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ABSTRACT This study proposes a novelmodel selection criterion for dimensionality estimation in canonical
correlation analysis (CCA), which can be used to estimate the number of correlated components between
two sets of multivariate vectors, particularly in the context of canonical coordinates. The proposed method
has a different form compared to existing model selection criteria, which typically use the Bartlett-Lawley
measure as a goodness-of-fit term. Alternatively, we propose to use instead a goodness-of-fit term based
on the sum of squares of the smallest canonical correlation coefficients. The asymptotic properties of the
proposed goodness-of-fit term have been laid out and an appropriate penalty term with proof of consistency
is derived based on these properties. Numerical examples are presented in the context of direction-of-arrival
estimation using canonical coordinates for two channel array systems. It is shown that our proposed order
selection criterion outperforms conventional criteria and is robust to various noise and interference scenarios.

INDEX TERMS Canonical coordinates, multi-view analysis, canonical correlation analysis, model selection.

I. INTRODUCTION
Canonical correlation analysis (CCA) is a popular mul-
tivariate technique used to measure linear dependencies
between two sets of variables [1], where each set typi-
cally corresponds to a different view or representation of
data [2]. CCA finds pairs of linear projectors to produce
maximally correlated canonical variables from the original
data. The pair-wise correlations, which are called canoni-
cal correlations, provide a means for quantifying the rela-
tionship between the two views/sets of variables. Due to
its comparative nature, CCA has had significant impact on
a wide range of applications that rely on multi-view or
multi-modal analysis. Applications include biomedical signal
processing and brain imaging [3]–[5], radar/sonar [6], [7],
communications [8], [9], remote sensing [10], multi-view
classification/clustering [11], and computer vision [12].

One of the important challenges faced when using
CCA is determining the number of correlated components,
which corresponds to the problem of dimensionality
estimation [13], [14]. Determining the number of corre-
lated components can help identify the linear relationships
between two multivariate signals. Several methods have been
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proposed to estimate dimensionality in CCA. Including
empirical approaches such as cross-validation [15]; hypothe-
sis testing such as the Bartlett-Lawley test [16]–[18]; or using
model selection criteria such as Akaike’s information crte-
rion (AIC) [13], [19]–[22], Bayesian information criterion
(BIC) [14], [23], and Mallow’s Cp [14], [24].
All of the aforementioned approaches aim to select the

highest possible number of correlated components to obtain
a CCA model that best fits the data, while simultaneously
restricting model complexity to avoid an overfitted model.
However, among all approaches, model selection criteria
particularly stand out, due to their relatively simple form
and broad applicability. Model selection criteria generally
comprise two terms, the first is a ‘‘goodness-of-fit’’ term that
quantifies information gained from the data, while the sec-
ond is a ‘‘penalty’’ term that increases with the number
of canonical correlation components and amount of data.
The penalty term is typically obtained by exploiting infor-
mation on the approximate asymptotic distribution of the
goodness-of-fit term [25]. The primary contribution of our
study is to propose a new model order selection criterion for
estimating the number of significant components in CCA.
Similar to existing criteria, it has a simple form but differs
from existing criteria in both its goodness-of-fit and penalty
terms.
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The present study is motivated by a recent interpretation
of CCA introduced in signal processing, called the canonical
coordinates perspective [8], [26]. Canonical coordinates refer
to the pairs of maximally correlated variates calculated by
CCA for each canonical correlation component. Canonical
coordinates provide a principal subspace in which two sep-
arate views of data have the highest correlation. This con-
cept has been employed to investigate many problems in
signal processing that involve two-channel systems. Exam-
ples includemultivariateWiener filtering [8], communication
systems [27], cross-spectral analysis [28], and distributed
array processing [29]. For distributed array processing in par-
ticular, leveraging information from multiple sensor arrays
is an important aspect of distributed sensor networks. This
has led to several CCA-based approaches in distributed array
processing [30], [31], where estimating CCA dimensionality
is on par with estimating the dimension of the principal sub-
space associated with the canonical coordinates between two
multivariate signals, each corresponding to an array. In this
study, we will explore the role of CCA order estimation
in applications related to distributed array processing. As a
numerical example, we will use CCA in the context of direc-
tion of arrival (DOA) estimation using two sets of spatially
separated arrays. We will show that CCA order selection can
be used to estimate the number of sources in the environment,
which is generally known to help improve the performance
of DOA estimation in approaches such as MUltiple SIgnal
Classification (MUSIC) [32].

The remainder of this study is organized in the follow-
ing manner. In Section II, we present some preliminary
knowledge regarding canonical correlation analysis, canoni-
cal coordinates, and dimensionality estimation using model
selection criteria. In Section III, we propose an alternative
model selection criterion for CCA and present the main
results of our study, including proof of consistency for our
proposed method. In Section IV, we present some back-
ground knowledge on DOA estimation using CCA and com-
pare the performance of our proposed method with con-
ventional model selection criteria. Finally, in Section V,
we present some concluding remarks.

II. BACKGROUND
This section presents some background on canonical cor-
relation analysis, canonical coordinates, and order selection
criteria for CCA.

A. CCA AND CANONICAL COORDINATES
Assume we have an n× (p+ q) data matrix (X>,Y>), where
X is p × n and Y is q × n with n > p ≥ q. As in [33] we
assume that the columns xi ∈ Rp and yi ∈ Rq, i = 1, . . . , n,
are represented by multivariate zero-mean Gaussian random
vectors x and y, respectively, with densities N (0,6xx) and
N (0,6yy), where:

6xx = E[xx>] 6yy = E[yy>].

