary for the parameter selection step, which
justifies the advantage of this DM-free denoising method.
We only assume a general range of DM values (10 to 500)
and the approximated width of the DM curves to estimate the
parameters.

In the following, we will show how to combine the
characteristics of dispersed signals and the property of
curvelet analysis to derive the equations for parameter
selection.
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1) SELECTING SCALES

As shown in Fig. 3, 2D WT is used for multi-scale decom-
position. The number of scales, Nycqe, refers to the coarsest
wavelet level which can be estimated by:

Nicale = loga(min(M, N)) — 3, (5)

where M * N is the size of the input image. With the approx-
imated width of the curve in the unit of pixels, we can then
estimate the scales that contribute to the description of the
curve by:

scale_curve = [logow] , (6)

where w is the approximated width of the curve in the unit
of pixels which is estimated by the full width at half maxi-
mum (FWHM) of the pulses. Note that the real width of curve
is equal to w X t, and #; is the sampling time which is given
in the header information of an observation data.

Now we can estimate the scale levels corresponding to the
curve following the rules:

scaleyin = 1,

if Ngcale > scale_curve,

)

scale_curve,
scaleyag, =

Nicale, otherwise .

where scale,,;, is the coarsest scale (level) retained for recon-
struction, and scale,,,, is the finest scale (level) retained for
reconstruction.

2) SELECTING ORIENTATIONS

At sufficiently fine scales, a curved edge is almost straight.
So to capture curved edges, one ought to be able to deploy
curvelet in a localized manner, at sufficiently fine scales.
The digital curvelet transform uses Radon transform as a
component step. As shown in Fig. 4, the Radon transform is
a function defined in the space of straight lines L in R? by the
line integral along each such line. The Radon transform can
be expressed as:

+00

f((z - sina + s - cosa),
—0oQ

Rif (&, 5) =
X (—z-cosa + s - sina))dz, (8)
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where « is the orientation parameter 6; in Eqn. (1). At suf-
ficiently fine scales, a curve can be considered as a straight
line. Thus the DM curve in filterbank data (time-frequency
data) can be considered as the combination of many straight
lines.

The delay time of pulse arrivals between two frequency
channels (f; and f;+1) is estimated by:

At = kpy - (57 =7 - DM, ©)

where kpys is known as the dispersion constant: kpy =
4.15 x 103MHZ?pc='em3s. fipq and f; are both in MHz
(fi denotes the frequency channel with higher frequency).
Fig. 5 shows how to derive 6 with DM, here fiy| and f; are
known. Mathematically, it can be calculated by:

0 = arctan——— Pl = 1) (10)

P(Ar)
where P(-) denotes the pixel distance in the una%e (time-
frequency data). P(fir1 — fi) = 1, and P(At) = , Iy 18
the sampling time of the observation data. Then substltutmg

Eqn. (9) into (10), we can find 6:

te
6 = arctan : . (11

-2 _ -2
kpw - Vi“ —Ji ‘ DM

From Fig. 5, we can obtain @ = 90° —6. Thus, the expression
for the curvelet orientation « is further expressed as:

t.
o = 90° — arctan : . (12

kpy - Lfll% —fl-_z‘ -DM
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FIGURE 6. The upper panel is a short slice of J1819—1458 time-frequency
data which contains a pulse. The lower panel is the corresponding
curvelet denoised data. It is reconstructed from scales 1 to 6, and
orientations from 22° to 76°. The pulse (curve) is visible in the denoised
data.

Algorithm 1 Pseudo Code of Curvelet Denoising
Input: time-frequency data, observation parameters
including FWHM, sample time, first frequency channel,
number of frequency channel, observation bandwidth
Output: curvelet reconstructed data

Apply curvelet decomposition to the data
Calculate scalepin, scaleyqy according to Eqn. (7)
Initialize oy, = 90, otpax = 0
for i = 1; i <number of frequency channels; i + + do
Calculate o according to Eqn. (12)
if @ > o4, then
Uppax = O
else if o < «,;;, then
Qmin =
end if
: end for
: Reconstruct the data by obtained scale;,in, scalemay , Cmin,

