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ABSTRACT Bidirectional communication infrastructure of smart systems, such as smart grids, are vul-
nerable to network attacks like distributed denial of services (DDoS) and can be a major concern in the
present competitivemarket. In DDoS attack, multiple compromised nodes in a communication network flood
connection requests, bogus data packets or incoming messages to targets like database servers, resulting in
denial of services for legitimate users. Recently, machine learning based techniques have been explored
by researchers to secure the network from DDoS attacks. Under different attack scenarios on a system,
measurements can be observed either in an online manner or batch mode and can be used to build predictive
learning systems. In this work, we propose an efficient DDoS attack detection technique based on multilevel
auto-encoder based feature learning. We learn multiple levels of shallow and deep auto-encoders in an
unsupervised manner which are then used to encode the training and test data for feature generation. A final
unified detection model is then learned by combining the multilevel features using and efficient multiple
kernel learning (MKL) algorithm. We perform experiments on two benchmark DDoS attack databases and
their subsets and compare the results with six recent methods. Results show that the proposed method
outperforms the compared methods in terms of prediction accuracy.

INDEX TERMS Auto-encoder, cyber security, DDoS attack detection, multiple kernel learning, smart grid.

I. INTRODUCTION
Smart grid is an electrical supply network that combines an
existing power network with modern information technolo-
gies to respond more efficiently to the needs and distribu-
tion of energy. It offers several novel features that include
bi-directional communication, remote controlling of smart
home appliances, updates about consumer behavior and keep-
ing track of power grid’s stability. Such novel features need
integration of new services and devices as well as new stan-
dards and protocols for effective and simplified operation.
However, the incorporation of all these standards and devices
increases the complexity and vulnerability of the smart grid to
security threats. Particularly, the bidirectional and software-
oriented nature of the smart grid makes it very prone to cyber
attacks. A cyber attack can have a significant impact on the
whole grid that eventually will affect society, therefore, strict
security measures are required to safeguard the grid. As a
result, cybersecurity in the smart grid has become one of the
most important research problems recently.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amedeo Andreotti.

To interrupt the normal safe operation of a power
grid or gain financial advantage, cyber attackers target dif-
ferent elements of cyber resiliency to manipulate the data
being communicated for power system operation and control.
These elements include data confidentiality, data integrity,
and data availability. Several prevention methods have been
implemented and investigated by researchers to protect the
network devices and databases from cyber intruders. For an
instant, Suo et al. [1] investigated the latest cyber attack
prevention technologies inclusively protecting sensor data,
communicational devices security using encryption mech-
anisms and cryptographic algorithms. Mehrdad et al. [2]
classified cyber attacks into two groups naming direct and
indirect cyber attacks and further sub-categorized the direct
cyber attacks into four sub-groups. Among them, data intru-
sion attacks are considered as the most common group of
cyber attacks and its most significant attack type is Denial
of services (DoS). In these attacks, to disrupt the normal
trend of services, the adversary introduces artificial loads
to the main service source and causes disruptions to the
normal legitimate service. Most current DoS attacks are dis-
tributed (DDoS) where attackers initiate attack from several
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adversaries simultaneously. Thus, detection and prevention of
attack from one node will not stop the attack andmake it more
complicated to differentiate between legitimate and artificial
service requests.

To enhance the security of the smart grid, DDoS attacks can
be detected by analyzing the patterns of network data. Auto-
matic analysis and detection methods enable in time response
and preventive measures which can significantly reduce the
damage. However, automatic prediction of DDoS attacks
is a challenging problem. The accuracy of a DDoS attack
prediction is the most critical factor for timely prevention of
the attacks. To enhance the accuracy, the prediction system
must learn important features from the network packets in an
efficient manner. This challenge can be tackled by employing
multiple learning models to enhance the prediction accuracy.
However, this introduces another challenge of the automatic
unification of multiple learning models. Therefore, to tackle
these challenges simultaneously, we propose an automatic
and efficient method for increasing the accuracy of DDoS
attack predictions by employing multiple learning models.
We exploit multilevel shallow and deep auto-encoders for
learning rich features. For this purpose, we employ the
Marginalized Stacked De-noising Auto-encoders [3] in our
work due to their improved training efficiency and high
accuracy. Features from a hierarchy of deep auto-encoders
are unified in a weighted fashion via an efficient Multiple
Kernel Learning (MKL) based on Dimensionality Reduc-
tion (MKLDR) algorithm [4]. The MKLDR algorithm is
effective for combining very high dimensional features and
learning a low dimensional space for classification. Our
proposed method is generic and applicable in many super-
vised learning problems that involve automatic model fusion.
We evaluate our method for DDoS attack prediction in this
paper.

