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ABSTRACT Urban water distribution networks (WDNs) are usually threatened by leakage, reflux, infil-
tration and internal pollution. To ensure the safety of water supply, it is essential to properly monitor the
WDNs. However, it is not easy to design a fast, fine-grained and comprehensive monitoring solution under
limited cost, due to the large scale and high complexity of WDNs. In recent years, mobile sensor networks
have been widely utilized to monitor WDNs with data uploaded by static nodes or receiver nodes. However,
existing solutions haven’t addressed the impact of duplicated uploading caused by the topology of WDNs.
Hence, the coverage rate is unsatisfactory. In addition, the mobile sensor nodes could be potentially far away
from the receiver nodes, which might introduce long data acquisition delay. In this work, we propose a low
delay and high coverage WDNs monitoring solution, with the constraint of limited number of mobile and
receiver nodes. The proposed solution can find the optimal deployment strategy of mobile and receiver nodes
by constructing a probability dependent model between mobile and receiver nodes, and coordinating the
trade-off between low-delay and high-coverage under multi-objective optimization model. We also analyzed
the theoretical lower bound of the algorithm, by utilizing the submodular function characteristics of the
objective. Extensive simulation proved that the proposed algorithm can obtain higher coverage with lower
delay.

INDEX TERMS Mobile sensor networks, water distribution networks, node deployment, multi-objective
optimization, submodular set functions.

I. INTRODUCTION
Monitoring urban Water Distribution Networks (WDNs)
is vital to people’s daily lives. For example in 2017,
98.4% of the Chinese urban population consumed 58 billion
square meters of fresh water from water pipe as long as
757,000 kilometers [1]. However, most of the WDNs are
facing serious problems like aging, corroding and internal
pollutions [2]. In order to ensure the safety of water sup-
ply, it is essential to maintain the health of the WDNs and
prevent potential damages in advance. Therefore, effective
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approving it for publication was Zehua Guo.

monitoring of the water networks is critical for both damage
prevention and decision making [3], [4].

Unfortunately, due to the large scale and complicated
topology of the WDNs, it is not easy to monitor the pipes and
locate those with problems. Conventionally, researchers have
proposed to utilize static sensors for pipeline monitoring. But
static sensors have several drawbacks. E.g., the high cost (the
price of a single Hach sensor is approximately USD 3,000 -
5,000 [5]), limited monitoring range, complicated installa-
tion, and highly environmental requirements (acoustics based
sensors require a low noise environment [6]). Therefore,
static sensors can only be applied to perform small-scaled
monitoring for key positions, and is infeasible to be applied
to the whole networks.
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In recent years, the advances of computing, sensing and
communication technologies enable the possibility of utiliz-
ing mobile sensors to monitor the WDNs [7], [8]. Mobile
sensors can be deployed at certain water pipe junctions to
obtained accurate monitoring data while moving with the
water flow, and then upload data when passing through the
receiver. By carrying different sensor components, mobile
sensors can be used to acquire multiple types of data. For
example, a mobile sensor equippedwith gyroscope and accel-
eration sensor components can be used to acquire WDNs
structure data [9], with water pressure or acoustic sensor
components can be used to locate small breakages [10], with
water sensing components can be used to detect the intrusion
of contaminants [11].

However, the existing solutions suffer from low monitor-
ing coverage and long delay in data collection. Since there
is a dependency between the probability that mobile sen-
sor arrives at different receivers, it is not conducive to the
improvement of monitoring coverage. For example, if the
mobile sensor arriving at position va will surely arrive at vb,
deploying receivers together at position va and position vb
will not achieve higher monitoring coverage than deploying
a receiver only at vb. In addition, there is a contradiction
between increasing monitoring coverage and reducing delay.
For example, the closer mobile sensor input position and
receiver deployment position, the smaller area can be mon-
itoring, but the faster data can be obtained. Therefore, there
is a contradiction between monitoring coverage and delay.
The neglect of this has led to a long delay in the existing
solutions [12].

To solve these issues, this paper proposes a low delay
and high coverage WDNs monitoring approach with mobile
sensors. The proposed solution formulatesWDNsmonitoring
problem with forbearing stratified multi-objective optimiza-
tion problem [13]. It balances the trade-off between high
coverage and low delay. The primary objective (level 1) of
the proposed model is to maximize the coverage rate. By con-
sidering the arrival probability of mobile sensor nodes to the
receivers, we precisely formulate the problem as amonitoring
coverage maximization (MCM) problem. I.e., to maximize
the ratio of monitored pipes and total pipes in WDNs. Then,
by utilizing the submodular characteristics [14], we solve
the problem by combining both forward and backward
greedy algorithms. After obtaining the approximated optimal
solution of the primary objective, we tackle the secondary
objective (level 2): expected monitoring delay minimization
(EMDM). I.e., to minimize the expected delay between the
deployment of mobile sensor nodes and their initial data
upload. Then, based on the optimal solution of the primary
objective, we relax the coverage rate requirements gradually,
and form a set of feasible forbearing solutions. After that,
we use the interchange heuristic algorithm [14] to find out the
solution for the secondary objective, which is also the optimal
solution for the whole forbearing stratified multi-objective
optimization. Finally, the objective of high coverage and low
delay monitoring under limited cost can be achieved.

To summaries, the contribution of this paper are as follows:

1) We formulate the mobile sensor and receiver nodes
deployment problem as monitoring coverage maxi-
mization and expected monitoring delay minimization
problems, and combine them together into a forbear-
ing stratified multi-objective optimization problem,
in which MCM is the primary problem and EMDM is
the secondary.

2) We prove that the MCM problem is NP-hard.
3) By analyzing the submodular characteristics of MCM

problem, we solve the problem by using both forward
and backward greedy algorithm, and analyzes the lower
bound. Then, we use the interchange heuristic algo-
rithm to solve the EMDM problem.

4) By iteratively eliminating some non-optimal solutions
in the solution space, the performance of our algorithm
are greatly improved.

5) We conduct extensive simulation and analysis. The
results validate that the proposed approach can obtain
better coverage rate while keeping lower monitoring
delay.

II. RELATED WORKS
We can classify existing WDNs monitoring researches into
two categories according to their data collection approaches:
manual data collection and automatic data collection.

A. MANUAL DATA COLLECTION
This category of monitoring normally relies on human inter-
ference to capture the mobile sensor nodes and collect data.
Therefore, they are typically applied to delay insensitive
scenarios. In addition, the mobile sensor nodes are generally
isolated and standalone. That is, they would neither commu-
nicate with each others, nor send data to the receiver node.

In 2010, Lai et al. [15] proposed a single mobile sensor
based solution to probe the hidden pipelines. Their approach
can construct a 3Dmodel of themonitored pipeline by record-
ing the accelerometer readings of mobile sensor nodes. Data
are only collected after the mobile node leaves the pipeline.
The solution is more applicable for small-scaled monitoring
as there is only one single mobile node for data collection.
In 2010, Kim et al. [16] proposed SPAMMS, a framework
based on the fluid transported by pipelines. RFID tags are
used to provide event and location related information. How-
ever, the proposed solution did not consider the collaboration
amongmultiple mobile nodes, and did not model the mobility
of mobile sensors in pipeline.

Suresh et al. [17], [18] proved that optimal event detection
with minimum node and lowest false negative rate is an
NP-hard problem. Based on that, they designed a solution
called FBSM,whichwould deploymultiplemobile nodes and
utilize beacon nodes for event detection. In [19], they further
formulated the maximization of minimum pipeline monitor
probability problem as an integer linear programming prob-
lem, and the maximization of mean pipeline monitor prob-
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ability as an integer non-linear programming one. Solutions
are also proposed accordingly.

In 2016, Oliker et al. [20] proposed a water pipeline pollu-
tion monitoring solution by leveraging both static and mobile
sensor nodes. The solution tried to maximized the monitoring
coverage by using binary integer linear programming to make
the deployment decision of both mobile and static sensor
nodes. It divided the water pipeline into multiple clusters,
and assumed a cluster is monitored as long as there is at least
one sensor in it, which can potentially cause blind monitoring
areas.Meanwhile, this approach didn’t mathematicallymodel
the mobility of sensors, but only offered mobile trajectory
simulation, which may also hinder the monitoring results.

