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ABSTRACT To stimulate neuroplasticity, the stroke patient often receives repetitive and high load robotic
rehabilitation therapy. Given their impaired motor function, the patients are prone to muscle fatigue. Muscle
fatigue lead patients to compensate for upper limb motion by recruiting trunk and shoulder motions, resulting
in undesirable rehabilitation motion and a subsequent risk of injury. However, fatigue compensation is not
detected during upper-limb robotic rehabilitation training in the existing rehabilitation robot. The aim of
this study was to detect the compensation caused by fatigue based on surface electromyography (SEMG).
Eight healthy subjects performed three basic repetitive resistance rehabilitation training tasks, to elicit three
types of common stroke fatigue compensatory synergies. The subjective fatigue score and SEMGs of the
main muscles used were acquired to determine the fatigue state. The compensatory motion was recorded by
a motion capture apparatus. The SEMG median frequency (MDF) of the main muscles used and the overall
fatigue compensation were calculated. With the development of fatigue, the subjects exhibited more signs of
fatigue compensation. The motion types slightly increased the degree of corresponding basic compensation.
However, the subjects exhibited similar ranges and trends in the overall compensation. A strong correlation
was found between SEMG MDF and overall fatigue compensation. Thus, fatigue compensation can be
detected based on the body’s status regardless of the type of motion. The SEMG-based detection of fatigue
compensation proposed in this study is a reliable way to detect fatigue compensation and improve the quality

of therapeutic exercise during upper-limb robotic rehabilitation training.

INDEX TERMS Rehabilitation, fatigue compensation, stroke, detection.

I. INTRODUCTION

Stroke is the leading cause of acquired disability for
adults [1]. Stroke, which is the result of a blood supply short-
age to the brain or cerebral hemorrhage, leads to brain cell
death and the disruption of the intricate internal circuits of the
brain [2], [3]. Depending on the lesion locations, strokes may
damage the motor and sensory neural system and frequently
lead to permanent neurological impairment that is associ-
ated with serious physical and cognitive dysfunction [2], [3].
Because of the impairments, most stroke survivors lose the
ability to perform daily activities [4], [5].
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According to neuroplasticity, which describes how
the human central nervous system can structurally and
functionally adapt to acquire new skills, highly repetitive
rehabilitation exercise can help recover physical and cog-
nitive abilities [6], [7]. However, most stroke survivors do
not benefit from therapeutic exercise because of the shortage
of medical resources. Robotic stroke rehabilitation therapy,
which has the potential to improve the recovery process
for stroke survivors, can deliver highly intense repetitive
training [8].

A major problem that degrades the quality of therapeutic
exercise is undesired compensatory motion [9]. According
to neuroplasticity, the end motion stimulates specific brain
areas, and the compensatory motion cannot stimulate the sub-
jects’ brains appropriately. Such compensation hinders the
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process of recovery and can introduce additional orthopedic
problems [10]. The end-effector rehabilitation robots, includ-
ing the MIT-MANUS [11], MIME [12] and GENTLE/s [13]
robots, allow for many degrees of freedom at various joints.
As a consequence, generating an isolated movement at a
single upper limb joint is difficult since the movement of the
end effector can cause a combination of movements at the
wrist, elbow and shoulder joints [14]. If the exercise motions
are difficult for the stroke survivors or if the survivors are
fatigued, they tend to compensate for the upper limb motion
by moving the trunk and shoulder. The stroke survivors’
type of compensation during rehabilitation can be classified
as either pathologic compensation or fatigue compensation.
Pathologic compensation is caused by motor dysfunction
because of injury to the central nervous system [15]. Fatigue
compensation occurs due to muscle fatigue. The traditional
way to reduce compensation is through hardware fixation, but
fastening the patient’s trunk to a chair is unsafe and uncom-
fortable [16]. Thus, many methods for detecting and reduc-
ing pathologic compensation have been proposed. Using
the Kinect-tracked to automatically detect compensation has
been proposed, which can detect the compensation of healthy
subjects. However, the same classifiers performed poorly in
detecting compensation in stroke survivors [17]. The games
are used to encourage users to perform therapeutic exercises
correctly by reducing the compensatory motions, and they
currently require the supervision of a therapist [10]. The
multimodal feedback regarding the stroke survivors’ trunk
compensation levels resulted in reduced trunk displacement.
No difference between the feedback modalities was obtained.
The positive effects of including the game scores might not
have been observed in the 4 short-term interventions. Longer
studies should investigate whether the use of game scores
could result in trunk compensation improvements when com-
pared to the trunk restraint strategies [18]. Regardless of
vision, game scores or accelerometer are all based on the
detection of the kinematic parameters, but the compensa-
tion in the organism is neglected. Although the kinematic
parameters would be particularly suitable for assessing the
movement quality during rehabilitation exercises, there is a
lack of information on the coordination in the muscle degree.