A A S ol e

—_ = =
N 2w

Umax -

The main process of curvelet denoising is present in
Algorithm 1. In this work, we assume that the typical DM
values for RRATs mainly distribute from 10 to 500. The
observation frequency and bandwidth can be obtained from
the observation data. Then we can estimate the range for o
and use this range to reconstruct the time-frequency data.
As an example, the sampling time for the observation data
of J1819—1458 is 100 ws, frequency of channel 1 (the high-
est frequency channel) is 1517.75 MHz, bandwidth of one
channel is -0.5 MHz, and the number of channels is 512.
According to Eqn. (12), « is then calculated to be in the range
of 22° to 76°. Fig. 6 shows a short slice of J1819—1458 time-
frequency data in which one pulse is detected. The denoised
data is reconstructed using scales from 1 to 6, and orientations
from 22° to 76°. These selected scales and orientation are
expected to contribute to the description of dispersed RRAT
signal.

IV. DETECTION METHOD

To evaluate the efficiency of the proposed curvelet-based
denoising approach, a method for detecting the single pulses
is proposed. The detection approach aims to detect single
pulses from the time-frequency data of RRATSs. It also treats
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FIGURE 7. The left panel is a slice of J1819—1458 time-frequency data;
the middle panel is its computed HOG features; the right panel shows the
details of one block in HOG features.

the time-frequency data as images. As shown in Fig. 2,
the pulse detection method consists of two steps: feature
extraction and classification. The histogram of oriented gra-
dients (HOG) is employed to extract features from images.
Then a supervised machine learning method—support vector
machine (SVM) is utilized to classify the extracted features
into two classes: pulse or non-pulse. The proposed detection
method is named as HOG-SVM.

A. FEATURE EXTRACTION

Considering the characteristics of the dispersed curve, we uti-
lize HOG [31], [32] to describe the curve, which uses the
gradient (along with horizontal and vertical) information to
describe the image (time-frequency data). The magnitude of
the gradient is large around edges and corners. The HOG
descriptor is invariant to geometric and photometric transfor-
mations, except for object orientation. Such changes would
only appear in larger spatial regions. Thereby, the advance of
HOG is suitable to capture the dispersed curve in astronomi-
cal data. Given an image I, its gradient is computed by:

al
ax

Vi= , (13)

al

dy
where g—i and g—§ are partial derivatives of the image I in hori-
zontal and vertical directions, respectively. The derivatives of
an image can be approximated using finite differences. Then
% can be calculated by applying a 1D filter to the image I

using convolution:
or _ -1 s« ] (14)
ox |1 ’

where * denotes the convolution operation. Fig. 7 shows
a short slice of J1819—1458 time-frequency data and the
corresponding computed HOG features.

B. CLASSIFICATION

The pulse detection problem is defined as a binary classifi-
cation task. The class variable assumes one of two values:
pulse or non-pulse. Classification is to map the extracted
features of the image to the class variable. The training stage
is to learn the mapping function. In the classification stage,
the learned function is used to predict the class variable using
the extracted features. Because of the robustness of the SVM,
it has been successfully employed for many applications
[33], [34]. We employ the SVM to learn the mapping
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SNR

FIGURE 9. Examples of the generated time-frequency data which contain
pulses. Some of the generated pulses are invisible caused by their low
intensities.

function. The SVM can do nonlinear classification using
kernel functions. Gaussian radial basis function (RBF) kernel
is one of the most popular kernels. In this work, the RBF
kernel achieves a better performance in classification than
other kernels.

V. EXPERIMENTS AND PERFORMANCE ANALYSIS

This section begins by describing the simulated dataset. Then
the performance measurements and experimental settings are
presented. Finally, extensive experiments are conducted on
the simulated dataset, which evaluate the effectiveness of
the proposed denoising and detection methods from several
aspects and provide some deep insights into the methods.