B. AUTOMATIC DATA COLLECTION
In automatic data collection, mobile sensor nodes can auto-
matically upload their sensory data, which can reduce the
delay of data uploading and simplify the entire pipeline mon-
itoring process. In this category, mobile nodes can not only
communicate with data center, but also collaborate with each
other by exchanging information. According to the existence
of dedicated receiver node in the system, we can further
classify them into direct data uploading and receiver based
data uploading.

1) DIRECT DATA UPLOADING
This type of solutions normally requires mobile sensors to
be able to autonomously control their own mobility and
communicate with data center directly, which can increase
the monitoring cost significantly. In addition, the autonomous
mobility of nodes entails further requirements on pipeline
size and water flow speed. The direct communication with
data center also poses new requirements to the depth and
material of pipeline. Hence, these solutions usually have a
considerable amount of limitations.

In 2011, Chatzigeorgiou et al. [21] proposed a pipeline
leakage detection solution with autonomous mobile sensor
nodes, and evaluated the impact of water flow speed, mobile
arms and other factors. The proposed solutionmainly focused
on the design of mobile sensor nodes, and did not cover much
about the applications of them into real monitoring scenarios.
In 2012, Li et al. [22] proposed a 3D water pipeline moni-
toring solution. Their approach would firstly determine the
minimum monitoring spots that can cover the whole pipeline
by integer linear programming, and then monitor those spots
by controlling a mobile sensor node to visit them. Similarly,
their approach only involved in one single mobile node and
didn’t have multi-node collaboration.

In 2012, Lai et al. [23] presented an in-pipe monitoring
solution with mobile sensor node networks. To ensure the
network connectivity, existing mobile nodes would deploy
another node within a certain distance while moving in
the pipeline. Therefore, mobile nodes should stay static in
most of the time. In addition, to prevent congestion in the
pipeline, when the battery of a node run out, all nodes
between the pipeline exit and that node should be replaced.

These limitations would possibly increase the overall moni-
toring cost and hinder its real-world deployment.

2) RECEIVER-BASED DATA UPLOADING
In this type of solution, receiver nodes are deployed into
certain positions of the water pipeline. Sensory data are only
collected when the sensor nodes are in communication range
of the receivers. Therefore, sensor nodes are not necessarily
autonomous and can be carried by water flows. In addition,
with the help of receiver nodes, the data collection delay can
also be reduced, compared with the manual data collection
approaches.

Trinchero et al. [24], [25] offered a pipeline monitoring
solution with both in-pipe mobile sensor nodes and above-
ground base stations. They mainly designed the hardware of
mobile nodes and tested the communication between mobile
nodes and base stations. Base stations have to be deployed on
ground surface at a certain distance to ensure the sensory data
to be collected. However, the large-scaled deployment of base
stations would incur high cost and difficulty in monitoring.

In 2015, Suresh et al. presented OFBS [26], a mobile sen-
sor networks based solution. The solution defined the sensing
model of nodes, communication protocols among nodes, and
physical layer details. Based on this, mobile sensors can pass
monitored information to beacon and then to other nodes.
Unfortunately, OFBS didn’t answer the question that how
many mobile sensors are needed to accurately detect abnor-
mal events. Meanwhile, the deployment of beacon nodes and
mobile nodes are decided without a proper mobility model.
This will also bring negative effects for locating abnormal
events.

In 2016, Sankary and Ostfeld [27] reported an on-line
water pipeline pollution monitoring solution, which is com-
posed of mobile sensors, static sensors and receiver nodes.
In their solution, the receivers are only deployed at pipeline
junctions to reduce the deployment density. However, this
approach also didn’t utilize any mathematical mobility model
other than simulated trajectories. Meanwhile, the solution
didn’t explore the problem of where to deploy the receivers,
but only discussed the impact of the number of receivers and
pipeline junctions. These weakness could be negative for cost
control.

In 2016, Du et al. [28] presented a novel solution. They
modelled the problem as a mixed integer programming ques-
tion, and analyzed the characteristics of it using submodular
set theory [29]. Then, a greedy algorithm based solution as
well as its lower bound are given. Unfortunately, this solu-
tion ignored the dependency relationship of sensors when
reaching multiple receivers, which would affect the overall
coverage of monitoring.

III. PROBLEM FORMULATION
In order to model the monitoring coverage maximization
and expected monitoring delay minimization problem with
cost constraint, we will firstly provide rigorous definitions
and annotations used in this paper. Then, we will formally
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TABLE 1. Summary of notations.

describe the pipeline monitoring problem and offer the model
for monitoring coveragemaximization and expectedmonitor-
ing delayminimization. Finally, wewill unify thewholemon-
itoring problem with a forbearing stratified multi-objective
optimization model.

A. PRELIMINARIES
Definition 1 (Monitoring Coverage (MC)):
We say a pipe is monitored as long as one mobile sensor

node has passed through it and uploaded its sensory data at
a certain receiver. The overall monitoring coverage rate is
defined as the ratio of monitored pipes to total pipes.
Definition 2 (Expected Monitoring Delay (EMD)):
We define the expected monitoring delay of a single mobile

sensor as the time interval from it is deployed into the pipeline
to the first time it uploads data. The mean of expected moni-
toring delay of all sensor nodes is defined as overall expected
monitoring delay.

The notations and symbols used in this paper are summa-
rized in Table 1.

B. FORMAL PROBLEM DESCRIPTION
In this paper, we use a directed acyclic graph G(V ,E)
to denote the water distribution network, in which V =
{v1, · · · , v|V |} is the junction set of pipelines. There is
no water flow from vi to vj if i > j. Set E =

{e1, · · · , elj,k , · · · , e|E|} denotes the pipes, in which lj,k =
1 · · · |E| denotes the identifier of the pipe from vj to vk .

In addition, |V | and |E| are the number of junctions and pipes,
respectively.

Normally, the WDNs are monitored by static sensors
deployed at junctions. These static nodes are denoted by Vs,
in which vi ∈ Vs means a static node is deployed at vi. Since
the deployment strategy of static sensors has been well stud-
ied, we treat Vs as an arbitrary constant in this research.When
an exception is detected by static sensors, mobile sensors
will be deployed to obtain a more accurate monitoring result.
We use multi-set H to denote the deployment of mobile
sensors. hi = vj, vj ∈ H means one mobile sensor is deployed
at vj. If n mobile sensors are deployed at vj, there will be n
instances of vj in multi-set H .

Mobile sensors will accumulate sensory data while trav-
elling in the WDNs. When they pass by a static or a receiver
node, the accumulated data will be uploaded to the data center
via them. We use Vr to represent the deployment of receiver
nodes, vi ∈ Vr means a receiver node is deployed at vi. Notice
that it is unnecessary to deploy both receiver and static nodes
at the same junction. I.e., Vr ∩ Vs = φ. To simplify the
description, we use uploadable junction set S to denote the
junctions that have either a receiver or a static node deployed.
I.e., S = Vr ∪ Vs. Considering the budget limit in real
world deployment, we useN to denote the maximum allowed
mobile sensor node and M to denote the maximum allowed
receiver node.

The mobile sensors will travel along the pipes after
deployed. When they arrive at a junction, they will choose
a random adjacent pipe to enter. We use the same model as in
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literature [28]. The probability a_pij that a sensor at vi would
choose pipe elij to reach vj is determined by the water speed
matrix F_V = {f _vij}. That is,

a_pij =
f _vij∑

vk∈V f _vik
, elij ∈ E (1)

f _vij is the water speed in pipe elij from vi to vj. f _vij is
treated as a constant here, which means that the flow in the
pipeline will not change during the movement of the mobile
sensor in the pipeline. This can be achieved when the user’s
water demand is stable, or when the WDN is deliberately
adjusted [30] to control the water flow. If such a pipe does
not exist or is not opened, we set f _vij = 0 and a_pij = 0.
Formula 1 shows that a_pij is independent from time.

In addition, let l_eij donate the length of pipe elij from vi
to vj. Since the water speed is constant, we can obtain the
adjacent time matrix A_T = {a_tij},

a_ti,j =


l_eij
f _vij

, elij ∈ E ∧ f _vij 6= 0

0, elij /∈ E ∨ f _vij = 0
(2)

C. PROBLEM MODELING
In order to find out a low delay and high coverage monitor-
ing solution, we build a forbearing stratified multi-objective
model, with monitoring coverage rate maximization as the
primary objective, and expected monitoring delay minimiza-
tion as the secondary objective. In preparation for it, we need
to model both monitoring coverage rate and expected moni-
toring delay under decision set S and H first.