Following are the main contributions of this work:
• For enhanced feature encoding, we propose multiple
levels of shallow and deep auto-encoders learned in
an unsupervised fashion from the available training
data.Multi-level auto-encoders have not been previously
explored for the DDoS detection problem.

• By unifying the encoded features from all levels we learn
the final more accurate detection model. For this pur-
pose, we propose to use multiple kernel learning which
automatically takes care of the relative importance of
different auto-encoder based features. A small unified
kernel is obtained which improves the efficiency of the
detection tasks in the testing phase.

• To the best of our knowledge, DDoS detection in smart
grid network using multilevel auto-encoders and MKL
has not been explored previously in the literature. The
proposed approach is extensively evaluated using bench-
mark datasets for DDoS detection in the smart grid net-
work. The results are compared to six DDoS detection
algorithms in terms of classification accuracy. Results
show that the proposed method outperforms the com-
pared algorithms.

The rest of the paper is organized as follows. Section 2 pro-
vides a literature review of the machine learning meth-
ods for DDoS detection in the smart grid network.
Section 3 describes the problem statement, deep learning,
andMKL.We first briefly discuss autoencoders (SDA,MDA,
MSDA) and MKL for Dimensionality Reduction (MKLDR)
algorithm. Next, we discuss our feature encoding strategy
and ensemble model learning. Then, the overall algorithm
for DDoS attack detection is presented. Section 4 presents
our experimental evaluation of the proposed method. Two
datasets available publicly are used to test our model. The
experimental set-up and parameter choice are briefly dis-
cussed. Finally, results, comparison with previous methods
and analysis are presented at the end. Section 5 presents the
conclusion of our work and discussion for future research
direction.

II. LITERATURE OVERVIEW
In this Section, we provide a review of pertinent literature
on DDoS attack detection in smart grid networks using
machine learning techniques. We summarize these tech-
niques in Table 1. The datasets collected and used for DDoS
attack detection in the smart grid network are also summa-
rized. Most of the previous methods use shallow learning
techniques or a combination of linear and non-linear methods
to achieve better results. For example, Aamir and Zaidi [5]
classified DDoS attacks using supervised machine learning
technique including Random Forests (RF), K-Nearest neigh-
bors (KNN) and Support Vector Machines (SVM). Wang
et al. [6] gather attacker information by introducing honey-
pots in advance metering infrastructure(AMI) of the smart
grid network and analyze the interaction between attacker and
defender using Bayesian-Nash equilibrium to apply defense
strategy accordingly. Diovu and Agee [7] prevent and mit-
igate DDoS attack impacts by reducing data computational
burden of AMI using a firewall integrated with the cloud
computing-based processing method. Srikantha and Kundur
[8] proposed a collaborative reputation topology configura-
tion based on the auto-healing method for the stability of
the overall power network, while one node of the network
is under attack. Varalakshmi and Selvi [9] detects and dis-
cards false malicious requests using information divergence
scheme.