A. SIMULATED DATASET

Due to a limited amount of detected RRATSs (just over 100)
in the wild, the analysis and evaluation of the denoising and
detection methods are based on the simulated data. The simi-
lar experiments used simulated data for evaluation were con-
ducted in [26] and [35]. The background noise is modeled as
white Gaussian noise combined with RFIL. The simulated data
are displayed in filter bank format, where astrophysical single
pulses are dispersed according to Eqn. (9). We assume that
the pulse profile is Gaussian with FWHM set between 5 ms
to 40 ms. The observation bandwidth of the simulated data is
set to 256 MHz, and the first frequency channel is 1518 MHz.
The bandwidth is partitioned into 512 frequency channels,
and the sample time is set to 100 ws. The DM value is
randomly selected from the integer between 10 to 500. We use
the signal-to-noise ratio (SNR) to measure the intensity of the
simulated pulses. SNR is calculated from the de-dispersed
single-pulse profile and is defined as a ratio of the peak
value of the profile to the root mean square of the noise (o).
An emulation set consisting of 22,000 images (each with
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FIGURE 10. Visualized denoising results of three short slices of real RRATs data.

TABLE 1. The detection results based on the data applied with the five denoising methods.

| Denosing method | Detection method [ FAR(%) TPR(%) Accuracy (%) ||
Original 0 15.2 92.2
2D-hoear 8] o 0 05
-boxcar . . .
TWSC [19] Blind transform [26] 0 79.0 97.5
NLFMT [17] 0 67.1 97.0
Curvelet (ours) 0 82.7 98.4
Original 0.08 15.8 92.3
2D-boear 8] 0 ols 0.5
-boxcar . .
TWSC [19] HOG-SVM 0 81.5 98.3
NLFMT [17] 0 68.5 97.1
Curvelet (ours) 0 85.5 98.7

0.8
)
2
©
e
go0
=
3 —6&—Curvelet
% 0. —=&—2D-boxcar
=] —+*—BM3D
= { TWSC
0.2 ——NLFMT
—#— Original

0 0.2 0.4 0.6 0.8 1
False Positive Rate
FIGURE 11. Comparison of the blind transform based detection results on
original data, 2D-boxcar denoised data, BM3D denoised data, TWSC

denoised data, NLFMT denoised data and curvelet denoised
data.

size 1101 x 512) was generated. Among them, 2,000 images
contain a single pulse. The remaining 20,000 images contain
no pulse at all. Fig. 8 shows the SNRs distribution of the
simulated dataset. One can see most SNRs distribute from
3 to 10. Fig. 9 shows some examples of the generated time-
frequency data which contain pulses.

Considering the HOG-SVM detection is a supervised
learning method, the dataset is split into the training set and
test set. The training set has 17,600 images, among which
1,600 images contain pulses and others do not contain. The
testing set has 4,400 images, among which 400 images con-
tain pulses and others do not contain. For a fair comparison,
the blind transform based method is evaluated on the test
set.
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TABLE 2. The comparison of computing time taken for denoising.

Denosing method ‘ Time (sec) H

BM3D [16] 9.83
2D-boxcar [8] 0.02
TWSC [19] 305.53
NLFMT [17] 235.14
Curvelet 1.08

TABLE 3. The computing time taken for training and testing of the two
detection methods.

Detection method Testing (sec)
[ [

Blind transform [26] - 68.10
HOG-SVM 253.85 6.17

| Training (sec)

B. PERFORMANCE MEASURES
Three standard terms calculated from the confusion matrix
are used to evaluate the final detection results. The three

standard terms are:
o False positive rate (FPR) is the proportion of negative

cases that are incorrectly detected as positive.

o True positive rate (TPR) is the proportion of positive
cases that are correctly detected.

e Accuracy is the proportion of the total number of cases
that are correctly detected.

C. EXPERIMENTAL SETTINGS
1) IMPLEMENTATION DETAILS FOR DENOISING

Because there are very limited denoising methods specially
designed for RRATSs time-frequency data, and most general
denoising approaches in image processing can not meet the
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TABLE 4. The detection results based on different intensity groups from the five denoising methods.