To calculate monitoring coverage rate, we need to analyze
the coverage of a single mobile sensor, which includes three
phases. (1) from deployment till entering the monitored pipe.
(2) data collection in the monitored pipe (3) from exiting
the monitored pipe till arriving an uploadable junction. The
probability of entering the monitored pipe has been given by
Equation 1. Then, we can obtain the monitoring coverage rate
by accumulating the coverage rate ofmultiplemobile sensors.

Similarly, to calculate the overall expected monitoring
delay, we have to get the expected monitor delay of a single
mobile sensor first. To this end, we need to get the expected
travel time of a single mobile sensor among junctions, and
calculate the expected delay till data uploading, that is also
the expected delay that the node first arrives at an uploadable
junction. Finally, we can calculate the expected monitoring
delay of multiple mobile sensors. The problem modelling
process can be depicted in Figure 1.

1) THE PROBABILITY OF MOVING BETWEEN
ADJACENT JUNCTIONS
In this paper, we use similar mobility probability model with
literature [14], [15], [19], [23]. If we sort the probability that
mobile sensors choose the next pipe a_pij according to their
subscripts, we can get an adjacent probability matrix A_P =
{a_pij}. Since G(V ,E) is acyclic, we know that A_P is an
upper triangular matrix with a zero main diagonal. Therefore,

FIGURE 1. Problem modelling.

A_Pk ≡ 0,∀k ≥ |V |. In this paper, we define a matrix T_P
such that every element t_pij shows the probability of a sensor
moving from vi to vj, through arbitrary intermediate pipelines.
If I is identity matrix, then

T_P =
|V |−1∑
k=1

A_Pk + I (3)

For convenience’s sake, after obtaining the arrival proba-
bility of a single mobile sensor, we now analyze the rela-
tionships that a mobile sensor arrives at different junctions.
We use Cij to denote the event that a mobile sensor travels
from junction vi to vj. Then we can obtain an event collection
�Ci = {Cij|, 1 ≤ i, j ≤ |V |}, and P(Cij) = t_pij. It is possible
that a mobile sensor can arrive at multiple consecutive junc-
tions successively, and the current position can have impact
on the following ones. Therefore, the events in�Ci are neither
independent nor mutually exclusive.

2) THE PROBABILITY OF MOVING BETWEEN
ANY JUNCTIONS
A single mobile sensor can upload its sensory data at any
uploadable junction. Therefore, combining with uploadable
junction set S, we can obtain event collection�Di by making
�Ci mutually exclusive.
We useDij to characterize the event that the first uploadable

junction a sensor at vi will visit is vj. Then, we can obtain the
event collection �Di = {Dijk |vjk ∈ S, ja < jb ⇔ a < b, 1 ≤
i, jk , ja, jb ≤ |V |, 1 < k, a, b < |S|}. If we have a mutually
exclusive probability matrix M_P = {m_pij(S)} such that
m_pij(S) = P(Dij, S), then we can obtain the probability of
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Dij as follows:

Dij = Cij −
⋃

vg∈S,g<j

DigCgj (4)

m_pij(S) = t_pij −
∑

vg∈S,g<j

m_pig(S)t_pgj (5)

For probabilitym_pij(S), we have the following properties:
Theorem 1: 0 6 m_pij(S) 6 t_pij
Proof: It is obvious from Equation 5 above. �

Theorem 2: Events in �Di are pairwise mutually exclu-
sive.

Proof: ∀Dij,Dik ⊆ �Di , i < j < k , we haveDij∩Dik =
Dij ∩ (Cik − Di,jCjk − ∪vg∈S,g<k,g6=jDigCgk ) = φ �
Combining with Theorem 2, we can calculate the proba-

bility that a single mobile sensor will upload its data success-
fully, as:

u_pi(S) =
∑
vj∈S

m_pij(S) (6)

3) MONITORING COVERAGE MAXIMIZATION MODELLING
To simplify the description, we use n_pijk (S) to represent the
probability that a node deployed at vi failed to monitor the
pipe eljk . Obviously, we have:

n_pijk (S) = 1− t_pija_pjku_pk (S) (7)

The probabilities of different sensors canmonitor a pipe are
independent. According to sum rule of independent events,
we know that pipe eljk can be monitored by multiple sensors
with probability Ueljk , and

Ueljk (S,H ) = 1−
∏
vi∈H

n_pijk (S) (8)

Considering the cost limitation that only N mobile sensors
andM receivers are allowed, we can formulate themonitoring
coverage maximization problemMCM (S,H ) as model I:

max
S,H

∑
eljk ∈E

Ueljk (S,H )

|E|
(9a)

Subject to: |H | 6 N (9b)

|S| 6 M + |Vs| (9c)

Vs ⊆ S (9d)

Equation 9a is the overall monitoring coverage rate. Equa-
tion 9a and 9c are the constraints of mobile sensors N and
receivers M . Equation 9d shows static sensors all belong to
uploadable junctions.

Till now, we have finished the formulation of overall mon-
itoring coverage rate maximization problem. Now, we will
model the expected monitoring delay.

4) EXPECTED TRAVEL TIME BETWEEN ANY JUNCTIONS
Suppose we have time cost matrix T_T = {t_tij}, where t_tij
is the expected time cost of mobile nodes moving from vi
to vj. Let t_t

(b)
ij represents the expected time cost of mobile

nodes moving from vi to vj via junctions b. Hence, t_t (1)ij
shows the time cost of moving directly from vi to vj via pipe
elij . We use a_p(b)ij to indicate the element in the i-th row and

j-th column of matrix A_P to the b-th power. Then, a_p(b)ij
is the probability of traveling from vi to vj via b junctions.
Therefore, we can calculate t_tij and t_t

(b)
ij with:

t_t (b)ij =



a_tij, b = 1
j=1∑

k=i+1
(t_t (b−1)ik + a_tkj)a_p

(b−1)
ik a_pkj

a_p(b)ij
,{

a_p(b)ij 6= 0

∧2 6 b 6 |V | − 1

0, a_p(b)ij = 0 ∨ b > |V |

(10a)

t_tij =
|V |−1∑
b=1

t_t (b)ij (10b)

5) EXPECTED TRAVEL TIME BETWEEN JUNCTIONS WITHOUT
UPLOADING
Let mutually exclusive timematrixM_T = {m_tij(S)}, where
m_tij(S) is the expected time cost of a single node from vi to
vj without passing any uploadable junctions.

m_tij(S)

=

t_tijt_pij −
∑

vk∈S,i<k<j
(m_tik (S)+ t_tkj)m_pik (S)t_pkj

m_pij(S)
(11)

Then, we can obtain the expected monitoring delay of a
single mobile node, as:∑

vj∈S

m_tij(S)m_pij(S) (12)

6) EXPECTED MONITORING DELAY MODELLING
Now, we are ready to calculate the overall expected monitor-
ing delay EMDM (S,H ), under decision set S and H , as:

min
(S,H )

∑
vi∈S

∑
vj∈S

m_tij(S)m_pij(S)
N

(13)

7) FORBEARING STRATIFIED MULTI-OBJECTIVE
OPTIMIZATION
Now, we can unify the two models into a forbearing stratified
multi-objective optimization problem.

max
S,H

(L1 MCM (S,H ),L2 − EMDM (S,H )) (14a)

TO = {(S,H )|MCM1
− EMDM (S,H ) ≤ ε} (14b)

Subject to: |H | 6 N (14c)

|S| 6 M + |Vs| (14d)

Vs ⊆ S (14e)
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FIGURE 2. Solution design.

MCM (S,H ) is the monitoring coverage problem, and
−EMDM (S,H ) is the opposite of expected monitoring delay
problem. L1 MCM (S,H ) means the first level optimiza-
tion objective is monitoring coverage maximization, and
the solution is marked as MC1. L2 −EMDM (S,H ) means
the second level optimization objective is the oppsoite value
of expected monitoring delay maximization. The feasibility
solution space of L2 is TO determined by MC1 and ε, which
is the allowed monitor coverage decrease.

IV. SOLUTION
In this section, we firstly present the key idea of the solution,
and the mathematical proof. After that, the detailed imple-
mentation of algorithms are given.