The p + q Gaussian vector (x>, y>)> is zero-mean and has
the following covariance matrix:

6 =

(
6xx 6xy
6yx 6yy

)
(1)

where6xy = 6
>
yx = E[xy>] are p×q cross-covariancematri-

ces. The coherence matrix of x and y is defined as [33], [34]:

C = 6−1/2xx 6xy6
−>/2
yy , (2)

where it is assumed that both 6xx and 6yy are invertible and
the superscript 1/2 denotes matrix square-root. The singular
value decomposition of C = FKG> results in two column
orthogonal matrices F and G of size p× s and q× s, respec-
tively, where s = min(p, q). Since F and G are by definition
orthonormal (i.e., F>F = Is andG>G = Is), pre-multiplying
C by F>and post-multiplying it by G gives the rectangular
diagonal matrix K , which contains the real-valued singular
values of C , with non-zero entries only in the descending
sequence k1 ≥ k2 ≥ . . . ks ≥ 0. The non-zero elements of
K are referred to as canonical correlations and correspond
to the directions of maximal correlation between the random
variables ui = f >i 6

−1/2
xx x and vi = g>i 6

−1/2
yy y [33], [34],

where fi and gi are columns of F and G, for i = 1, . . . , s.
To illustrate this, consider the definition of k1, which is:

k1 = max
f ,g

f >Cg = max
f ,g

f >6−1/2xx E
[
xy>

]
6−>/2yy g

= max
f ,g

E
[
f >6−1/2xx xy>6−>/2yy g

]
= maxE

[
u1v>1

]
= max corr(u1, v1). (3)

The last line of (3) uses the fact that Cov(u1) = Cov(v1) = 1
in the definition of correlation corr(u, v). This is sequentially
performed for k2, . . . , ks under the conditions of orthogonal-
ity for the columns of F and G. The ith pair of columns in F
and G, namely fi and gi, provide a linear combination of the
whitened variables 6−1/2xx x and 6−1/2yy y that are maximally
correlated with each other and uncorrelated with all previous
variables corresponding to 1, . . . , i− 1.
In the context of two-channel signal processing, the vectors

u = F>6−1/2xx x and v = G>6−1/2yy y are called canon-
ical coordinates for x and y, respectively [8]. Therefore,
the canonical correlations, which were defined as the sin-
gular values of the coherence matrix, can also be viewed as
the correlations between the canonical coordinates [8]. Since
correlation coefficients are bounded by 1, we have 1 ≥ k1 ≥
k2 ≥ · · · ≥ ks ≥ 0.

B. ESTIMATION OF DIMENSIONALITY FOR CCA
The number of correlated components between x and y is
determined by the number of non-zero canonical correlations
in K . When only r ≤ s components are correlated, the diag-
onal matrix Kr can be defined with the r non-zero canonical
correlation coefficients k1 ≥ k2 ≥ . . . kr > 0. The value r is
called CCA dimensionality [13]. When r < s, the coherence
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matrix takes the form:

C = F
(
Kr 0
0 0

)
G> (4)

where the p × p orthogonal matrix F = (Fr ,Fp−r ) is
constructed from Fr of size p × r and F(p−r) of size p ×
(p − r), and the orthonormal columns of Fr and Fp−r are
orthogonal to each other. Similarly, the q × q orthogonal
matrixG = (Gr ,Gq−r ) containsGr of size q× r andGq−r of
size q×(q−r). The matrix Kr = diag(k1, . . . , kr ) is diagonal
and contains the non-zero singular values of C in descending
order, k1 ≥ · · · ≥ kr > 0. The number of non-zero singular
values is the rank of C , thus the singular value decomposition
of C is equivalent to

C = FrKrG>r (5)

The r left singular vectors Fr corresponding to the r largest
singular values of K span the range or column space of C
(i.e.,R(C)), whereas the associated right singular vectors Gr
span the row space of C or R(C>).
The objective of CCA dimensionality estimation can be

viewed as that of finding the rank r . This is trivial when 6xx ,
6yy, and6xy are known. However, in practice only the sample
covariance matrix is available:

S =
(
Sxx Sxy
Syx Syy

)
(6)

where

Sxx =
1

n− 1
XX>, Syy =

1
n− 1

YY>, and

Sxy =
1

n− 1
XY>

Resulting in the sample coherence matrix:

Ĉ = S−1/2xx SxyS−>/2yy (7)

It is assumed that both Sxx and Syy are positive definite. The
corresponding SVD of the sample coherence matrix Ĉ is:

Ĉ = F̂ K̂ Ĝ> (8)

where K̂ = diag(k̂1, . . . , k̂s) = (K̂r , K̂s−r ) is an s × s
diagonal matrix with positive decreasing singular values and
s = min(p, q).We are interested in finding r so that thematrix

Ĉ = F̂
(
K̂r 0
0 K̂s−r

)
Ĝ> (9)

can be associated to (4) or equivalently to (5).
One method to estimate rank(C) is to use an information

criterion (IC) based on the choice of models

C = FmKmG>m, (10)

for differentm = 1, . . . , s. In such methods, the IC is defined
in a way that it reaches a minimum point whenm = r . Histor-
ically, ICs for CCA can be derived in the context of regression
analysis [35], which addresses the conditional distribution
of y given x (or vise versa). Under the problem conditions

described at the beginning of this section, the conditional
distribution can be fully determined by the regression matrix
6yx6

−1
xx , which has the same rank as C , since 6xx and 6yy

are positive definite [13]. Some of the popular ICs derived
through this method [14] are the Akaike’s information crite-
rion (AIC):

AIC(m) = −n
s∑

i=m+1

log(1− k̂2i )− 2(p− m)(q− m), (11)

the Bayesian information criterion:

BIC(m)=−n
s∑

i=m+1

log(1−k̂2i )−log(n−1) [(p−m)(q−m)] ,

(12)

and Mallow’s Cp:

Cp(m) = n
s∑

i=k+1

(
k̂2i

1− k̂2i

)
− 2(p− m)(q− m). (13)