H Denoising method | Detection method [ SNR [ FAR(%) TPR(%) Accuracy (%) H
SNR < 50 0 29.7 98.4
Blind transform [26] | 50 <SNR < 100 0 90.1 99.4
BM3D [16] SNR > 100 0 100 100
SNR < 50 0 41.8 98.6
HOG-SVM 50 <SNR < 100 0 96.7 99.7
SNR > 100 0 100 100
SNRs < 50 0 26.4 98.2
Blind transform [26] | 50 <SNRs < 100 0 66.2 98.5
2D-boxcar [8] SNRs > 100 0 100 100
SNRs < bo 0 32.1 98.4
HOG-SVM 50 <SNRs < 100 0 82.5 99.1
SNRs > 100 0 100 100
SNRs < 5o 0 31.1 98.5
Blind transform [26] 50 <SNRs < 100 0 89.0 99.3
TWSC [19] SNRs > 100 0 100 100
SNRs < bo 0 45.1 98.7
HOG-SVM 50 <SNRs < 100 0 97.1 99.7
SNRs > 100 0 100 100
SNRs < bo 0 23.1 98.2
Blind transform [26] 50 <SNRs < 100 0 86.2 99.2
NLFMT [17] SNRs > 100 0 100 100
SNRs < bo 0 35.2 98.5
HOG-SVM 50 <SNRs < 100 0 94.1 99.6
SNRs > 100 0 100 100
SNR < 50 0 39.6 98.6
Blind transform [26] | 50 <SNR < 100 0 94.6 99.7
SNR > 100 0 100 100
Curvelet (ours)
SNR < 50 0 47.3 98.8
HOG-SVM 50 <SNR < 100 0 98.7 99.9
SNR > 100 0 100 100

requirement for denoising RRAT's data, we compare the pro-
posed denoising method with four methods. The first one is a
traditional denoising method used in radio astronomy—2D-
boxcar method. It is similar to the boxcar smoothing [8]
which smooths the time-frequency data along both time-axis
and frequency-axis. The second is a filter based denoising
method: BM3D [16]. The third is another filtered based
method: NLFEMT [17]. The last one is a sparse coding
based method: TWSC [19]. The size of the input image is
1101 x 512. For parameter setting of 2D-boxcar, the width
of the boxcar is set to 10 along both axes. For BM3D,
the standard deviation of the noise is set to 10, the profile
is set to ‘normal profile’. For NLFMT, the neighbor window
size is set to 7, the search window size is 21, o for Gaussian
kernel generation is 5, the wavelet transform level is 3, ‘db8’
is selected as a mother wavelet, and thresholding type is soft.
For TWSC, the patch size is set to 6, the step of two neighbor
patches is 3, and the size of the window around the patch is 20.

2) IMPLEMENTATION DETAILS FOR DETECTION

To evaluate the proposed HOG-SVM detection method,
we compare it to the blind transform based detection
approach [26]. Considering the size of 2D-boxcar denoised
images are smaller than the other four methods denoised
images, we apply different HOG parameters to the data. For
2D-boxcar denoised data, the number of bins is set to 9,
the number of horizontal cells is 13, the number of vertical
cells is 6, the cell size is 8 x 8. For BM3D, TWSC, NLEMT
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and curvelet denoised data, the number of bins is set to 9,
the number of horizontal cells is 36, the number of vertical
cells is 17, the cell size is 30 x 30. The SVM model is trained
with the RBF kernel.

D. EXPERIMENTAL RESULTS
1) COMPARISONS BETWEEN THE DIFFERENT DENOISING
AND DETECTION METHODS
In this part, we conduct an experiment to evaluate the perfor-
mance of the five denoising methods. Fig. 10 shows the visual
denoising results of 2D-boxcar, BM3D, TWSC, NLFMT
and curvelet denoising method. It can be seen that the dis-
persed curves are well reconstructed by the curvelet denois-
ing method. Fig. 11 shows the detection results obtained by
the blind transform based method from the original data,
2D-boxcar denoised data, BM3D denoised data, TWSC
denoised data, NLFMT denoised data and curvelet denoised
data. The plotting is the receiver operating characteris-
tic (ROC) curve which illustrates the diagnostic ability of
a detection system as its discrimination threshold is varied.
Among the five sets of denoised data, BM3D and TWSC
have similar performance. The best performance is achieved
on curvelet denoised data. This indicates that the proposed
curvelet based denoising method is superior to the other four
denoising methods.