A. KEY IDEA OF SOLUTION DESIGN
Obviously, in the problem of this paper, both the mobile sen-
sor input positions and the receiver deployment positions can
be calculated before the start of monitoring and not dynami-
cally adjusted during the monitoring process. Therefore, this
paper will use a centralized algorithm to find the optimal
solution. In addition, since the mobile sensor does not have
the autonomous mobility capability and does not involved in
the dynamic adjustment problem, the algorithm of this paper
will not consider the coordination cost of communication and
control.

To find out the optimal solution, we will solve the for-
mulated problem level by level, as depicted in Figure 2.
We firstly solve level one problem, monitoring coverage rate
maximization by exploring the submodular property of it.
Based on this, we will design a bidirectional greedy algorithm
based solution.

To coordinate the execution between two greedy algo-
rithms, we need a starting solution set for backward greedy
algorithm that can gradually reduce from. Similarly an ending
set is also required for forward greedy algorithm. In another
word, starting / ending analysis is required. Because of the

high computational complexity of solving MCM, we need
to speed up the computation. To do so, we can transfer the
original model into an iterative one, and also compress the
feasible solution space.

After having obtained the first level solution, we will solve
the second level expected monitor delay minimization prob-
lem. The first level solution is just an intermediate one, but it
can offer a feasible solution space for the second level prob-
lem. Then, by adjusting the deployment of mobile sensors,
we can minimise the expected monitoring delay within the
tolerance set to obtain the sub-optimal solution of the second
level problem, which is also the solution of the entire system.

1) SUBMODULAR FUNCTION ANALYSIS
Submodular optimization [14] is a special combinatorial opti-
mization. It can be defined as:
Definition 3 (Submodular function):
U is a finite non-empty set and A ⊆ B ⊆ U and a ∈ U \B.

We say set function f is submodular if f : 2U → R satisfy
f (A ∪ {a})− f (A) ≥ f (B ∪ {a})− f (B)
In addition, we define monotone of submodular function

as:
Definition 4 (Monotone):
We say f is monotone if ∀A ⊆ B, we have f (A) 6 f (B).
With the definition of submodular function and monotone,

we will analyze the properties of MCM model.
We denote Equation 9a as fS (H ) = gH (S) =∑
eljk ∈E

Ueljk (S,H )/|E|, then we will have the following
theorems:
Theorem 3: If H = D_H is a fixed value, then

Ueljk (S,D_H ) is a monotone submodular function.
Proof: For all A ⊆ B ⊆ V and vα ∈ V \ B.

(1) Obviously, the new uploadable junctions will not
reduce themonitoring coverage. So,Ueljk (S,D_H ) is amono-
tone function.

(2) Ueljk (B ∪ {vα},D_H ) − Ueljk (B,D_H ) indicates the
probability that mobile sensors deployment according toB_H
can reach vα without passing B. Obviously,

Ueljk (A ∪ {vα},D_H )− Ueljk (A,D_H )

> Ueljk (B ∪ {vα},D_H )− Ueljk (B,D_H )

Thus, Ueljk (S,D_H ) is a monotone submodular function.
�

Theorem 4: If H = D_H is a fixed value, then gD_H (S) is
a monotone submodular function.

Proof: For all A ⊆ B ⊆ V and vα ∈ V \ B.
(1) According to the Theorem 3,

gD_H (A ∪ {vα})− gD_H (A)

=

∑
eljk

(Ueljk (A ∪ {vα},D_H )− Ueljk (A,D_H ))/|E|

> 0

So, gD_H (S) is a monotone and set function.
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(2) According to the Theorem 3,

gD_H (A ∪ {vα})− gD_H (A)

=

∑
eljk

(Ueljk (A ∪ {vα},D_H )− Ueljk (A,D_H ))/|E|

>
∑
eljk

(Ueljk (B ∪ {vα},D_H )− Ueljk (B,D_H ))/|E|

= gD_H (B ∪ {vα})− gD_H (B)

Thus, gD_H (S) is a monotone submodular function. �
Theorem 5: If S = D_S is a fixed value, then

Ueljk (D_S,H ) is a monotone submodular function.
Proof: For all A ⊆ B ⊆ V and vα ∈ V \ B.

(1)

Ueljk (D_S,A ∪ {vα})− Ueljk (D_S,A)

=

∏
vi∈A

n_pijk (D_S) ∗ (1− n_pαjk (D_S)) > 0

So, Uelj,k (D_S,H ) is a monotone set function.
(2)

Ueljk (D_S,B ∪ {vα})− Ueljk (D_S,B)

= (Ueljk (D_S,A ∪ {vα})− Ueljk (D_S,A))

∗

∏
vi∈B\A

n_pijk (D_S)

6 Ueljk (D_S,A ∪ {vα})− Ueljk (D_S,A)

Thus, Uelj,k (D_S,H ) is a monotone submodular function.
�

Theorem 6: If S = D_S is a fixed value, then fD_S (H ) is a
monotone submodular function.

Proof: For all A ⊆ B ⊆ V and vα ∈ V \ B.
(1)

fD_S (A ∪ {vα})− fD_S (A)

=

∑
eljk ∈E

(
∏
vi∈A

n_pijk (D_S) ∗ (1− n_pαjk (D_S)))/|E|

> 0

So, in combination with Definition 4, fD_S (H ) is a mono-
tone set function.

(2) In combination with Theorem 5,

fD_S (A ∪ {vα})− fD_S (A)

=

∑
eljk ∈E

(Ueljk (D_S,A ∪ {vα})− Ueljk (D_S,A))/|E|

>
∑
eljk ∈E

(Ueljk (D_S,B ∪ {vα})− Ueljk (D_S,B))/|E|

= fD_S (B ∪ α)− fD_S (B)

Thus, fD_S (H ) is a monotone submodular function.
�

Based on Theorem 4 and 6, we know that the monitoring
coverage model I can only be maximized when both Equa-
tion 9a and 9c reach their upper bound. Hence, model I is

equal to the model II below.

max
S,H

∑
elj,k ∈E

Uelj,k (S,H )

|E|
(15a)

Subject to: |H | = N (15b)

|S| = M + |Vs| (15c)

Vs ⊆ S (15d)

Theorem 7: The monitoring coverage rate maximization
problem I and II are NP-Hard.

Proof: Considering a special case of coverage rate
maximization II : given optimal solution S∗, solve for opti-
mal solution H∗. This is reduced to a typical submodular
optimization problem, which is known to be NP-hard [8].
Therefore, coverage rate maximization II is also NP-hard.
And its equivalent problem coverage rate maximization I is
also NP-hard. �

2) START AND EXIT CONDITIONS ANALYSIS
According to Theorem 7, the problem we are solving is NP-
hard, which means there is no polynomial-time optimal solu-
tion, unless P = NP. To reduce the complexity, we solve the
problem with two steps: (1) given an uploadable junction set
S, solve the optimal mobile sensor deployment setH , g′(S) =
maxH fS (H ). (2) solve the optimal uploadable junction set S.

We use greedy algorithm for both steps, as greedy algo-
rithms perform well for monotone submodular optimizations
[23]. The approximation ratio is close to 1 − (1 − K )K

under forward greedy algorithm, where K is the number of
iterations in greedy algorithm. Correspondingly, the approx-
imation ratio is close to 1− (1− 1

Z−K )
Z−K under backward

greedy algorithm, where Z is the total number of elements
in universal set, Z − K is the number of iterations in the
algorithm.

For problem (1), according to Theorem 6, fD_S (H ) is a
monotone submodular function over multi-setH . GivenD_S,
we can find the approximated optimal solution fD_S (H ) and
g′(D_S) with forward greedy algorithm. To start off, we can
set H = φ and the algorithm ends when |H | = N .
Similarly for problem (2), according to Theorem 4,

gD_H (S) is also a monotone submodular function over set S,
and hence greedy algorithm can also be applied. Differently,
if the number of receivers |Vr | is unconstrained, universal set
V −Vs would be the optimal deployment solution. This moti-
vates us of applying backward greedy algorithm. I.e., starting
the solution set from V and removing receivers gradually in
every iteration.

Furthermore, during the execution of backward greedy
algorithm, an intermediate solution ISink can be obtained,
such that if receivers are deployed at every node in ISink ,
the upload probability is maximized, i.e., u_pi(S) = 1. Oth-
erwise, if any of the node in ISink has no receiver deployed,
the upload probability would be u_pi(S) < 1. Such ISink can
be given by:
Proposition 1: Minimum Complete Upload Set
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FIGURE 3. Greedy algorithm.