A common interpretation of these criteria is to consider
the first component as the goodness-of-fit term (e.g.,
−n

∑s
i=m+1 log(1 − k̂2i ) in AIC), which determines how

well the model (10) corresponding to m fits the data matrix.
The second term is a penalizing term (e.g., 2(p − m)(q − m)
in AIC), which limits the complexity of the model and is
derived based on the degree-of-freedom of the first term [14].
The goodness-of-fit terms derived for AIC and BIC are based
on the log-likelihood function of the conditional probability
P(y|x), while the goodness-of-fit of Cp is based on the mean
squared prediction error of y given x [24].
One of the short-comings of the goodness-of-fit terms

in (11), (12), and (13) is their sensitivity to slight variations
in the canonical correlation coefficients k̂i. This is problem-
atic, since realistic conditions such as limited number of
observations n can significantly deviate the sample canoni-
cal correlations from their expected values [36]. In the next
section, we will propose a new criterion that is proven to be
a consistent estimator of the rank of C .

III. PROPOSED METHOD
This section proposes a new criterion for estimating the num-
ber of canonical coordinates based on the sum of squared
canonical correlation coefficients k̂i. The proposed criterion
takes the form:

IC(m) = n
s∑

i=m+1

k̂2i − cn(p− m)(q− m) (14)

where k̂i are the sample canonical correlations or the singular
values of Ĉ . The second term in (14) is the so called penalty
term, for which we will derive an appropriate cn to obtain
a consistent estimate of the dimension. In the remainder
of this section we will show that the order m that mini-
mizes (14) is a consistent estimator of dimensionality for
CCA. Goodness-of-fit terms of the form presented in the
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first term in (14) have been used before as statistical tests of
dimensionality [37]–[40].

We start by deriving some properties of the sample coher-
encematrix Ĉ , the estimator of the coherencematrixC . Using
the definitions of the sample covariance, cross-covariance,
and coherence matrices in (6) and (7), we can state:
Proposition 1: The sample coherence matrix Ĉ defined

in (7) is a
√
n-consistent estimator of C.

In the proof of Proposition 1, presented in Appendix A,

it is shown that
√
nvec

(
Ĉ − C

)
d
−→ N (0,�) where � is

a pq × pq covariance matrix and
d
−→ means convergence in

distribution. From the
√
n-consistency of Ĉ , we can address

the consistency of F̂r and Ĝr by adopting a random matrix
approach on the matrix Ĉ which is a function of xi and yi,
i = 1, . . . , n.
Proposition 2: Let r = rank(C) and assume that there

exists a small positive value ε such that kr > ε > 0, where kr
is the smallest non-zero singular value of C. Then as n→∞

F̂r
p
−→ Fr and Ĝr

p
−→ Gr

where
p
−→ denotes convergence in probability.

The proof of Proposition 2 is presented in Appendix B,
which shows that F̂r and Ĝr are

√
n-consistent estimators of

Fr and Gr , respectively. From Proposition 2, the following
result is immediately derived for the orthogonal projectors Q̂F
and Q̂G calculated from Ĉ .
Corollary 1: The orthogonal projectors on the null spaces

of Ĉ
>
and Ĉ satisfy

Q̂F = F̂p−r F̂
>

p−r = Fp−rF>p−r + Op

(
1
√
n

)
(15)

Q̂G = Ĝq−rĜ
>

q−r = Gq−rG>q−r + Op

(
1
√
n

)
(16)

Proof of Corollary 1 is presented in Appendix C. Based on the
assumption in (4), which states that only the first r canonical
correlations are non-zero, the following quantity

K̂s−r =
√
nF̂>p−r ĈĜq−r (17)

approaches zero as the sample size n increases. K̂s−r can
be calculated using the projection matrices Q̂F and Q̂G
defined in (15) and (16). Proposition 3 below shows the rela-
tion between these orthogonal projections and the proposed
goodness-of-fit of (14) as well as the asymptotic properties
of the final s− r correlation coefficients.
Proposition 3: The asymptotic distribution of
√
nvec

(
Q̂F ĈQ̂G

)
is given by

√
nvec

(
Q̂F ĈQ̂G

)
d
−→N (0, (QG⊗QF )�(QG⊗QF )) (18)

where� is the pq× pq covariance matrix of vec
(
Ĉ− C

)
as

derived in Appendix A.
The proof of Proposition 3 is provided in Appendix D.

Since according to (18),
√
nvec

(
Q̂F ĈQ̂G

)
is multivariate

FIGURE 1. Illustration of the asymptotic behavior of the proposed
goodness-of-fit term L(Ĉ, r ). Left: Histogram of L(Ĉ, r ) in black for 1000
runs (i.e., empirical results) vs. theoretical distribution in red. Right: For
10000 runs. In both small sample and large sample cases, the mean of
L(Ĉ, r ) matches the degrees-of-freedom of the data.

normal, the following can be said regarding the squared sum
of its entries.
Corollary 2: Let L(Ĉ, r) be defined by

L(Ĉ, r) = n
s∑

i=r+1

k̂2i .

Then L(Ĉ, r) follows a (p− r)(q− r) mixture of weighted χ2
1

distributions where the weights are the eigenvalues of 0 =
(QG ⊗ QF )�(QG ⊗ QF ). Furthermore, χ2

γ with γ = (p −
r)(q−r) degrees-of-freedom can be used as an approximation
to the distribution of L(Ĉ, r).