Specifically used machine learning algorithms for DDoS
attack detection are Artificial Neural Networks (ANN),
K-nearest neighbor, Support vector machine(SVM), decision
tree and Naive Bayes. Generally, first, filtered network data
is stored in a database. Next, the normalization of extracted
features from the stored dataset for a stable training process
by machine learning algorithms is achieved. In the end, this
trained model is used with data packets of a real-time net-
work for the classification of DDoS attacked and legitimate
packets for further processing. Kumar and Selvakumar [10]
used multiple backpropagation models for basic results.
Q-statistics techniques along with Weighted Majority Voting
and Weighted Product Rule are used for selecting best back
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TABLE 1. Literature review of DDoS attack detection techniques using machine learning algorithms.

propagation model used initially, to enhance classification
accuracy. However, their technique requires a manual weight
setting which may not be accurate. Lu et al. [11] proposed
a DDoS attack detection method where the service source
sends pair of probes to service request node, and verify the
legitimacy of request using the gap between probes using
Fourier to time reconstruction algorithm. Berral et al. [12]
used the separate networks to collect data traffic informa-
tion from each node independently and then trained each
node of network with Naive Bayes algorithm to demean
DDoS attack impact on network by increasing efficiency of
DDoS attack detection time. According to Xu et al. [13],
majority of source IP addresses are new to target during
DDoS attack. They gathered data traffic information using
a source IP addresses and then applied reinforcement learn-
ing with Hidden Markov Models (HMM) for DDoS attack
and suspicious nodes detection. HHM is used for probabil-
ity estimation based on an observed sequence from newly
added IP addresses to place detection agents near to sus-
picious nodes. Stefan and O’Brien [14] gave attention to
utilize features of network data traffic flow and network
resources to entertain the majority of legitimate user requests.
Shon et al. [15] used Genetic Algorithm(GA) for features
selection frommaximum available fields of network data traf-
fic and then Support VectorMachine (SVM) for classification
of legitimate and DDoS infected packets. Manikopoulos and
Papavassiliou [16] used statistical Klomogrov-Smirnov test
to fetch similarities from network data measurements. After
that, they applied five distinct neural network techniques
for classification purposes. Backpropagation and hybrid
perception based back propagation neural network tech-
niques achieve the highest classification accuracy than others.

[10], [14], [16] specifically emphasis for DDoS attack detec-
tion using network data from each network packet with neural
network.

A brief look at the literature on DDoS attack detection
in the smart grid network reveals that the best performing
methods include the ones that use neural network-based mod-
eling strategies. However, DDoS attack detection has not
been previously explored using deep auto-encoder models.
Therefore, in this study, our focus is on learning multiple
levels of representations using auto-encoders and then com-
bining these representations using the MKL algorithm. Our
proposed method is simple yet more powerful as compared
to the previous methods that use linear modeling techniques.

III. PROPOSED METHOD
This section describes the proposed method for DDoS attack
detection in the smart grid network. The overall framework of
the proposed method for learning the DDoS attack detection
model in the smart grid network is illustrated in Figure 1.
First, the DDoS attack detection in the smart grid network
problem is formally defined. A brief introduction about the
auto-encoders and Marginalized De-noising Auto-encoders
is presented. After this, the theory of MKL is introduced and
the popular MKL algorithm called Multiple Kernel Learning
for Dimensionality Reduction (MKLDR) algorithm is sum-
marized. Finally, the overall detection algorithm is presented.

A. PROBLEM STATEMENT
Let X = {xi}Ni=1 ∈ Rd×N be the labelled training data
containing d dimensional feature vectors of N different ser-
vice requests. Each vector xi ∈ Rd contain features about
customers such as source IP/port, destination IP/port, payload
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FIGURE 1. Illustration of the proposed method for learning a DDoS detection model: We first learn multilevel of shallow and deep auto-encoders in an
unsupervised fashion from the available training data. Next, we generate features for every training data sample by encoding them from the hierarchy of
the learned auto-encoders. In the next stage, the features are projected to a kernel space where they can be automatically combined in a weighted
fashion using MKL. A unified kernel is computed which is used to compute a DDoS detection model in a supervised fashion. The final detection model is
used for classification between the infected and non-infected data during test time.

bytes, packet pay size, packet reset average, destination to
source packets size, and idle time etc. We also have access
to the binary labels y = (ym)Nm=1 also referred to as indicator
variables that convey the information whether service request
m is a legitimate (ym = 1) or illegitimate (ym = 0). The prob-
lem of DDoS attack detection involves learning a detection
model Z from the labeled training data X and subsequently
estimating the label yt of a test service requests feature vector
xt by using the learned model.
To tackle the above problem we propose to exploit deep

auto-encoders for feature learning and MKL framework for
detection model learning and classification. More specifi-
cally, we first train multiple deep auto-encoders to learn rich
features from training data in an unsupervised manner. Next,
the features are automatically combined using automatically
learned weights by MKL. The detection model obtained as a
result of the MKL algorithm is then used to classify the test
samples.