For the set ISink = {vi|vi ∈ V ,
∑|V |

j=1 t_pij = 0},
the following properties are satisfied:
(1) 1 6 i 6 |V |, u_pi(ISink) = 1
(2) ∀S ⊂ ISink, ∃1 6 i 6 |V |, u_pi(S) < 1
Proof:

(1) For the first property of ISink , it is proved by the
counter-evidence method.

Suppose ∃1 6 i 6 |V |, then we have u_pi(ISink) 6= 1,
in other words ∃u_pi(ISink) < 1.

That is, there is a mobile sensor in vi, without passing any
receiver, leaving the network from the terminal junction vj.

That is, ∃vj ∈ V ,
∑|V |

j=1 t_pij = 0 and vj /∈ ISink . This
contradicts the definition of ISink .

So, ∀1 6 i 6 |V |, u_pi(ISink) = 1
(2) For the second property of ISink , assuming vj ∈ ISink ,

then obviously themobile sensor put in vj will leave theWDN
directly.

So,

u_pj(S) = 0 6= 1

So, ∀S ⊂ ISink, ∃1 6 i 6 |V |, u_pi(S) < u_pi(ISink) = 1
�

So for the problem (2), the starting point of the forward
greedy algorithm is ∅, and the end point is set to |S| =
|ISink|, The starting point of the backward greedy algorithm
is ISink , and the end point is ∅.

3) BIDIRECTIONAL GREEDY ALGORITHM
After analyzing the start and exit conditions of the greedy
algorithms, we demonstrate how to use both greedy algo-
rithms to find out receiver deployment set in Figure 3.
Take the complete upload set ISink , |ISink| = Z . Obvi-

ously, the number of receivers is usually insufficient to ensure
that the entire WDN is completely covered, that is, there are
M < Z . Greedy algorithm specific cooperation process is as
follows:

(1) Initialization: Let a=0, perform initial backward greedy,
let x(a)

′

Z = ISink . Then, let x(a)
′

i = x(a)
′

i+1\{argmaxvα∈x(a)
′

i+1
g′(x(a)

′

i+1

\{vα}∪Vs)}, until i = 1. Let xo = ∅. Then perform initial for-
ward greedy, let x(a)i = x(a)i−1∪{argmaxvα∈V\(x(a)i−1∪Vs)

g′(x(a)i−1∪

{vα} ∪ Vs)}, until i = Z . Let Y (a)
= {y(a)1 , ..., y

(a)
Z }, where

y(a)i = max{x(a)
′

i , x(a)i }.
(2) Iteration: Forward greedy for each element y(a)i in

Y (a), let fy(a)i,i = y(a)i , then each step, let fy(a)i,b =

fy(a)i,b−1 ∪ {argmaxvα∈V\(fy(a)i,b−1∪Vs)
g′(fy(a)i,b−1 ∪ {vα} ∪ Vs)}

until b = Z . Backward greedy for each element y(a)i
in Y (a), let ryi,i = y(a)i , then every step, let ry(a)i,b =
ry(a)t,b+1\{argmaxvα∈ry(a)i,b+1

g′(ry(a)i,b+1\{vα} ∪ Vs)} until b = 1.

(3) Judgment: Let Y (a+1)
= {y(a+1)1 , ..., y(a+1)Z }.

where y(a+1)i = max{ry(a)i,1, ..., ry
(a)
i,i−1, y

(a)
i , fy

(a)
i,i+1, ..., fy

(a)
i,Z }.

if Y (a+1)
= Y (a), complete the iteration, let a+ 1 = d , go to

(4); otherwise go to (2).
(4) End: we get the algorithm solution:MCM1

= y(d)M .

4) ALGORITHM ACCELERATION
The computational complexity of model II is consider-
ably high with a large amount of feasible solutions. Two
approaches can be utilized to speed up the computation. The
first is to transform the coverage rate maximization model
into an iterative one; The second is to eliminate feasible
solutions to be searched without demoting the final solution
of maximum coverage rate.

We firstly introduce how to convert model II into an iter-
ative model III. Let Ueljk (S,H ) = 1 − Ueljk (S,H ), H (n) is

a set H with n elements, Ueljk (S,H ) denotes the probabil-
ity of mobile sensors not covering vj with given S and H .
If H (n+ 1) = H (n)∪ {vα}, then we can obtain the following
accelerated iterative coverage rate maximization model III.

MCM (S,H ) = 1− OBJECTIVE(S,H )/|E| (16a)

OBJECTIVE(S,H ) = min
S,H

∑
eljk ∈E

Ueljk (S,H ) (16b)

{
Ueljk (S, {vi}) = n_pijk (S)

Ueljk (S,H (n+ 1)) = Ueljk (S,H (n))Ueljk (S, {vα})
(16c)

Subject to:

|H | = N (16d)

|S| = M + |Vs| (16e)

Vs ⊆ S (16f)

Equation 16a and 16b are the objective functions, and
Equation 16c shows the iterative process. Equation 16d, 16e,
and 16f are the constraints.
Proposition 2: Some insert placement of mobile sensors

that can be excluded in H. ∀i1∀i2∀S∀H, we have

t_pi1 i2 = 1→ OBJECTIVE(S,H ∪ {vi1})

6 OBJECTIVE(S,H ∪ {vi2})
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Proof: Since t_pi1 i2 = 1,

t_pi1 j > t_pi1 i2 t_pi2 j = t_pi2 j

Then,

n_pi1 jk (S) 6 n_pi2 jk (S)

So,

OBJECTIVE(S,H ∪ {vi1}) =
∑
eljk ∈E

Ueljk (S,H ∪ {vi1})

=

∑
eljk ∈E

Ueljk (S,H )n_pi1 jk (S)

6
∑
eljk ∈E

Ueljk (S,H )n_pi2 jk (S)

= OBJECTIVE(S,H ∪ {vi2})

�
Proposition 3: Some deployment placement of receivers

that can be excluded in S. ∀i1∀i2∀S∀H , vi1 /∈ S, vi2 /∈ S,
we have

t_pi1 i2 = 1→ OBJECTIVE(S ∪ {vi1},H )
> OBJECTIVE(S ∪ {vi2},H )

Proof: (1) First, use the counter-evidence method to
prove t_pi1 i2 = 1→ u_pj(S ∪ {vi1}) 6 u_pj(S ∪ {vi2}).
Suppose ∃i1∃i2, t_pi1 i2 = 1 ∧ u_pj(S ∪ {vi1}) > u_pj(S ∪
{vi2}), then there must be a case where a mobile sensor pass
by a receiver deployed in accordance with S ∪ {vi1} from
the junction vj, but is not received by a receiver deployed in
accordance with S ∪ {vi2}.

Considering that the two placement schemes differ only in
the junctions vi1 and vi2 . Further, there must be some case
in which the mobile sensor can be received by the receiver
placed at the junction vi1 , but it is not received by the receiver
placed at the junction vi2 .

However, since tpi1 i2 = 1, any mobile sensor passing
through the junction vi1 must pass through the junction vi2 .
Therefore, t_pi1 i2 = 1→ u_pj(S ∪ {vi1}) 6 u_pj(S ∪ {vi2}).
(2) Then, we get:

OBJECTIVE(S ∪ {vi1},H ) =
∑
eljk ∈E

Ueljk (S ∪ {vi1 ),H}

=

∑
eljk ∈E

∏
vi∈H

n_pijk (S ∪ {vi1})

>
∑
eljk ∈E

∏
vi∈H

n_pijk (S ∪ {vi2})

= OBJECTIVE(S ∪ {vi2},H )

�
Proposition 4: Some deployment placement of receivers

that can be excluded through computing in S. ∀i1∀S∀H , vi1 /∈
S, we have

u_pi(S) = 1→ OBJECTIVE(S ∪ {vi1},H )

= OBJECTIVE(S,H )

Proof: Since u_pi(S) = 1,

u_pi(S ∪ {vi1}) = 1 = u_pi(S)

n_pijk (S ∪ {vi1}) = n_pijk (S)

Then, we get

OBJECTIVE(S ∪ {vi1},H ) =
∑
eljk ∈E

∏
vi∈H

n_pijk (S ∪ {vi1})

=

∑
eljk ∈E

∏
vi∈H

n_pijk (S)

= OBJECTIVE(S,H )

�
The above proposition will provide a basis for excluding

some feasible solution space to be searched.