Even if pathologic compensation is detected, it is difficult
to reduce and eliminate it. Nevertheless, fatigue compensa-
tion, which is caused by motor fatigue during training, can
be avoided through fatigue compensation detection and by
controlling the training strategy. To obtain sufficient stimu-
lation to the central nervous system, the rehabilitation train-
ing motions are generally repetitive and are sustained for
approximately ten to twenty minutes in a single exercise
session [19]. However, the repetitive nature of the training
could cause motor fatigue, and then fatigue compensatory
movement occurs. Fatigue compensation could limit the gains
in motor function by learned nonuse and may lead to pain
and joint contractures in the long term [20]. Nevertheless,
compensation caused by fatigue was not detected by the
rehabilitation robot.
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The purpose of this article is to propose the detection of
fatigue compensation during upper limb rehabilitation train-
ing. Fatigue compensatory movements in the shoulder, neck,
and trunk of some patients have been observed in clinical
studies and are caused by the highly repetitive rehabilitation
training exercises [21]-[23]. The existence of muscle syn-
ergies or compensation in the production of movements is
not restricted to pathology but may reflect a general prin-
ciple of neural control [24], [25]. There were 8 patients
and 6 healthy subjects performed seven motor tasks involv-
ing the shoulder and elbow joints. The muscle synergies or
muscle compensation extracted from sEMG of patients and
healthy subjects were very consistent across individuals [26].
The healthy subjects’ SEMG features in the term of muscle
synergies can be a good reference meaning for the stroke.
Thus, healthy people were selected as the subjects to conduct
this study. We proposed resistance training for the subjects
during the upper limb rehabilitation exercises, including three
basic motions: reaching up-and-down (UD), reaching side-to-
side (SS), and reaching forward-and-back (FB), for approx-
imately 220-240 seconds, to elicit the three basic fatigue
compensatory movements: trunk-rotation, lean-forward and
shoulder-elevation movements. The motion compensations
were captured by the motion capture apparatus. The SEMG
median frequency (MDF) and a subjective fatigue score were
used to determine the development of muscular and mental
fatigue. With the decrease of the SEMG MDF, fatigue com-
pensation increases. There is a strong correlation between the
SEMG MDF of the main muscles used and the level of fatigue
compensation. The SEMG MDF of the main muscles used can
reliably detect fatigue compensation, which is convenient and
feasible in rehabilitation training.

Il. METHODS

A. PARTICIPANTS

Eight healthy subjects were selected to participate in the
experiment. They were 8 males, with no neurological, sen-
sorimotor, or orthopedic impairments, as shown in Table 1.
All of the subjects selected had no understanding of fatigue
compensation. Prior to the experiment, a signed informed
consent form was obtained from all the subjects.

B. EXPERIMENTAL SETUP AND MEASUREMENT
PROCEDURE

The data acquisition and rehabilitation training experiments
were conducted on the ReROBOT platform, as shown
in Figure 1, which was developed in our laboratory. The
ReROBOT platform consists of the ReROBOT, Vicon
(Oxford Metrics plc, Oxford), myoMUSCLE (NORAXON,
Arizona), and motion amplitude calibration frame. The ReR-
OBOT can provide several rehabilitation training modes. The
subjects’ shoulder and trunk motions could be accurately cap-
tured at 100 Hz with the 11 camera capture system. The raw
SEMG signal was acquired at 2000 Hz by the myoMUSCLE.
To make the motion amplitude uniform, there are motion
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TABLE 1. Details of the eight subjects.