B. AUTO-ENCODERS
There are various categories of auto-encoders proposed pre-
viously in the deep learning literature [17]–[22]. Here we pro-
vide a brief description of how a conventional auto-encoder

is used to learn features from raw data. Consider the training
dataset X = {xi}Ni=1 ∈ Rd×N introduced earlier. An auto-
encoder is trained using a backpropagation algorithm by set-
ting the inputs equal to the targets which are the input samples
itself. In other words the purpose of the encoder is to learn the
function hW ,b(xi) ≈ xi which means this encoder is learning
approximations to identity function, so that the output x̂i is
equal to xi.
Assume the dimensionality d of the input feature vectors

xi is 400 and the hidden layer units in L2 are 200. As the
numbers of hidden units are 200, it only learns the vector
of these hidden units, and then reconstructs the 400-feature
vector input xi. The reconstruction task becomes very dif-
ficult in case of a random input xi, which means each xi is
not depending on the same features. But if some features
x i of xi are same or linked with each other, this algorithm
will discover them. The above statements relied on a small
number of hidden layer units. But interesting structures can
still be discovered, if hidden units are larger in number even
lager then the input, by merging other constraints to network.
In the case of sigmoid activation function, when the output
value is near to 1, a neuron can be used as active, and when
output value is near 0, a neuron can be treated as inactive.
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Normally neurons are in an inactive state. Similarly, in the
case of tanh activation function, the state of neurons is nor-
mally inactive when the output value is near to −1.
Let a(2)j (xi) represents the activation of hidden unit,

the average activation function for hidden unit j is ρ̂ =
1
N

∑N
i=1[a

(2)
j (xi)]. Applying constraint ρ (sparsity parameter)

ρ̂ = ρ, usually value of ρ is near to zero like ρ = 0.09 etc.
This means, average activation of each hidden neuron j must
be near to 0 to satisfy this constraint. For this purpose the
objective function is

∑s2
j=1 ρlog

ρ

ρ̂j
+ (1 − ρ)log 1−ρ

1−ρ̂j
, where

s2 = the number of units in the hidden layer. According
to Kullback-Leibler (KL) divergence concept, it can also be
written as

∑s2
j=1KL(ρ||ρ̂j). Here the (KL) is basically the

divergence between a Bernoulli random variable with means
ρ and ρ̂j.We can easily find the differences between two
distributions using KL divergence. KL divergence become
zero if ρ̂j = ρ. Therefore the cost function is:

jsparse(W, b) = j(W, b)+ β
s2∑
j=1

KL(ρ||ρ̂j) (1)

Here, sparse penalty term weight is controlled by β. Average
activation of unit j depends upon ρ̂j and hidden unit activation
depends on factorW, b.
The above cost function is optimized using the backprop-

agation algorithm to learn the parameters W and b. In the
case of a small dataset, average activation can be found by
setting all forward passes to the training dataset. Then this
computed activation can be used to perform backpropagation
for other data samples. When a dataset is large, computer
memory might become an issue, therefore, forward passes
have to be set one by one, and in the end, their activations
should be summed up to compute ρ̂j.