5) LEVEL 2 SOLUTION
After obtaining the solution of the first layer MCM1

=

(S1,H1), use the tolerance set To = {(S,H )|MCM1
−

MCM (S,H ) 6 ε} to provide a feasible solution space for
the second layer. In order to search for the minimum expected
monitoring delay in the tolerance set To, an interchange algo-
rithm can be used to find the approximate solution.

Let equation 13 is d(S,H ). Same as above, g′(yt+1) =
maxH fyt+1(H ). Then,
(1) Initialization: Let t = 0, y0 = S, and g′(y0) = H .
(2) Iteration: Let yt+1 = argmaxq∈Latt+2g

′(q), Latt+1 =
{yt+1||yt+1 − yt | − |yt − yt+1| = 1,Vs ⊂ yt ,Vs ⊂
yt+1,MCM1

− w(yt+1) 6 ε, d(yt+1, g′(yt+1)) <

d(yt , g′(yt ))},w(yt+1) = MCM (yt+1, g′(yt+1)).
(3) Judgment: if Latt = ∅, complete the iteration, go to

(4); otherwise go to (2).
(4) End: we get the final solution of the interchange algo-

rithm (yt+1, g′(yt+1)). It is also the target problem, high cov-
erage The low-delay mobile sensor monitors the decision set
of the approximate solution.

B. ALGORITHM IMPLEMENTATION
To simplify the description, we only highlight the key func-
tions and their arguments.

1) FEASIBLE SOLUTION SPACE PRUNING
FEASIBLESOLUTIONPRU

This function takes probability transition matrix T_P and
static sensor deployment Vs as input, and outputs column
vectors AH , ASink . 1 in AH means mobile sensor can be
deployed at the corresponding junction, 0 means no deploy-
ment. Similarly, 1 in ASink means a receiver node can be
deployed at the corresponding junction.

This function implements proposition 2 and 3 to prune
the feasible solution space. It worth noting that according to
those propositions, the solution space pruning won’t affect
the monitoring coverage rate.
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2) MINIMUM COMPLETE UPLOAD FUNCTION
MINCOMPLETEUPLOAD

This function takes probability transition matrix T_P and
static sensor deployment Vs as input, and returns minimum
complete upload column vector ISink and the corresponding
receiver number nISink as output.
This function implements proposition 1 to obtain the com-

plete upload set, under which all the deployed mobile sen-
sors can upload their sensory data. nISink is the maximum
amount of receivers that the forward greedy algorithm can
reach. ISink is the starting point of the backward greedy
algorithm.

3) UNIDIRECTIONAL GREEDY FUNCTION UNIDIGREEDY

This function takes the following input parameters: probabil-
ity transition matrix T_P, adjacent probability matrix A_P,
static nodes deployment vector Vs, vector AH that mobile
sensor can be deployed, vector ASink that mobile sensor can
be deployed, starting receiver deployment vector StartSink ,
maximum amount of receiver node M , maximum amount of
mobile node N , and flag b. It will return the following values:
mobile sensors deployment matrix MH , receivers deploy-
ment matrixMSink , monitoring coverage rate column vector
MU , where MH (i, :) denotes the deployment of mobile sen-
sors under i receivers, MSink(i, :) denotes those i receivers,
and MU (i) is the corresponding monitoring coverage rate.
When the flag b = 1, the algorithm will greedily add

receivers to StartSink to maximize the monitoring coverage
rate. on the contrary, when b = 0, the algorithm will greedily
take receivers away from StartSink while keeping the maxi-
mized monitoring coverage rate. During the greedy process,
for every receiver deployment vector, it keeps adding mobile
sensors from nothing to maximize the monitoring coverage
rate, which is also used as the maximummonitoring coverage
rate of the corresponding receiver deployment vector. The
function implements Equation 16a to 16f in the iterative
model II, and the time complexity is O(MN |V |).

4) AN ITERATION OF BIDIRECTIONAL GREEDY FUNCTION
BIDIRECTIONALGREEDY

A better result can be obtained by utilizing the differences
between forward and backward greedy algorithms.

This function takes the following parameters as inputs:
probability transitionmatrix T_P, adjacent probabilitymatrix
A_P, static nodes position vector Vs, AH and ASink for
preprocessing acceleration, maximum allowed amount of
receivers Z , multi-dimensional array MH , MSink and MU
for recording the change of receivers. The outputs would
be: the iterative result RH , RSink , RU . Line 4 is used to
record forward greedy algorithm results, and Line 6 is used to
record backward greedy algorithm results. Lines 4 through 4
correspond to the second step of Section IV-A.3. Lines 8
to 10 select all maximum monitoring coverages with the
same number of receivers and record the results in the return

Algorithm 1 An Iteration of Bidirectional Greedy Function
BidirectionalGreedy
Input: T_P,A_P,Vs,AH ,ASink ,MH ,MSink ,MU ,Z
Output: RU ,RH ,RSink
1: RH ← 0|V |∗Z ,RSink ← 0|V |∗Z ,RU ← 0|V |,
TH ← 0|V |∗Z∗Z , TSink ← 0|V |∗Z∗Z , TU ← 0|V |∗Z

2: for a = 1 to Z do
3: b← a+ 1, c← a− 1
4: [TH (:, a, b : Z ),TSink(a, b : Z ),TU (a, b : Z )] ←

UnidiGreedy{T_P,A_P,Vs,AH ,ASink
,MSink(:, a),M ,N , 1}

5: TH (:, a, a)← MH (:, a),TU (a, a)← MU (a), TSink(:
, a, a)← MSink(:, a)

6: [TH (:, a, 1 : c),TSink(a, 1 : c),TU (a, 1 : c)] ←
UnidiGreedy{T_P,A_P,Vs,AH ,ASink
,MSink(:, a),M ,N , 0}

7: end for
8: for a = 1 to Z do
9: b← max(TU (:, a)), RH (:, a)← MH (:, b, a),

RSink(a)← TSink(:, b, a),RU (a)← TU (b, a)
10: end for
11: return RU ,RH ,RSink

parameters The computational complexity of this function is
O(NM |V |3).

5) DELAY REDUCTION FUNCTION DELAYREDUCTION

After obtaining the approximated solution of maximum cov-
erage rate, this function tries to alter the deployment positions
of mobile sensors to find the solution with minimum delay.

This function takes the following parameters as inputs:
probability transitionmatrix T_P, adjacent probabilitymatrix
A_P, time cost matrix T_T , static nodes position vector Vs,
mobile sensor deployment vector H , receiver deployment
vector Sink , the corresponding coverage rate sU and the size
of forbearing set ε. The outputs would be: the mobile sensor
deployment vector after delay reduction HL, the correspond-
ing coverage rate sUL and expected monitoring delay lyL.
Lines 6 to 11 are the second level solution according to
section IV-A.5. Lines 12 to 14 are used to find the position of
the mobile sensor input position that can reduce the expected
monitoring delay andmaximize themonitoring coverage rate.
The computational complexity of this function is O(g|V |2),
where g is the iteration of while loop.

6) THE COMPLETE ALGORITHM BGI

Till now, we can combine both forward and backward
greedy algorithms together according to Figure 3. Mean-
while, we can also combine the maximum coverage rate
L1 and minimum expected delay L2 together based on Fig-
ure 2. By doing so, we can obtain Bidirectional Greedy
Iterative algorithm (BGI).

This function takes the following parameters as inputs:
probability transitionmatrix T_P, adjacent probabilitymatrix
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Algorithm 2 Delay Reduction Function
DelayReduction
Input: T_P,A_P,T_T ,Vs,H ,Sink ,sU ,ε
Output: HL,sUL,lyL
1: RH ← H ,S ← Sink|Vs,sUL ← 0, SU ← 0|V |∗1,b← 1
2: ly← Computing EMD(T_P,T_T ,H , S)
3: while sign do
4: b← 0
5: for i = 1 to |V | do
6: if RH (i) > 0 then
7: RH (i)← RH (i)− 1
8: for j = 1 to |V | do
9: RH (j)← RH (j)+ 1

10: tU ← Computing MC(T_P,A_P,RH , S)
11: tly← Computing EMD(T_P,T_T ,RH , S)
12: if sU−tU < ε&&tly < ly&&tU > sUL then
13: sUL ← tU ,HL ← RH ,ly← tly,b← 1
14: end if
15: RH (j)← RH (j)− 1
16: end for
17: end if
18: if b == 1 then
19: BREAK
20: end if
21: end for
22: end while
23: return HL,sUL,lyL

A_P, time cost matrix T_T , static nodes position vector Vs,
maximum amount of mobile node N , maximum amount of
receiver nodeM and the size of forbearing set ε. The outputs
would be: the monitoring coverage rate sU and expected
monitoring delay ly, the mobile sensor deployment vector
H and the receiver deployment vector Sink . Line 1 to 13
correspond to maximum coverage rate L1. Line 14 minimum
expected delay L2.