Subject Gender Age (years) Height (cm) Weight (kg) Handedness
S1 M 28 168 69 Right
S2 M 22 181 62 Right
S3 M 25 170 60 Right
S4 M 22 169 56 Right
S5 M 30 172 67 Right
S6 M 23 171 65 Right
S7 M 23 180 75 Right
S8 M 26 164 68 Right

Motion amplitude

calibration frame

SEMG wireless

electrodes

FIGURE 1. The ReROBOT platform.

amplitude markers attached at the motion amplitude calibra-
tion frame, which enable the subjects to know the motion
amplitude during the training.

Because stroke patients easily reach a state of motor
fatigue, to better approximate the patients’ muscle fatigue
state, a repeat resistance mode of exercise is chosen in this
article. Resistance training has become common in rehabili-
tation. The stroke patients are mainly elderly and their muscle
mass and muscle strength decreases by approximately 30%
between the third and sixth decades of life [27]. Through
adapted resistance exercises, it is possible to promote an
increase in muscle mass and muscle strength, which is the
base of functional recovery [28], [29]. The ReROBOT repeat
resistance mode for rehabilitation constantly applies a resis-
tance to the movements generated by the subject in all six
degrees of freedom. The level of resistance can be adjusted
in all six degrees of freedom according to the capabilities of
the subject. The maximal resistance is calibrated based on a
healthy male with an average height and weight perception
when the ReROBOT negates almost all the patient-generated
movements in the associated degree of freedom.

The subjects repeatedly performed the three basic motion
sessions, defined as reaching up-and-down (UD), reaching
side-to-side (SS), and reaching forward-and-back (FB), at a
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comfortable range and pace. The details of the motions
are shown in Table 2. The motions were intended to elicit
three types of common poststroke compensatory synergies:
shoulder-elevation, trunk-rotation, and lean-forward [17],
as shown in Table 2 and Figure 2.

Prior to participation, the subjects were asked to place
themselves in front of the ReROBOT; the subjects were
given an explanation on how to use the device and a brief
description of the motions to perform. To calibrate their
motion amplitude, the subjects were required to perform
the motions three times, and the end points of the motion
amplitude marker were adjusted. During the training session,
the subjects were required to attempt to keep the motion
reaching range at the start and end motion amplitude marker.
During the training sessions, the subjects were required to
subjectively maintain the motion at the same speed, range,
and trajectory. The subjects repeated each motion for approx-
imately 220-240 seconds per task session, with 15 minutes of
rest between the intervals. If a subject still felt fatigued at the
end of the rest period, the rest time was increased until the
subject felt absolutely relaxed.

The shoulder and trunk motions were tracked with the
VICON using 5 reflective markers attached to the right shoul-
der acromio-clavicular joint, left shoulder acromio-clavicular
joint, spinous process of the 7™ cervical vertebra, spinous
process of the 10" thoracic vertebra, and right scapula. The
shoulder elevation was tracked using markers placed bilat-
erally on the right shoulder acromio-clavicular joint, left
shoulder acromio-clavicular joint and spinous process of the
7t cervical vertebra. The trunk rotation was tracked using
makers on the right shoulder acromio-clavicular joint and
spinous process of the 7 cervical vertebra. The lean-forward
motion was tracked using the spinous process of the 7
cervical vertebra and spinous process of the 10 thoracic
vertebra. A reference marker was placed on the right scapula.

Six sSEMG wireless electrodes were attached to the main
muscles of the right arm, including the anterior, middle, and
posterior deltoids and the triceps, biceps, and brachioradi-
alis. Because the SEMG voltages are very low in magnitude
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TABLE 2. Description of movement tasks and compensations.

Mofion Basic compensatory Description Resistance
type force level
Reachin Move the handle from side to side in a straight
. g Trunk-rotation(Tr), o.  trajectory that is parallel to the frontal axis on the 25%
side-to-side (SS)
transverse plane.
Reaching Move the handle back and forth in a straight
forward-and-back  Lean-forward (Lf), 3 trajectory that is parallel to the sagittal axis on 35%
(FB) the transverse plane.
Reaching Shoulder-clevation Move the handle up and down in a straight
up-and-down (Se) trajectory that is parallel to the vertical or 20%
(UD) Y- longitudinal axis on the sagittal plane.

FIGURE 2. The three basic motion and compensation types: (a) Three basic motion types: SS, FB, and
UD. (b) Three basic compensation types: TR, LR, SE.