Proof of Corollary 2 is presented in Appendix E. This result
shows that the term n

∑s
i=r+1 k̂

2
i can be used as a goodness-

of-fit term for a CCAmodel order selection criterion. For 1 ≤
m ≤ s, the asymptotic bias of n

∑s
i=m+1 k̂

2
i can be corrected

by (p−m)(q−m), resulting in the criterion presented in (14)
and the order estimation r̂ = argmin mIC(m).
According to Corollary 2, the goodness-of-fit is asymp-

totically χ2-distributed. This can be shown by considering a
small example where twomultivariate vectors are constructed
according to the model: x = Wxs + nx , and y = Wys + ny,
where Wx and Wy are two random matrices of dimension
p × r and q × r . The latent vector s is the common hid-
den variable, which is of dimension r . The vectors nx and
ny correspond to white Gaussian noise N (0, I ). Figure 1
shows the histogram of L(Ĉ, r) calculated in two scenarios
corresponding to 1000 and 10000 runs, with n = 1000
samples of x and y, p = q = 5, and r = 3. According to
Corollary 2 the distribution of L(Ĉ, r) is asymptotically χ2

with (p − r)(q − r) = 4 degrees-of-freedom, as it is empir-
ically evident from Figure 1. In our example, the jth entry
of s for the ith sample was set to sin (w(j)i+ φ(j)), for i =
1, . . . , n, where w and φ were randomly generated for each
sinusoid.

The asymptotic distribution of L(Ĉ, r) together with its
degrees-of-freedom (p − r)(q − r) provide a guideline for
model order selection. However, as a final step we must
introduce an adjustment factor between the two terms to
ensure consistency of estimation [41], [42]. Proposition 4
below shows the conditions required for the factor cn in (14)
that ensures this consistency.
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Proposition 4: The criterion defined by

IC(m) = n
s∑

i=m+1

k̂2i − cnγ (19)

where γ = (p − m)(q − m) can be used to obtain a strongly
consistent estimator of r (i.e., limn→∞mn = r a.s.). Here
mn = argminm IC(m) and cn is taken such that limn→∞

cn
n =

0 and limn→∞
cn

log log n = ∞.
Proof of Proposition 4 is presented in Appendix F. This

concludes our derivation of (14) as a model selection criterion
for the rank of the coherence matrix used to calculate CCA.
In the next section, we provide some numerical results in the
context of a practical application of CCA order selection for
distributed array processing.

IV. NUMERICAL RESULTS
A recent application of CCA has been to address direction-of-
arrival (DOA) estimation using a pair of spatially distributed
arrays [29], [43]. The simulations adopted in this section are
based on the method proposed in [29], which introduced
a model based on the canonical coordinates between two
spatially separated sensor arrays to derive an objective func-
tion for DOA estimation. This objective can be viewed as
an extension of conventional single-array processing algo-
rithms such as MUSIC [32]. In this section, we will use
the cross-spectral analysis [30] technique proposed in [29]
to demonstrate the performance of our proposed order esti-
mation criterion in the context of DOA estimation and com-
pare it with conventional criteria as described in Section II-
B. We start with a brief overview of the DOA estimation
technique proposed in [29], which from here on after will be
referred to as CCA-DOA.

A. CCA-DOA
Consider r uncorrelated far-field narrow-band sources
impinging on two arrays denoted by x and y that are spatially
separated. In general, x and y have different dimensions (i.e.,
number of sensors per array) p and q, respectively. The source
signals received at the arrays are denoted by the vectors sx and
sy. The dimension of the vector sx is rx (where r ≤ rx ≤ p)
and the dimension of sy is ry (where r ≤ ry ≤ q). The
additional rx−r signals received at array x correspond to local
interferences and therefore are considered to be nuisances,
which we would like to ignore (similarly for y). The objective
is to find θ = [θ1, . . . , θr ]>, which is the DOA of the r
common sources between x and y with respect to a reference
point. We are given a total of n snapshots (i = 1, . . . , n, with
n ≥ p+ q+ 1):

xi = Axsxi + wxi
yi = Aysyi + wyi, for i = 1, . . . , n (20)

The vectors wxi and wyi represent white Gaussian measure-
ment noise at each array. The arrays are separated far enough
in space so that the noise sources wx and wy can be assumed
uncorrelated. The p × rx and q × ry dimensional matrices

FIGURE 2. DOA estimation problem setup. Two spatially separate arrays x
and y with known positions in polar coordinates, for example (l, φ)
depicted in figure above. The goal is to find θ using n snapshots. In the
diagram we have only shown one source. The effective distance with
respect to the origin O is d = l cos(θ − φ).

Ax = [ax1(θ ), . . . , axrx (θ )] and Ay = [ay1(θ ), . . . , ayry (θ )]
contain the steering vectors of x and y. Figure 2 illustrates
the DOA schematic in a 2-dimensional coordinate system
from which Ax and Ay can be derived. Note that all vectors
defined in this section are complex valued.1 Based on this,
the covariance/cross-covariance matrices between x and y
are [29]:

6xx = AxE[sxsHx ]A
H
x + E[wxw

H
x ],

6yy = AyE[sysHy ]A
H
y + E[wyw

H
y ],

6xy = AxE[sxsHy ]A
H
y . (21)

In the last line of (21), we have E[wxwHy ] = 0.
In practice, we use the p × n and q × n data matrices X

and Y by horizontally stacking xi and yi for all n snapshots
to calculate the sample covariance/cross-covariances. The
sample coherence matrix is Ĉ = S−1/2xx SxyS

−H/2
yy = F̂ K̂ ĜH ,

where Sxx , Syy, and Sxy are as defined in (6), except using the
Hermitian operator. As in conventional DOA methods [32],
CCA-DOA finds an objective function that depends on a can-
didate angle-of-arrival θ . Given the number of sources r , [29]
proposes to use the sum of the first r canonical correlation
coefficients to derive the objective. Since only the first r
singular values correspond to the signal component, we use
the maximum corresponding to the truncated matrices F̂r and
Ĝr . Defining P as the matrix of source cross-correlations
corresponding to E[sxsHy ] (not to be mistaken with K ) and
using the trace operator tr(.), we have:

r∑
j=1

k̂j = tr
(
F̂Hr ĈĜr

)
= tr

(
F̂Hr S

−1/2
xx SxyS−H/2yy Ĝr

)
= tr

(
F̂Hr S

−1/2
xx AxPAHy S

−H/2
yy Ĝr

)
=

r∑
j=1

P(j, j)
∣∣∣Ay(:, j)HS−H/2yy Ĝr F̂Hr S

−1/2
xx Ax(:, j)