Line 1 performs algorithm acceleration. Line 2 gets
the minimum complete upload receiver deployment loca-
tion. Line 3 and line 4 correspond to the first step of
Section IV-A.3. Line 5 to 13 correspond to the second step
and third step of Section IV-A.3. Line 14 is used to reduce the
expected monitoring delay. The computational complexity
of this function is O(rNM |V |3), where r is the number of
iteration loop.

C. ALGORITHM ANALYSIS
For layer one monitoring coverage rate, let the approximate
solution of the algorithm to be F1

= MCM (S1,H1), and the
optimal solution to be Fop = MCM (Sop,Hop). To simplify
the analysis, similarly to literature [23], we assume that we
can obtain the optimal sensor deployment setH , then we have
the following theorem:
Theorem 8: The lower bound of the approximation ratio

of the first layer of the BGI algorithm to maximize the

Algorithm 3 The Complete Algorithm BGI

Input: T_P,A_P,T_T ,Vs,N ,M ,ε
Output: sU ,ly,H ,Sink
1: [AH ,ASink]← FeasibleSolutionPru(T_P,Vs)
2: [ISink, nISink]← MinCompleteUpload(T_P,Vs)
3: [BH ,BSink,BU ] ←

UnidiGreedy{T_P,A_P,Vs,AH ,ASink
, ISink, nISink,N , 0 }

4: [FH ,FSink,FU ] ←

UnidirectionalGreedy{T_P,A_P,Vs,AH ,ASink
, 0|V |∗1, nISink,N , 1}

5: while FU 6= BU do
6: for i = 1 to |V | do
7: if FU (i) < BU (i) then
8: FH (:, i)← BH (:, i),FU (i)← BU (i),

FSink(:, i)← BSink(:, i)
9: end if
10: end for
11: [BH ,BSink,BU ] ←

BidirectionalGreedy{T_P,A_P,Vs,AH ,ASink
,FH ,FSink,FU , nISink}

12: [FH ,FSink,FU ] ←

BidirectionalGreedy{T_P,A_P,Vs,AH ,ASink
,BH ,BSink,BU , nISink}

13: end while
14: [H , sU , ly]← DelayReduction{T_P,A_P,T_T ,Vs

,FH (M ),FS(M ),FU (M ), ε}
15: return sU ,ly,H ,Sink

monitoring coverage is:

F1/Fop>max{1−(1− 1/M )M , 1−(1−1/(|V |−M ))|V |−M }

> 1− (1− 2/|V |)|V |/2

Proof: Since H1
= Hop, according to Theorem 6,

this is a submodular optimal problem. Because of the greedy
algorithm, then,

(1) For the forward greedy algorithm part, assume that
the approximate solution of the forward greedy algorithm is
MCM (S11,Hop). According to the literature [8],

gHop (S11)− gHop (∅)
gHop (Sop)− gHop (∅)

> 1− (1− 1/M )M

At the same time, MCM (S,H ) = gH (S) and
MCM (∅,H ) = gHop (∅) > 0, so,

MCM (S11,Hop)
MCM (Sop,Hop)

=
gHop (S11)
gHop (Sop)

>
gHop (S11)− gHop (∅)
gHop (Sop)− gHop (∅)

> 1− (1− 1/M )M

(2) For the backward greedy algorithm part, according
to Proposition 4, it can be seen that the backward greedy
algorithm is equivalent to starting from the S = 1|V |∗1 and
starting from ISink , for greedy will surely go through ISink .
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Assume that the approximate solution of the backward
greedy algorithm is MCM (S21,Hop). According to the
literature [8], similar to (1):

MCM (S21,Hop)
MCM (Sop,Hop)

=
gHop (S21)
gHop(Sop)

>
gHop (S21)− gHop (∅)
gHop(Sop)− gHop (∅)

> 1− (1− 1/(|V | −M ))|V |−M

Then,F1 > max{MCM (S11,Hop),MCM (S21,Hop)} So,

F1/Fop>
max{MCM (S11,Hop),MCM (S21,Hop)}

MCM (Sop,Hop)
=max{1−(1−1/M )M , 1−(1−1/(|V | −M ))|V |−M }

> 1− (1− 2/|V |)|V |/2

�

V. EVALUATION
In this section, we evaluate the performance of BGI algo-
rithm. Firstly, we build a small-scale WDN as a testbed to
measure the test error rate between theory and experiment.
Then, we use the simulation program to test the performance
of BGI on a large-scale WDN.We compare BGI with Greedy
y [28] to analyze the performance of BGI in formula error
rate, approximation ratio, monitoring coverage rate and mon-
itoring delay. Finally, we compare the BGI with X-Y [28] to
analyze the performance of BGI in computing time, for the
reason that X-Y is faster than Greedy y and Greedy y is better
than X-Y in other aspects.

A. TESTBED EVALUATION
As shown in Figure4(a),we assembled a small-scale WDN
testbed using PVC pipes. In this figure, each vertical pipe was
connected in front of each horizontal pipe junction to facili-
tate the input of mobile sensors. Limited by the experimental
conditions, we adopt a specific WDN structure, so that the
flow velocity ratio of each pipe can be simply determined.
The structure of WDN is as shown in Figure 4(b), with a total
of 20 pipes and 17 junctions. Figure 4(c) shows the mobile
sensors we use. Due to the small-scale of testbed, the receiver
communication range can cover multiple junctions, which
is different from the urban WDNs. Therefore, we only test
the test error ratio between the theoretical and actual moving
probabilities of the mobile sensor on the testbed. Take the the-
oretical movement probability as P, and the measured arrival
probability is P∗, then the test error rate is |(P− P∗)/P∗|.
By repeatedly putting mobile sensor into the testbed and

counting the number of times it reaches a specific junction,
we can get the probability of mobile sensor reaching the
junction. Figure 5 shows two groups of test error rate curves.
Among them, abscissa represents the number of experiments,
and ordinate represents the test error rate. In the first group,
the input position of the mobile sensor is the closest junction
to the water source, while in the second group, the input

FIGURE 4. Testbed.

FIGURE 5. The comparison of error rate.

position of the mobile sensor is the adjacent lower junc-
tion (in Fig. 4(b)). It can be seen that with the increase
of the number of experiments, the test error rate gradually
decreases. The two curves in Figure5 are always higher than
0.04, which is caused by many factors, such as unstable water
source, unstable center of gravity of mobile sensor and so on.
In addition, the first group is longer than the second group
in distance between mobile sensor insert junction and target
junction. Therefore, the curve of the first group is higher than
the second group.

B. SIMULATION PROGRAM EVALUATION
We adapt the WDNs model from EPANET [31], which is a
widely used WDN simulator from US Environmental Pro-
tection Agency. As dipicted in Figure 6, two networks are
used in our simulation. Figure 6(a) is the largest network that
EPANET offers, which contains 96 junctions and 117 pipes.
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FIGURE 6. Network Topology.

Figure 6(b) is relatively smaller that has 36 junctions and
40 pipes. We import the pipe data from EPANET into
MATLAB 2016 and calculate the node travelling probability
according to Equation 1. The deployment of static nodes is
randomly generated for each (M ,N ). By this mean, after
obtaining pipe length, water speed and static sensor deploy-
ment, we can calculate coverage rate and expected delay for
each mobile sensor and receiver deployment.

In the following sections, we compare the performance
of our BGI algorithm with Greedy y in formula error rate,
approximation ratio of coverage rate, evaluate monitoring
coverage rate, expected monitoring delay and X-Y in com-
puting time. We use the WDN in Figure 6(a) to evaluate
the formula error rate and approximation ratio of coverage
rate, as the optimal solution can be found with exhaustive
enumeration thanks to the small-scale. Then, we use the larger
network in Figure 6(a) to evaluate monitoring coverage rate,
expected monitoring delay and computing time.