(0-5 mV) and have considerable noise content, the original
analog signal must be amplified. In this study, the raw SEMG
signals were amplified by a factor of 1000 times. Because
the information content of an SEMG signal usually lies in the
20 to 500 Hz frequency domain, the raw sSEMG signals were
sampled at 2 kHz according to the Nyquist theorem [30].
To rate their subjective upper limb fatigue, the subjects
assessed themselves according to the rating of perceived exer-
tion scale (RPE) [31], as shown in Table 3, in each 30 second
time period during the training session. The subjects were
asked: “How tired does your arm feel at the moment?”” and
they had to reply with a fatigue score. All subjects performed
three types of reaching motions with their dominant hand.
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Ill. DATA ANALYSIS

A. DATA PROCESS

Three outcome measures were collected in the experiment:
the sSEMG median frequency, subjective fatigue score, and
motion compensation.

The sEMG characteristics indicated the muscle state. Gen-
erally, muscle fatigue is shown by several SEMG indexes,
including a decrease in the signal power at high frequency
and an increase at low frequency, and also a decrease in
the spectrum slope at high frequency and an increase at
low frequency [33], [34]. In this article, the SEMG median
frequency, which has been used as the gold standard for
measuring muscle fatigue, was used to obtain the muscle
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TABLE 3. Rating of perceived exertion scale [32].

Score Descriptor
0 Rest
1 Very, very easy
2 Easy
3 Moderate
4 Somewhat hard
5 Hard
6
7 Very Hard
8
9
10 Maximal

fatigue state. With muscle fatigue, the SEMG median fre-
quency, which is less affected by random noise in the high
frequency band of the SEMG power spectrum, is decreased
in the frequency spectrum [35].

The raw sEMG signals were first bandpass filtered with
cut-off frequencies of 10 Hz and 500 Hz and notch filtered
at 50 Hz to reduce the noise content, as recommended by
the European SENIAM project [36]. We used an overlap
analysis window with a window length of 512 ms and a
window sliding step size of 256 ms. Because the training was
repetitive, the MDF during the active state could reflect the
real muscle fatigue state [37]. Thus, the SEMG signal data
were segmented to focus the analysis on the active segments.
The root mean square (RMS) is directly related to the energy
of the SEMG signal and can reflect the energy produced by
the muscle to reflect the muscle activation status.

The RMS of the sEMG is calculated according to the
following formula:

RMS (1) = \/ 1 ZM SEMG' (k)> (1
M k=1

where ¢ is the sequence number of windows, k is SEMG data
in the r® analysis window, and M is the total number of data
points in the 1 window (M = 512).

Then, the active segment is detected using a fixed thresh-
old. The state function, s (/) , of the Jth analysis window is
calculated as follows:

RMS (r) < Th

0,
s(0) = {1, RMS (1) > Th @

1 k
Th =038 thl RMS (1) 3)

where n is the total number of the current 20% task time
windows. To avoid misclassification, the condition of the
active segment based on the state function is:
sty —1)=0ands()) =1
s(t—1)=1lands () =0 “)
th —t1 > 3 xwlen
where 7] is the starting point of the active segment, f; is the
end point and wlen is the window length (wlen = 512 ms).
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FIGURE 3. Example of SEMG signal segmentation.

According to the duration of the motion, three window
lengths are selected as the time threshold. An example of
SsEMG signal segmentation is shown in Figure 3.

The MDF indicates that the total power that is less than the
median frequency is equal to the total power that is greater
than the median frequency:

fp 1 s
fo P df = 5/0j/zP<f>df )
MDF = f, Q)

where f; is the sampling frequency (f; = 2000 Hz) and P(f)
is the power spectral density of the signal.

Because of the differences in the subcutaneous tissue layers
among the subjects and among the muscles of the same
subject, the SEMG MDF is normalized by the initial median
frequency.

normMDF = x 100% (7)

MDF iy
where MDF ;,;; is the average MDF of the first 20% of the
task time. The MDF are reported as a percentage of the initial
normMDF.

The three basic motion compensations are presented by
three angles, shown in Table 2 and Figure 2. The motion com-
pensations are reported as the average compensation of every
20% of the task time relative to the average compensation
of the first 20% of the task time. The overall compensation,
which represents the holistic degree of compensation, is cal-
culated by the sum of the three basic motion compensation
angles:

O=a+B+y ®)

where o, B, and y represent the basic compensations,
as shown in Table 2 and Figure 2.