∣∣∣
(22)

1Therefore, when calculating the covariance, cross-covariance, and coher-
ence matrices in this section, we must use the matrix Hermitian operator H

instead of transpose >. The singular values of the coherence matrix of x and
y are still real and the proposed order estimation technique is the same as
that of (14). Chapter 10 of [44] shows that the asymptotic behavior of the
canonical correlation is similar for real and complex scenarios.
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FIGURE 3. Example of DOA objective function J(θ) (in blue) using (22) with 2 impinging sources (in) and
one interfering source that only affects one of the arrays (in black marked by ×). These plots show the
effect of rank-reduction. In the left plot, with no rank-reduction, the objective function has peaks in
directions not corresponding to the signals that are caused by noise. In the middle plot, where
rank-reduction accuracy using AIC is 81%, some unwanted peaks can still be observed. In the right plot,
the only peaks that are observed in the objective function come from the two desired source signals,
resulting in better DOA estimation.

where Ax(:, j) = axj(θ ) and Ay(:, j) = ayj(θ ) are the
jth columns of Ax and Ay, respectively. Since the term
S−H/2yy Ĝr F̂Hr S

−1/2
xx is fully determined by the data, the max-

imization can be performed by sweeping the steering vec-
tors ax(θ ) and ay(θ ) over (−π/2, π/2) to determine the
maximizing θ that satisfies (22). The third equality in (22)
uses (21) and the last equality uses the fact that the sources
are mutually uncorrelated. The objective of CCA-DOA is
therefore:

J (θ ) =

∣∣∣ax(θ )HS−H/2xx FrGHr R
−1/2
yy ay(θ )

∣∣∣∣∣∣ax(θ )HS−1xx ax(θ )ay(θ )HS−1yy ay(θ )∣∣∣ (23)

where the denominator is added as a standard normalizing
term that helps remove the effect of signal power. As in
standard MUSIC-like algorithms, the local maxima of J (θ )
correspond to the DOA of the common sources between x
and y. Ideally, we would like there to be exactly r peaks
in J (θ ). It is observed that CCA-DOA provides additional
power compared to standard single-array DOA, as it is able
to account for unwanted local interferences when rx or ry are
greater than r . For more information on CCA-DOA, please
see [29], [43].

B. SIMULATIONS
Using the full rank F̂ and Ĝ matrices invalidates the equal-
ity of (22), therefore rank-reduction is necessary to limit
the objective function to only contain local maxima at the
directions of arrival. As in most DOA estimation techniques,
the performance of CCA-DOA heavily relies on the number
of sources and its accurate estimation [45], [46]. Figure 3
shows an example where r = 2 sources, with impinging
wavefronts from angles−60◦ and−7.5◦, aremeasured at n =
200 snapshots by two uniform linear arrays (ULAs). Addi-
tionally, another equal power interfering source is received
only by one of the arrays from angle 45◦ (marked in Fig. 3
with a black ×). We would like to be able to ignore the
interference source, as it is ‘‘local’’ to one of the arrays. The
0dB noise sources wx and wy are white Gaussian and uncor-
related with each other. The two arrays are placed 10 meters
apart with p = q = 16 sources that are randomly placed
in a plane with known positions (the steering matrices are

determined using the description provided in Fig. 2). The
distance between sensors in each array is λ/2, where λ is
the wavelength. The curves in Fig. 3 show the objective J (θ )
calculated for different θ ∈ (−90◦, 90◦) with θ swept at 0.6◦

precision. The importance of accurate rank-reduction can be
viewed by comparing the three plots in Fig. 3. In the left plot,
we see that without truncating F̂ and Ĝ, the objective has
several unwanted peaks. These peaks are caused by the noise
and interference subspaces corresponding to k̂i for i > r . The
middle plot in Fig. 3 shows inaccurate rank-reduction where
sometimes r is overestimated. These ranks were estimated
using AIC, for which r is correctly estimated approximately
85% of times. In the right plot, we can see that when using our
proposed method, which under these conditions always cor-
rectly estimates r with 100% accuracy, the objective function
J (θ ) only has local maxima at the DOAs. While these plots
are for demonstration purposes only and all three approaches
on average converge to the correct DOAs, using the pro-
posed order estimation technique significantly improves
consistency by correctly estimating the DOA every single
time.

An interesting observation that can bemade with regards to
DOA estimation accuracy is the mean-squared-error (MSE)
as a function of the truncation of F̂ and Ĝ. To show this,
we repeat the previous experiment 100 times, except with
r = 10 equally spaced sources located at angles ranging
from −60◦ to 45◦. The SNR for this experiment is set to
0dB and the number of sensors per array is set to 32, so as
to obtain higher accuracy. We estimate the DOA by find-
ing the peaks of J (θ ) calculated by truncating F̂ and Ĝ
at values ranging between 1 to 25. Calculating the mean-
squared-error of DOA estimation is not straight-forward,
since J (θ ) may not contain exactly 10 peaks. To find the
most optimistic error, we find the closest estimated value
for each true DOA. After adding the corresponding squared
error, we remove both the DOA and its suspected estimation
and repeat the process. This iteration continues until either
all true DOAs or all estimated DOAs have been consid-
ered. Figure 4 shows the MSE as a function of truncation
and the average MSE for 100 runs. From this figure we
can observe the different effects of under-estimation (trun-
action < 10) and over-estimation (truncation > 10). For
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TABLE 1. Order selection accuracy (%) vs. number of sources for two ULAs.