1) FORMULA ERROR RATE EVALUATION
Since the probability models used in our BGI algorithm and
Greedy y algorithm are different. For the sake of fairness,
we define a Probability Dependence Model (PDM) to cal-
culate expected coverage rate. In this model, the paths of all
mobile nodes are simulated to calculate the overall expected
coverage rate. The process is repeated many times to find
out the mean expected coverage rate. It is obvious that if the
repeated times are sufficient, the final result will be close to
the actual expected coverage rate. We use R to denote the
closed-form expression, and R∗ to denote the result of PDM.
And we define the formula error rate as |(R− R∗)/R∗|.

According to Equation 5 and 6, the upload probability is:

R =
∑
vj∈S

(t_pi,j −
∑

vg∈S,g<j

m_pi,g(S) t_pg,j)

In Greedy y algorithm, the probabilities of arriving at each
receiver are independent, then, the upload probability is:

R = 1−
∏
vj∈S

(1− t_pi,j)

FIGURE 7. The comparison of formula error rate.

The formula error rates of BGI and Greedy y under dif-
ferent M and |Vs| are illustrated in Figure 7, in which x-axis
shows the number of static nodes and y-axis is the formula
error rate. PDM is themean of 20,000 simulations. Each point
is obtained by 50 iterations, and in every iteration, we use
the same number of static and mobile sensors with different
deployment. It worth noting that the two lines representing
BGI are almost coincident.

The results show that the error rates of Greedy y are
between 0.1% and 2%, which is larger than that of BGI
(within 0.07%). We can conclude that our BGI algorithm
outperforms Greedy y in precisely describing the error rate.

2) APPROXIMATION RATIO EVALUATION
We compared the approximation ratio of both algorithm with
small-scaled network in Figure 6(b). The optimal solution
is obtain by exhaustive enumeration. Approximation ratio is
defined as F/F∗, where F is the coverage rate under the
compared solutions, andF∗ is the coverage rate under optimal
solution. The comparison results of both algorithm under
different N ,M , and Vs are shown in Figure 8, in which x-axis
is the number of static nodes and y-axis is the approximation
ratio. Every data point is the mean of 50 iterations of experi-
ments, and in each iteration we use the same number of static
nodes, but different deployment.

The results show that the approximation ratios of BGI is
quite close to 1 and the two lines are almost coincident.
In comparison, the approximation ratios of Greedy y are
between 0.89 and 0.98. Therefore, our BGI algorithm can
more precisely approximate to the optimal solution. In addi-
tion, the real approximation ratio is much higher than the
theoretical lower bound, which is 1 − (1 − 2/|V |)|V |/2 ≈
0.642.

There are two reasons why the actual approach rate is much
higher than the theoretical lower bound. First, the scale of
WDN used in the test is small, and it is easy for BGI to
obtain an optimal solution. However, considering the huge
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FIGURE 8. The comparison of approximation ratio.

amount of computation to enumerate the optimal solution,
it is difficult to test on a large-scale WDN. Second, 0.642 is
the lower bound of the theoretical lower bound. According to
property 8, the theoretical lower bound can be regarded as a
valley-shaped curve, and 0.642 is located at the bottom of the
curve.

3) MONITORING COVERAGE RATE EVALUATION
We use the network with 96 junctions in Figure 8(a) to evalu-
ation the monitoring coverage rate of BGI and Greedy y. The
performance of BGI and Greedy y under different N , M and
|Vs| are depicted in Figure 9. Each point is the mean results
of 50 iterations, with the same amount of sensor number but
different deployment.

Figure 9(a) shows the results of both algorithms with the
same number of mobile sensors (N = 25) and increasing
number of receiver nodes. X-axis in this figure is the number
of receiver nodes and y-axis shows the monitoring coverage
rate. The dashed line in the figure shows the increase of
coverage rate with different number of receivers, ranging
from 0.51 to 0.84. While the solid line is the coverage rate
of Greedy y, increasing from 0.51 to 0.81, with the increase
of number of receivers.

Both curves are concave downward, which matches the
monotone description in Theorem 4. In addition, the BGI
curve is mostly on top of the Greedy y one, which means our
BGI algorithm outperforms Greedy y in the simulation.

Figure 9(b) shows the results of both algorithms with the
same number of receiver nodes (M = 8) and increasing num-
ber of mobile sensors. The dashed line in the figure shows
the increase of coverage rate with different number of mobile
nodes, ranging from 0.49 to 0.89. In contrast, the solid line is
the coverage rate of Greedy y, increasing from 0.46 to 0.87,
with the increase of number of mobile nodes.

Both curves are concave downward, which matches the
monotone description in Theorem 6. In addition, the BGI
curve is mostly on top of the Greedy y one, which means our
BGI algorithm outperforms Greedy y in the simulation.

FIGURE 9. The comparison of monitoring coverage rate.

4) EXPECTED MONITORING DELAY EVALUATION
To evaluate the expected monitoring delay, we use the same
experiments as the monitoring coverage rate ones in the pre-
vious section. The performance of BGI and Greedy y under
different N , M and |Vs| are depicted in Figure 10.
Figure 10(a) shows the results under same mobile sensors

(N = 25) but different receivers. The expected monitor-
ing delays of both solutions increase with the number of
receivers. For our BGI algorithm, the expected monitoring
delay increases from 6,300 to 17,600. While the Greedy y’s
delay increases from 7,400 to 18,500. The increase of delay
is because that the system tends to deploy receivers to the
far ends of the WDNs when the amount of receivers grows,
and it takes longer for mobile sensors to reach them. Overall,
we can see that the BGI curve is under that of the Greedy y,
which means BGI has shorter expected monitoring delay than
Greedy y.

Figure 10(b) shows the results under same receivers
(M = 8) but different mobile sensors. The expected mon-
itoring delays of both solutions decrease with the number
of mobile sensors. For our BGI algorithm, the expected
monitoring delay decreases from 19,600 to 12,600. While
the Greedy y’s delay decreases from 20,200 to 14,400. The
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FIGURE 10. The comparison of expected monitoring delay.

decrease of delay is because the more mobile sensors we
deploy, the closer they are to the receivers. It also can be
observed that BGI’s curve is under that of Greedy y, which
means BGI performs better in term of expected monitoring
delay.

5) COMPUTATIONAL COMPLEXITY EVALUATION
To evaluate the computational complexity, we use the same
experiments as those for evaluating monitoring coverage rate.
The performance of BGI and X-Y under different N and M
are dipicted in Figure 11. Among them, the basic unit of
computational time is the specified CPU time of MATLAB
timing function.

Figure 11(a) shows how the time costs (y-coordinate) grow
with the number of receiver nodes (x-coordinate) for both
algorithms under the same amount of mobile sensors (N =
25). The BGI curve increases from 20 to 23. Differently,
the computational cost for X-Y rises from 70 to 94.

The BGI curve is independent from the amount of
receivers, because the algorithm just calculates all the cov-
erage rate from 1 to |ISink| receivers.
Figure 11(b) illustrates the time costs of both algorithms

under the same amount of receivers (M = 8). The time cost

FIGURE 11. The comparison of computational complexity.

of BGI vary between varies between 20 and 24. But the cost
for X-Y rises from 49 to 160. The insights for this is similar
as Figure 11(a).

It should be noted that the literature [28] points out that
the computational complexity of X-Y algorithm is O((N +
M ) ∗ (|V |)2). However, this complexity considers O (1) to
complete a calculation of monitoring coverage. According to
the formulas given in [28], it actually takes O(M ∗ V 2) time.
So in fact, the computational complexity of X-Y isO(M (N +
M ) ∗ |V |4). It is slightly larger than O(rNM ∗ |V |3), for r <
|V |, so the BGI curve is under the X-Y curve.

VI. CONCLUSION
We have addressed the problem of using mobile sensors
to monitor urban water pipelines with low delay and high
coverage. The problem has been formulated as monitoring
coverage rate maximization and expected monitoring delay
minimization problem to find the solution for receiver and
mobile nodes deployment. The problem has been proven to be
NP-hard. Then, we have unified the problem into a forbearing
stratified multi-objective optimization model. By utilizing
submodular set function property, we have designed greedy
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algorithms to find the solutions. Finally, extensive simulation
and analysis have been conducted to validate the feasibility
and effectiveness of our solution.

In real-world applications, the water pressure, speed
and even direction could change dynamically. In addition,
the pollution could possibly spread with water. Therefore,
the dynamic nature of water flow should be considered.
In future works, we will go on studying the pipeline moni-
toring with dynamically changing fluid, and design solutions
to be able to track the pollution spreading in time.
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