The subject’s motion range is kept constant by the motion
amplitude calibration frame throughout the training session.
The motion speed change can be represented by the change
of motion repetitions, which can be acquired base on sSEMG
segment by equation (1)-(3).

normSpeed = x 100% )

init
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TABLE 4. The meaning of R value.

R Meaning
0.0 < |R| < 0.2 Very weak correlation or
no correlation
0.2 < |R| < 0.4 Weak correlation
04 < |R| < 0.6 Moderate correlation
06 < |R| < 0.8 Strong correlation
08 < |R| £ 1.0 Highly correlation

where h is the motion repetitions in each 20% task time, &y,
is motion repetitions of the first 20% of the task time.

B. STATISTICAL ANALYSIS
All statistical analyses were performed using Matlab 2016b
(MathWorks Inc. Natick, MA, USA). A Pearson correlation
test was employed to estimate the linear correlation between
SEMG MDF and the overall fatigue compensation, and the
correlation between three sessions overall compensation.
The Pearson correlation coefficient, represented by R in
this paper, is measured on a scale with no units and can take a
value from —1 through O to 4-1. If the sign of the correlation
coefficient was positive, then a positive correlation would
have existed. If the sign of the correlation coefficient was
negative, then a negative correlation would have existed. The
meaning of R value is shown in TABLE 4. The significance
level was set at p = 0.05 for all tests.

IV. RESULTS AND DISCUSSION

A. RESULTS

As expected, the training would increase the subjects’ fatigue,
which increased the subjective fatigue scores and the SEMG

MDF, and the motion compensations increased with the level
of fatigue.

The subjective fatigue assessment can reflect the muscu-
lar and mental fatigue. Figure 4 gives an overview of the
subjects’ subjective fatigue scores over the three training
sessions. As the exercise progressed, the subjects’ fatigue
gradually increased. The repetitive training tasks not only
fatigued the subjects’ muscles but also made them mentally
fatigued. Comparing the results of each subject, the largest
perception of fatigue is present in the UD session, the SS ses-
sion is second, and the FB session is the smallest. However,
the resistance force in the UD session was the smallest. In the
UD session, the subject should offset the gravity of the arm,
and the main muscles used, the anterior and middle deltoid,
are weaker than in the other two sessions. For the three
sessions, we observed a similar increasing trend and range
of subjective fatigue scores. This is due to the differences in
strength and subjective feelings of fatigue for each subject.
During the rehabilitation training, the rehabilitation doctor
can estimate the change in patient fatigue according the
change of score. However, it is difficult to reflect the patient’s
real fatigue level with the subjective fatigue score because of
the different athletic abilities and subjective fatigue feelings.
Specifically, if the patient’s language and cognitive abilities
are impaired, it is difficult for them to properly express their
actual fatigue state. Thus, a more objective indicator is needed
to demonstrate the patient’s fatigue level.

According to the main muscles used in the three ses-
sions, the triceps, biceps, and middle deltoid SEMG MDFs
were selected as the compensation indicators of SS, FB, and
UD, respectively. The sSEMG MDF development is shown in
Figure 5. The SEMG MDFs of the subjects decrease as the
training progresses, except the S8 deltoid sEMG MDF during
the FB session. Because the FB was a compound action,

—s—SS
. 10 s . B
3 8 / ——UD
e
g S A /
A e
E 4 / — e / /
g 7
5 2
0
Sl S2 S3 S4 E—rs

Subjective Fatigue Score

S5 S6

S7 S8

FIGURE 4. The subjective fatigue score during the 3 training sessions.
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FIGURE 5. The MDF changes during 3 training sessions: (a) SS, (b) FB, and
(c) UD.

the S8 used anterior deltoid as agonist instead of middle
deltoid. As shown in dashed line S8-AD of Figure 5 (b),
the anterior deltoid sSEMG MDF decreased in the FB session.
Meanwhile, S8 decreased the movement velocity to relieve
muscle fatigue, shown in Figure 6 (b). Thus, the S8 middle
deltoid sSEMG MDF increased in the FB session. The remain-
ing MDF values did not decrease monotonically. Although
the subjects were required to maintain the same pace through-
out the training session, as the fatigue increased, the subjects
unconsciously changed the movement velocity to relieve the
fatigue, shown in Figure 6. The average R between the sSEMG
MDF and the velocity change is equal to —0.51 means that
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FIGURE 6. The velocity changes during the 3 training sessions: (a) SS,
(b) FB, and (c) UD.