TABLE 2. Order selection accuracy (%) vs. number of sources with randomly positioned sensors.

FIGURE 4. Investigating the effect of order estimation on MSE values for
100 runs. The black vertical line shows the number of sources. Truncating
the rank of Ĉ with values on the left of the black line equates to
underestimation, which increases the variance of MSE. Truncating on the
right of the back line results on overestimation, which reduces the MSE
variance but has high bias. The trade-off, as determined by the average
MSE over 100 runs, coincides with the number of sources (here 10).

under-estimated scenarios, the variance of theMSE decreases
as truncation approaches the number of sources. Whereas
for over-estimated scenarios, although the variance of the
MSE shrinks as the truncation increases, the actual MSE
value approaches a fixed non-zero bias. We can see from the
average MSE curve (red curve in Fig. 4), the best truncation
rank coincides with the number of sources r = 10. This
observation illustrates the bias/variance trade-off associated
with model order selection [47].

Now that the significance of accurate order estimation
for the CCA-DOA experimental setup has been established,
we focus on comparing the performance of our proposed
CCA order estimation criterion with existing criteria, namely
AIC , BIC , and Cp as they were described in Section II.
We will compare robustness with respect to: signal-to-noise
ratio (SNR), number of common sources, and number of
nuisance sources. Performance of order estimation accuracy
is measured as the probability of correct detection (Pc) cal-
culated over T = 1000 repetitions. Pc is computed as 100×
# correct estimations

T .
First, we investigated the effect of noise power on Pc by

setting the SNR to values between (−10, 10)dB. Through

FIGURE 5. Investigating the effect of noise power on CCA order
estimation using 300 snapshots collected from two ULAs spaced 10
meters apart. The number of common impinging sources is 8. We see that
our proposed method (bold black) outperforms all order estimation
methods.

experiments we find that the least acceptable number of
snapshots for reasonable performance from all methods is
n = 300. We consider counting 8 sources using two uniform
lineary arrays (ULAs) placed 10 meters apart, each array
is comprised of 16 sensors with between-sensor distance of
d = λ/2. Figure 5 shows Pc versus SNR for all four methods.
We see that our proposed criterion shows more resistance to
noise compared to BIC and has higher detection accuracy at
high SNR compared to BIC , AIC , and Cp. We also performed
the same experiment using two arrays with randomly placed
sensors and average sensor distance of λ/2. Figure 6 shows
that for −6dB SNR and higher, our proposed method outper-
forms other methods.

Next, we estimate CCA orders as a function of the number
of common sources (i.e., the true r). We will use SNR=5dB to
ensure all methods work reasonably well, based on the obser-
vations from Figs. 5 and 6. We had to double the number of
snapshots to keepCp competitive. Therefore, in the following
experiments n = 600, which had little impact on the per-
formance of AIC , BIC , and our proposed method. All other
experiment conditions remained unchanged. Tables 1 and 2
show the performance of all 4 methods, respectively for
ULAs and randomly placed sensors. The number of common
sources range between r = 1, . . . , 10. We see that our
proposed method always outperforms the other methods.
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FIGURE 6. Similar to experiments of Fig. 5, except using randomly placed
sensors with average between-sensor distance of λ/2. The performances
drop compared to ULA, however, our proposed method outperforms all
methods in nominal SNR values.

TABLE 3. Order selection accuracy (%) vs. number of interfering signals
(rx − r = ry − r ).

Finally, we would like to investigate the effect of rx − r
signals at x and ry−r signals at y that are local to each of these
arrays and are not amongst the r common signals. The ability
to distinguish common sources from local interferences is
unique to CCA and is therefore one of the motivations of
CCA-DOA [29].We assume a constant signal-to-interference
(SIR) ratio of 1.5dB, which is calculated as the ratio between
the sum of the powers of common sources to the sum of the
powers of uncommon sources for each array. Table 3 shows
the accuracy calculated over 1000 repetitions, when the num-
ber of common source r = 4, and the number of uncommon
sources (rx−r and ry−r) varies between 1, . . . , 8.We can see
that our proposedmethod, which relies on the sum-of-squares
of the lowest canonical correlations, is much more robust to
variations in the number of interfering (uncommon) signals.

V. CONCLUSION
A model selection criterion for determining the number of
canonical coordinates (i.e., dimensionality estimation for
canonical correlation analysis) was proposed in this paper.
It has the particularity of using the sum of squares of the
smallest canonical correlation coefficients between two sets
of multivariate vectors as a goodness-of-fit term instead of
deriving it using the likelihood approach. The penalty term
was derived based on the approximate asymptotic distribution
of the proposed goodness-of-fit term, which when combined
together can be used as a simple to use and reliable model
selection criterion for estimating the number of significant
component in CCA. Numerical simulations were conducted

to show the effectiveness of our proposed CCA model order
selection criterion compared to convectional criteria. Our pro-
posed method was shown to outperform conventional criteria
in the context of counting the number of common sources
impinging on a two channel array setup. We attribute this
performance to the simplicity of the proposed goodness-of-
fit fit term, which is robust against variations in the canonical
correlation coefficients.