Table 1 shows the detection results based on the five
denoising methods using two detection methods. First, one
can see that both detection methods achieve better results on
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TABLE 5. The detection results based on different DM groups from the five denoising methods.

H Denoising method | Detection method [ SNR [ FAR(%) TPR(%) Accuracy (%) H
10 <DMs < 200 0 79.7 99.1
Blind transform [26] | 200 <DMs < 350 0 71.6 99.0
BM3D [16] 350 <DMs < 500 0 63.4 99.2
10 <DMs < 200 0 69.7 98.7
HOG-SVM 200 <DMs < 350 0 84.9 99.4
350 <DMs < 500 0 86.4 99.6
10 <DMs < 200 0 68.5 98.8
Blind transform [26] | 200 <DMs < 350 0 60.9 98.6
350 <DMs < 500 0 48.9 98.9
2D-boxcar [8]
10 <DMs < 200 0 36.8 97.4
HOG-SVM 200 <DMs < 350 0 70.5 98.9
350 <DMs < 500 0 81.8 99.6
10 <DMs < 200 0 79.5 99.2
Blind transform [26] 200 <DMs < 350 0 70.1 98.9
TWSC [19] 350 <DMs < 500 0 68.2 99.3
10 <DMs < 200 0 80.9 99.2
HOG-SVM 200 <DMs < 350 0 82.9 99.3
350 <DMs < 500 0 86.4 99.6
10 <DMs < 200 0 71.1 98.9
Blind transform [26] 200 <DMs < 350 0 65.8 98.8
NLFMT [17] 350 <DMs < 500 0 63.6 99.2
10 <DMs < 200 0 83.1 99.3
HOG-SVM 200 <DMs < 350 0 80.1 99.3
350 <DMs < 500 0 83.0 99.6
10 <DMs < 200 0 90.9 99.6
Blind transform [26] 200 <DMs < 350 0 80.8 99.3
350 <DMs < 500 0 70.4 99.4
Curvelet (ours)
10 <DMs < 200 0 86.8 99.5
HOG-SVM 200 <DMs < 350 0 80.1 99.3
350 <DMs < 500 0 92.6 99.8

curvelet denoised data than the other four data. Applying the
curvelet based denoising method to RRATSs time-frequency
data leads to better pulse detection results. This further jus-
tifies the advantage of applying the proposed curvelet based
denoising method. Second, the HOG-SVM method achieves
higher TPR than the blind transform method on the five
sets of denoised data. This significant improvement in detec-
tion accuracy shows that the effectiveness of the proposed
HOG-SVM single pulse detection method. Finally, we can
see the combination of curvelet denoising and HOG-SVM
single pulse detection leads to the best performance with TPR
85.5% and accuracy 98.7% on the simulated dataset.

We also report the comparison of computing time taken for
denoising and detection. All of the methods are implemented
by Matlab code. On our computer with i7-3770 CPU and
16.0-G memory, the computing time of denoising and detec-
tion are given in Tables 2 and 3, respectively. The denoising
time is the average time cost for each image. From Table 2
one can see that our method takes significantly less time
than BM3D, TWSC and NLEMT. The HOG-SVM method
contains training and testing phases, while the blind transform
does not contain a training phase. Table 3 shows the average
time taken for training and testing of the two detection meth-
ods on the five sets of denoised data.

2) THE EFFICIENCY ON DIFFERENT INTENSITY GROUPS
To further justify the efficiency of the proposed method,
we conduct an experiment by dividing the test set of simulated
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data into three groups based on the intensity of the single
pulse. The data (simulated pulses) are grouped by their SNRs:
weak pulses (SNR < 50), medium pulses (S50 <SNR <
100) and strong pulses (SNR > 100). The HOG-SVM
classification model is learned from the training set and
separated tested on each intensity group. Here each inten-
sity group consists of the images that contain the pulses
with specific intensities and 4000 images do not contain
pulses.