the SEMG MDF would increase with the movement velocity
decrease. Moreover, the actions were compounded, and the
subjects could compensate for the fatigued muscle by using
other muscles. The compensation would change the subject’s
kinematic strategies, which were embodied in the increased
compensation, making it difficult to maintain a consistent
motion. Comparing the performance of the same subject
in different training sessions, the SEMG MDF changed in
a similar way. A similar method was used because of the
athletic ability and the response strategy for fatigue.

The overall fatigue compensation is presented in
Figure 7 (a), (c) and (e). During each session, fatigue com-
pensation increased as the SEMG MDF decreased except
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FIGURE 7. Subject’s overall fatigue compensation: (a) SS, (c) FB, (e) UD. The percentage of basic fatigue

compensation: (b) SS, (d) FB, (f) UD.

S8 during FB session. We noticed a similar increasing trend
and range of the overall fatigue compensation for S1-S8
in different sessions, which is due to the characteristics
of the athletic ability and strategy of the subject; For the
S1-S8, the correlation of overall compensation in three ses-
sions are shown in Table 5. Thus, the overall compensation
caused by fatigue is independent of the motion type, which
is different from pathologic compensation. This difference
informed us that the detection of fatigue compensation
should focus on the physical status but not the motion type.
The percentages of the three basic compensations are illus-
trated in Figure 7 (b), (d) and (f). For the basic compensation,
the largest TR percentage occurs in the SS session; the largest
LF percentage occurs in the FB session, and the largest Se
percentage occurs in the UD session. The average differ-
ence of Tr, Lf, Se, in the three sessions, are 15.3%, 13.3%,

127062

15.8%, respectively. The high correlation between the overall
compensation and little difference in the basic compensation
indicates that fatigue compensation can be detected based on
the fatigue status, regardless of the motion type.

In order to betterdescribe the relation ship between the
fatigue compensation and sSEMG MDF. With the high lin-
ear correlation between the SEMG MDF and fatigue, shown
in Table 6, the average R = —0.848 means the highly linear
correlation, the linear regression was adopted:

CM = —0.186 — 78.21MD (10)

With Goodness of fit R> = 0.9267. Where CM is the average
of overall fatigue compensation. MD is the average of norm-
MDEF.

Some papers point out that fatigue can be better fitted by
multivariable indexes [38]. Using this method as a reference,
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TABLE 5. Correlation of overall compensation in three
sessions (p < 0.05).

R ss, b R ss, ud R ud, fb
S1 0.942 0.976 0.990
S2 0.957 0.977 0.994
S3 0913 0.980 0.922
S4 0.884 0.512 0.733
S5 0.976 0.933 0.970
S6 0.644 0.720 0.945
S7 0.798 0.758 0.986
S8 0.958 0.983 0.946

Rss,fb = R of SS session and FB session, Rss,ud = R session of SS and
UD session, Rud,fb = R of UD session and FB session.

TABLE 6. Correlation between the sEMG MDF and the overall
compensation (p < 0.05).

SS FB UD
S1 -0.861 -0.679 -0.658
S2 -0.641 -0.943 -0.908
S3 -0.960 -0.7133 -0.939
S4 -0.730 -0.151 -0.940
S5 -0.798 -0.956 0.160
S6 -0.487 -0.692 -0.838
S7 -0.778 -0.890 -0.807
S8 -0.780 0.834 -0.961

we fitted average fatigue compensation through the average
changes in velocity and sSEMG MDF:

CM = —0.225 + 3.77SP — 74.93MD (11)

With Goodness of fit R* = 0.9270. Where SP is the average
of the normSpeed.

The performance of two approaches was highly similar.
Because the effect of velocity change on fatigue compensa-
tion was implied by the influence of MDF change.