APPENDIX A
PROOF OF PROPOSITION 1 CONSISTENCY OF Ĉ

Proof: To prove Proposition 1 we will show that
√
nvec

(
Ĉ − C

)
d
−→ N (0,�)

where � is an pq × pq covariance matrix and
d
−→ means

convergence in distribution. Using the definitions of C and
Ĉ from (2) and (7):

vec
(
Ĉ − C

)
= vec

(
S−1/2xx SxyS−>/2yy −6−1/2xx 6xy6

−>/2
yy

)
add and subtract S−1/2xx 6xyS

−>/2
yy and 6−1/2xx 6xyS

−>/2
yy :

vec
(
Ĉ − C

)
= vec

(
S−1/2xx

(
Sxy −6xy

)
S−>/2yy

)
+ vec

((
S−1/2xx −6−1/2xx

)
6xyS−>/2yy

)
+ vec

(
6−1/2xx 6xy

(
S−>/2yy −6−>/2yy

))
(24)

Using the Kronecker product ⊗, (24) can be restated as:

vec
(
Ĉ − C

)
=

(
S−1/2yy ⊗ S−1/2xx

)
vec

(
Sxy −6xy

)
+

[(
S−1/2yy 6>xy

)
⊗ Ip

]
vec

(
S−1/2xx −6−1/2xx

)
+

[
Iq ⊗

(
6−1/2xx 6xy

)]
vec

(
S−>/2yy −6−>/2yy

)
(25)

From the law of large numbers, as n→∞

S−1/2yy ⊗ S−1/2xx
p
−→ 6−1/2yy ⊗6−1/2xx [bounded](

S−1/2yy 6>xy

)
⊗ Ip

p
−→

(
6−1/2yy 6>xy

)
⊗ Ip [bounded]

vec
(
Sxy −6xy

) p
−→ 0

vec
(
S−1/2xx −6−1/2xx

) p
−→ 0

vec
(
S−1/2yy −6−1/2yy

) p
−→ 0

Thus, vec(Ĉ − C)
p
−→ 0 as n→∞. Moreover, by the central

limit theorem,
√
nvec

(
Sxy −6xy

)
,
√
nvec

(
S−1/2xx −6

−1/2
xx

)
,

and
√
nvec

(
S−1/2yy −6

−1/2
yy

)
each converges to a fixed mul-

tivariate Normal distribution. This implies that
√
nvec(Ĉ−C)

is a mixture of Gaussians and vec
(
Ĉ − C

)
= O

(
n−1/2

)
.

Thus, E
[
Ĉ − C

]
= 0. Therefore, we have

√
nvec

(
Ĉ − C

) p
−→ 0, (26)
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In other words: Now, using (26) and by replacing in the
first term of (25)

(
S−1/2yy ⊗ S−1/2xx

)
with

(
6
−1/2
yy ⊗6

−1/2
xx

)
,

in the second term
[(
S−1/2yy 6>xy

)
⊗ Ip

]
with[(

6
−1/2
yy 6>xy

)
⊗ Ip

]
, and in the third term

[
Iq ⊗

(
S−1/2xx 6xy

)]
with

[
Iq ⊗

(
6
−1/2
xx 6xy

)]
, we have:

√
nvec

(
Ĉ − C

)
=
√
n
(
Iq ⊗6−1/2xx

)
× vec

[
6xy

(
S−T/2yy −6−T/2yy

)]
+
√
n
(
6−1/2yy ⊗ Ip

)
× vec

[(
S−1/2xx −6−1/2xx

)
6xy

]
+
√
n
(
6−1/2xx ⊗6−1/2yy

)
× vec

(
Sxy −6xy

)
+Op

(
1
√
n

)
. (27)

Defining

9 =
[(
Iq ⊗6−1/2xx

)
,
(
6−1/2yy ⊗ Ip

)
,
(
6−1/2xx ⊗6−1/2yy

)]
,

it follows that

√
nvec

(
Ĉ − C

)
=
√
n9


vec

[
6xy

(
S−T/2yy −6

−T/2
yy

)]
vec

[(
S−1/2xx −6

−1/2
xx

)
6xy

]
vec

(
Sxy −6xy

)


+ Op

(
1
√
n

)
(28)

Denoting by 8 the covariance

8 = lim
n→∞

cov


√
nvec

[
6xy

(
S−T/2yy −6

−T/2
yy

)]
√
nvec

[(
S−1/2xx −6

−1/2
xx

)
6xy

]
√
nvec

(
Sxy −6xy

)
 (29)

The asymptotic distribution of Ĉ follows directly as
√
nvec

(
Ĉ − C

)
d
−→ N (0,989>).

APPENDIX B
PROOF OF PROPOSITION 2 CONSISTENCY OF F̂r and Ĝr

Proof: From proposition 1, Ĉ is a
√
n-consistent esti-

mator of C and it can be expressed as

Ĉ = C + ε
Ĉ − C
ε
= C + εD (30)

where the perturbation of C is of order 1/
√
n [34], [38], [48];

that is εD = Op
(

1
√
n

)
. Therefore

ĈGrK−1 = (C + εD)GrK−1

= Fr + εDGrK−1 (31)

and

K−1F>r Ĉ = K−1F>r (C + εD)

= G>r + εK
−1F>r D (32)

Since both matrices Fr and Gr are orthogonal and
non-random and asK−1 is bounded because kr > ε, it implies
that both second terms of (31) and (32) are still bounded by
Op( 1
√
n ). Then F̂r = Fr+Op

(
1
√
n

)
and Ĝr = Gr+Op

(
1
√
n

)
,

so that both F̂r and Ĝr are
√
n-consistent estimators for Fr

and Gr , respectively.

APPENDIX C
PROOF OF COROLLARY 1 CONSISTENCY OF THE
ORTHOGONAL PROJECTION MATRICES

Proof: From proposition 2, F̂r = Fr + Op
(

1
√
n

)
,

therefore

F̂p−r F̂>p−r = Ip − F̂r F̂>r

= Ip −
[
Fr + Op

(
1
√
n

)][
Fr + Op

(
1
√
n

)]>
= Ip − FrF>r + Op

(
1
√
n

)
= Fp−rF>p−r + Op

(
1
√
n

)
. (33)

The proof of (16) is similar.