Table 4 shows the detection results based on the three inten-
sity groups from the BM3D denoised data and 2D-boxcar
denoised data, TWSC denoised data, NFLMT denoised data
and curvelet denoised data. Note that SNRs are computed
from the de-dispersed simulated data. The detection results
from the curvelet denoised data are better than the other four
sets of data, this again demonstrates the effectiveness of the
proposed denoising method. More importantly, one can see
that both detection methods achieve the best performance
on the strong pulses group (with TPR 100%), and their
performances significantly drop on weak pulses group. This
indicates that it is more challenge to detect the weak intensity
of pulses.

Though both detection methods achieve lower detection
rates on weak pulses, the HOG-SVM shows more robust on
weak pulses detection than the blind transform based method.
Considering there is a large amount of weak radio astronom-
ical observation in the wild, the HOG-SVM is effective for
single pulse detection.
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TABLE 6. The comparison of detection results using different classification methods.

H Method [ FAR(%) TPR(%) Accuracy (%) Training (sec) Testing (sec) H
SVM 0 85.5 98.7 268.2 9.7
Logic regression 1.7 80.8 96.7 2204.4 1.0
KNN 0 4.7 97.7 517.8 57.9

3) THE EFFICIENCY ON DIFFERENT DM GROUPS

We also analyze the efficiency of the proposed denoising and
detection methods from the aspect of the influence brought by
various DM values. The pulses in the test set are divided into
three groups by their DM values: 10 <DM < 200, 200 <DM
< 350 and 350 <DM < 500. The HOG-SVM classification
model is learned from the training set and tested separately on
each DM group. Here each DM group consists of the images
contain the pulses with specific DMs and 4000 images do not
contain pulses.

Table 5 shows the detection results based on the three DM
groups from the five sets of denoised data, respectively. It is
interesting to see that the two detection methods achieve the
best performance in different DM groups. The HOG-SVM
shows more effective for the pulses with relatively large DM
values, while the blind transform based method is more effec-
tive for the pulses with relatively small DM values. In addi-
tion, from Table 5, one can see that the overall detection
results from curvelet denoised data are better than the other
four sets of denoised data.

4) PERFORMANCE OF DIFFERENT

CLASSIFICATION METHODS

We discuss the influence of different classification meth-
ods on detection. Considering the robustness of the SVM,
we employ the SVM to learn the mapping function in this
work. To analyze the influence of different classification
methods, we conduct an experiment to compare the perfor-
mance of SVM with the other two methods. One is logic
regression classifier, another is k-nearest neighbors algorithm
(KNN). In this experiment, all the methods use the HOG
features extracted from the curvelet denoised data. The results
with various measures are shown in Table 6. One can see that
the SVM outperforms the other two methods. We also show
the computing time taken for training and testing. The SVM
takes significantly less time for training than the other two
methods.

VI. CONCLUSION

It is desirable to conduct single pulse detection on RRATS
time-frequency data before applying de-dispersion. Consid-
ering the strong background noise existing in the data, we pro-
pose a curvelet-based denoising approach for time-frequency
data of RRATSs. Taking into account the characteristics of the
RRAT pulses and the noise, the denoising approach estimates
the range of curvature (orientations) and width (scales) con-
tributing to the description of an RRATSs pulse and recon-
structs the data from the selected orientations and scales.
The proposed denoising approach does not require the prior
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knowledge of an exact DM value for processing the data.
Moreover, to justify the curvelet based denoising approach
and address the RRAT single pulse detection problem,
a single detection method HOG-SVM is developed. All
experiments are conducted on a simulated dataset. The exper-
imental results show that applying curvelet based denoising
to RRATs data leads to significantly higher pulse detec-
tion accuracy compared with the BM3D, 2D-boxcar, TWSC
and NLFMT denoising methods. The HOG-SVM method
achieves higher detection accuracy than the blind transform
based detection method on the test set. Furthermore, we ana-
lyze the denoising and detection methods by evaluating their
performance on different pulse intensities and DM values.
The HOG-SVM method shows more robust on weak pulses
and pulses with relatively larger DM values. For future
work, we will extend the proposed denoising and detection
approach to other dispersed astronomical signal detection.
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