Based on the above analysis, we proposed detecting fatigue
compensation based on the SEMG MDF regardless of the
motion type, which is different from detecting pathological
compensation. Only selecting the main muscles used can
reliably detect fatigue compensation, which is convenient for
rehabilitation training. Regardless of muscle or subjective
fatigue, the subjects unconsciously engage in active muscular
and motion compensation to protect the fatigued muscle when
attempting to perform a normal motion. To acquire the opti-
mal rehabilitation effect, it is important to consider the subject
fatigue during the rehabilitation human-machine interaction.
Based on the SEMG MDF of the active muscle, the subjects’
fatigue compensation status can be detected. During the reha-
bilitation human-machine interaction, the SEMG MDF can
be as the feedback of the fatigue compensation status, and
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based on the detection, the rehabilitation robot can change the
rehabilitation techniques and training strategies to improve
the quality of the therapeutic exercise.

B. DISCUSSION

In this paper, we studied the detection of fatigue compen-
sation, which degrades the quality of therapeutic exercise
during robotic upper limb stroke rehabilitation therapy. The
overall compensation caused by fatigue is different from
pathological compensation and can be detected regardless of
the motion type. A significant correlation was found between
fatigue compensation and the SEMG MDF of the main muscle
used. Therefore, fatigue compensation detection based on the
fatigue status is proposed in this article. Fatigue compensa-
tion can be well detected by the SEMG MDF from one or two
of the major muscles used, which is convenient and feasible.

Research on fatigue compensatory behavior based on
healthy subjects is also suitable for understanding stroke
patients. It has been presented in a previous article that
impaired motor function will exacerbate the extent of fatigue
compensation. For instance, repetitive training would make
the stroke survivor motor function decrease because the cen-
tral nervous system is vulnerable to internal errors after a
stroke so that it is likely to manifest as increases in senso-
rimotor noise over several motor repetitions [39]. Moreover,
the compensatory motion observed in stroke patients may
be increased by the reduced corticospinal drive, which com-
promises the ability of the nervous system to recruit spinal
locomotor muscle synergies in the paretic limb [15].

It is considered important to ensure sufficient and repeti-
tive rehabilitation training to stimulate neuroplasticity [34].
Unfortunately, tedious and repetitive training could fatigue
patients who would then perform compensatory motions.
Furthermore, the level of fatigue compensation could be
aggravated, according to the extent of the neural deficits of
the patients. In particular, early period of stroke, a patient
easily becomes fatigued, and some patients develop strong
and efficient motor compensation that prevents them from
attempting to generate more normal motor patterns in their
daily activities that may ultimately limit the final functional
outcome [40]. In this case, rehabilitation is necessary to
ensure the proper amount of exercise to stimulate the tar-
get neural pathways. However, during robotic rehabilitation
training, the determination of the amount of training is often
based on the subjective perception of the doctor, which may
not be suitable for patients. Due to language and cognitive
impairments and the difference in fatigue perceptions, it is
difficult for patients to properly express the real fatigue state.
The detection of fatigue compensation based on the sSEMG
MDEF, which reflects the body’s state during training, can be
introduced as the feedback for the patient’s fatigue compen-
sation. It is useful to integrate adaptivity into robot-assisted
upper limb rehabilitation based on the detected muscle fatigue
experienced. In addition, the rehabilitation tasks should be
diversified to prevent the patients from performing fatigue
compensation movements.
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Compared to the other compensation detection methods
for pathological compensation, such as vision-based motion
detection [17], [41], [42] and accelerometer detection assess-
ment [43], the SEMG MDF detection for fatigue compensa-
tion can reflect the body’s state. To our knowledge, there have
been almost no studies that have investigated the detection
of fatigue compensation. In the future, we will implement
a fatigue compensation experiment on stroke patients. For
the survivors, fatigue compensation would superpose patho-
logical compensation and we could determine how to detect
both kinds of compensation based on the SEMG. In addition,
the patients’ responses are diversified, and we should extract
more features to reflect additional details of the compensa-
tion. For instance, fatigue compensation may be accompanied
by tremors, which could also be detected by the SEMG.

V. CONCLUSION

The sEMG-based detection of fatigue compensation pro-
posed in this study proved to be a reliable and easy method
for rehabilitation training. This work can be introduced to
detect fatigue compensation in robotic rehabilitation therapy
to avoid the risks of fatigue compensation and improve the
quality of therapeutic exercise.
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