APPENDIX D
PROOF OF PROPOSITION 3 ASYMPTOTIC DISTRIBUTION
OF VEC

(
Q̂F Ĉ Q̂G

)
Proof: Using Corollary 1, we have

vec
(
Q̂F ĈQ̂G

)
= vec

(
Q̂F Ĉ(Q̂G − QG)

)
+ vec

(
Q̂F ĈQG

)
= vec

(
Q̂F ĈQG

)
+ Op

(
1
√
n

)
= vec

(
(Q̂F − QF )ĈQG

)
+vec

(
QF ĈQG

)
+ Op

(
1
√
n

)
= vec

(
QF ĈQG

)
+ Op

(
1
√
n

)
= vec

(
QF (Ĉ − C)QG

)
+ Op

(
1
√
n

)
(34)

where the last line is obtained using that fact that QFCQG =
0. Therefore vec

(
Q̂F ĈQ̂G

)
has the same asymptotic distri-

bution as vec
(
QF ĈQG

)
.

Thus, we have:
√
nvec

(
Q̂F ĈQ̂G

)
= vec

(
QF ĈQG

)
+ Op (1)

= vec
(
QF (Ĉ − C)QG

)
+ Op (1)
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= (QG ⊗ QF )
√
nvec(Ĉ − C)+ Op (1) .

(35)

Using (35) we obtain

E
{
vec

(
Q̂F ĈQ̂G

)}
= (QG ⊗ QF )

√
nE
{
vec(Ĉ − C)

}
= 0

and from Appendix A we have E
{
cov(Ĉ − C)

}
= �,

therefore:

cov
{
vec

(
Q̂F ĈQ̂G

)}
= (QG ⊗ QF )�(QG ⊗ QF )

APPENDIX E
PROOF OF COROLLARY 2 DISTRIBUTION OF PROPOSED
GOODNESS-OF-FIT

Proof: Note that

L(Ĉ, r) = nvec(Ks−r )>vec(Ks−r )

= ntr
(
K̂ 2
s−r

)
= ntr

(
F̂>p−r ĈĜq−r Ĝ

>
q−r ĈF̂p−r

)
= ntr

(
Q̂F ĈQ̂GĈ

)
= tr

(
‖
√
nQ̂F ĈQ̂G ‖2F

)
= ‖
√
nvec

(
Q̂F ĈQ̂G

)
‖
2
F

Proposition 3 shows that
√
nvec

(
Q̂F ĈQ̂G

)
is normal

with with covariance �. Using � as defined in Propo-
sition 3, it is easy to show that the alternative measure
L̃(Ĉ, r)

L̃(Ĉ, r) = nvec
(
Q̂F ĈQ̂G

)>
�−1vec

(
Q̂F ĈQ̂G

)
= ‖
√
n�−1/2vec

(
Q̂F ĈQ̂G

)
‖
2
F , (36)

has all equal non-zero unit eigenvalues, and therefore L̃(Ĉ, r)
is χ2

(p−r)(q−r) distributed. However, since � is difficult to
compute, we are motivated to use an alternative approach.
We know that as n → ∞ the goodness-of-fit term ‖
√
nvec

(
Q̂F ĈQ̂G

)
‖
2
F follows a wighted mixture of χ2

1 dis-

tributions
∑γ

i=1 ωiχ
2
1 , where ωi are the eigenvalues of � and

γ = (p − r)(q − r) corresponds to the degrees-of-freedom
determined by the size of the null spaces of F and G. To find
an approximation for the mean of the statistics, we use the
Gamma function approximation [49]:

γ∑
i=1

ωiχ
2
1 =

γ∑
i=1

ωi0

(
1
2
, 2
)
=

γ∑
i=1

0

(
1
2
, 2ωi

)

=

γ∑
i=1

0 (Ki, θi) ≈ 0 (K , θ) (37)

where [49]

K =
(
∑
θiKi)2∑
θ2i Ki

and θ =

∑
θiKi
K

.

for all i = 1, . . . , γ , the values Ki = 1
2 and θi = 2ωi, which

we assume are equal to further simplify the derivations. The
mean of the asymptotic approximation of the distribution of
L(Ĉ, r) is therefore given by Kθ . This is the quantity that
has to be used to penalize the sum of the smallest canonical
correlations. It is easy to show if the smallest canonical
correlations are relatively close, the mean of the distribution
is proportional to γ = (p − r)(q − r). In Section III
it is empirically shown that this approximation is
reasonable.

APPENDIX F
PROOF OF PROPOSITION 4 CONSISTENCY OF PROPOSED
CRITERION

Proof: In order to prove the strong consistency of

r̂ = argmin
r
IC(r)

we first consider the case where r̂ > r0, where r0 is the true
dimension:

IC(r̂)− IC(r0) = L(Ĉ, r̂)− L(Ĉ, r0)

+ cn(p− r̂)(q− r̂)

− cn(p− r0)(q− r0)

= L(Ĉ, r̂)− L(Ĉ, r0)

+ cn(r̂ − r0)(r̂ + r0 − p− q) (38)

and assuming that the law of iterative logarithms holds [50],
then

IC(r̂)− IC(r0) = O (log log(n))

+ cn(r̂ − r0)(r̂ + r0 − p− q)

= log log(n)
[
O(1)

+
cn(r̂ + r0 − p− q)(r̂ − r0)

log log(n)

]
→ ∞ (39)

which implies that IC(r̂) > IC(r0) a.s. Then for large n, r̂
will not be bigger than r0.
In case r̂ < r0, we have

IC(r̂)− IC(r0) = τn− cn(r̂ + r0 − p− q)(r0 − r̂)

= n
[
τ −

cn((r̂ + r0 − p− q)(r0 − r̂))
n

]
(40)

gives IC(r̂) > IC(r0), since τ = L(Ĉ, r̂)− L(Ĉ, r0) > 0 and
the second term on the right hand side in brackets converges
to zero for large n. Combining both cases concludes the
proof [41].
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