C. STACKED DE-NOISING AUTO-ENCODER (SDA)
As previously explained, an auto-encoder consists of two
parts, an encoder h(.) that is used to map an input xi ∈ Rd to
some hidden representation h(xi) ∈ Rdh , and a decoder g(.)
that is used to map this hidden representation back to a recon-
structed version of xi, such that g(h(xi)) ≈ xi. The reconstruc-
tion error is expressed using some loss function l(xi, g(h(xi)))
and is minimized to learn the parameters of the auto-encoder.
The loss function can take different forms including the
squared error loss or Kullback-Leibler (KL) divergence.
De-noising auto-encoders work on the principal that the input
samples are corrupted slightly before mapping them into the
hidden layer representation. Their training involves recon-
struction of the (or denoising) of the actual input xi from
its corrupted version x̃i by minimizing l(xi, g(h(x̃i))). Various
forms of corruptions exist including additive isotropic Gaus-
sian noise or binary masking noise. Binary masking noise is
also popular which sets a portion of the features for each input
sample equal to zero. Several de-nosing auto-encoders can
be stacked (Stacked De-noising Auto-encoders (SDA) [23])
for learning deep feature representation consisting ofmultiple
layers.

Although SDAs [23] can be used to learn rich features for
classification, they have several disadvantages. For example,
their training time is slow due to the stochastic gradient
descent based back-propagation algorithm. SDAs also con-
tain multiple hyper-parameters such as learning rate, number
of epochs, noise ratio, mini-batch size and network structure,
which require tuning using a validation dataset. This can add
further time to the already slow training process. Moreover,
the optimization is non-convex and initialization plays a key
role in final the results.

D. MARGINALIZED DE-NOISING AUTO-ENCODER (MDA)
Recently, Chen et al. [3] proposed an improved version of
the SDA called Marginalized SDA (MDA) to improve the
training time significantly. The MDA algorithm reduces to a
closed form solution and thus does not require a backpropa-
gation algorithm to learn the network parameters. This makes
MDA computations more efficient as compared to conven-
tional SDA. Furthermore, several MDAs can be stacked
together to generate deep feature representation. Moreover,
the classification accuracy of the MDA has been found to be
similar to that of the SDA [3]. Therefore, inspired by these
advantages, we employ the MDA algorithm to learn robust
features for DDoS detection in this study.

The basic building block of the MDA is a single layer
de-noising auto-encoder. Each input sample xi from the train-
ing dataset X = {xi}Ni=1 ∈ Rd×N is corrupted by randomly
removing features (setting them to zero). Specifically, a fea-
ture is given a value of 0 with probability p ≥ 0.
Let the corrupted version of xi is denoted by x̃i. In contrast

to the two step encoder and decoder mechanism in SDA,
MDA reconstructs from the corrupted input samples using a
single parameter matrix W : Rd

→ Rd , that minimizes the
following reconstruction loss:

1
2N

N∑
i=1

||xi −Wx̃i||2. (2)

Note, to incorporate the bias term in the formulation a con-
stant feature is added in the input feature vector, xi = [xi; 1].
This includes the bias into the parameters W = [W,b] and
the bias is not corrupted during MDA learning.

The solution to (2) depends on the random corruptions of
the individual features of the input. To reduce the variance,
MDA performs multiple iterations over the training data and
use different corruption in each iteration. Then, the parameter
matrix W is learned in a way that the overall squared loss is
minimized:

Lsq(W) =
1

2RN

R∑
j=1

N∑
i=1

||xi −Wx̃i,j||2. (3)

where x̃i,j denotes the jth corrupted copy of the original
input xi.
Denote the R-times repeated version of the training data

matrix X as X̄ = [X, . . . ,X]. Similarly, the corrupted copy
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of X̄ is denoted as X̃. The overall loss in (2) can now be
written as:

Lsq(W) =
1

2RN
tr
[(
X−WX̃)T

(
X−WX̃)

]
(4)

The closed form solution to (4) can be obtained by using least
squares algorithm [24]:

W = PQ−1 where Q = X̃X̃T and P = XX̃T (5)

The larger R is, the more corruption are averaged. Ideally,
R → ∞ means that to learn the parameter matrix W we
should use infinitely many versions of the corrupted data.
The matrices P and Q converge to their expected values R
and tends to infinity by using the weak law of large num-
bers. Therefore, the expectations of Q and P is derived and
expressed as the parameter matrix W as:

W = E[P]E[Q]−1. (6)

To compute the expectations of these two matrices let

E[Q] =
n∑
i=1

E[x̃ix̃Ti ]. (7)

A non-diagonal element in the matrix x̃ix̃Ti remains un-
corrupted if the two features α and β survive the corruption
with probability (1 − p)2. This is done for the diagonal
elements with a probability 1 − p. Next, the vector q =
[1 − p, . . . , 1 − p, 1]T ∈ Rd+1, is defined in which qα
denotes the probability of a feature α which stays uncor-
rupted. Moreover, S = XXT is defined as the scatter matrix
of the uncorrupted input features and the expectation of the
matrix Q is expressed as:

E[Q]α,β =

{
Sαβqαqβ if α 6= β
Sαβqαqβ if α 6= β

(8)

In a similar way, the expectations of P can also be obtained
in closed-form as E[P]αβ = Sαβqβ . With the help of
these matrices of expectations, the re-constructive parameter
matrix W is computed directly without even constructing a
single corrupted input x̃i. Thus, this algorithm is termed as
Marginalized De-noising Auto-encoder (MDA).

The MDA algorithm has multiple advantages over the tra-
ditional DAs: For example,MDAneeds only a single iteration
over the data to compute the matrices E[Q],E[P]. Moreover,
the optimization problem is convex and has a globally optimal
closed-form solution.

Similar to SDAs, non-linearity can also be incorporated
in MDA using a non-linear transfer function h(.). More
specifically, the output of each MDA is passed through a
non-linear transfer function for non-linear mapping. In this
manner, the parameter matrix W will be able to learn non-
linear features. Several types of non-linear transfer functions
can be used such as sigmoid function, hyperbolic tangent and
the recently proposed rectifier linear unit [25]. In this study,
we use the tanh() transfer function.

E. FEATURE GENERATION USING MARGINALIZED
STACKED DE-NOISING AUTO-ENCODER (MSDA)
In this paper, we stack multiple layers of MDAs by con-
necting the output of the (t − 1)th MDA (after the transfer
function) to the input of the t th MDA. The output of the t th

MDA is ht and the original input is denoted to be h0 = x.
To stacke multiple MDAs, the training is performed in a
greedily layerwise fashion i.e. each parameter matrix Wt is
learned to reconstruct the previous layer output ht−1 using
all the possible corruptions and the output of the t th layer
becomes ht = tanh(Wtht−1). The stacked de-noising algo-
rithm is referred to asMarginalized StackedDe-noisingAuto-
encoder (MSDA) [3]. The key aspects which are responsible
for the success of the SDAs include its non-linearity and abil-
ity to learn deep features. MSDA framework also included
these capabilities in addition to its fast training time. Once
the auto-encoder is trained, we use it for non-linear feature
generation. To generate feature representation for a sample
xi we first pass it through the learned MSDA with L layers.
We then concatenate all the activations h0 − hL into a single
feature vector denoted as fi ∈ R(d∗L).
To achieve a multilevel representation, we train a mixture

of shallow (having few layers) and deep (having many lay-
ers) MSDAs. Specifically, we train M number of different
MSDAs having a different numbers of layers to generate M
multiple feature representations of a sample xi (See Fig. 1).
Thus the training data X is transformed to Fm = {fmi }

N
i=1

under the mth representation. Such multilevel representation
is more discriminative than the single level representation.

IV. MULTIPLE KERNAL LEARNING (MKL)
Several previousworks like [26]–[30] shows that the accuracy
of a classifier can be greatly enhanced by fusing multiple
features. Therefore, in this work, we propose to use MKL
to learn a unified detection model from the multilevel auto-
encoder features. For this purpose, we choose an efficient
MKL algorithm called Multiple Kernel Learning for Dimen-
sionality Reduction (MKLDR) [4] algorithm.

A. THE MULTIPLE KERNEL LEARNING FOR
DIMENSIONALITY REDUCTION (MKLDR) ALGORITHM
The MKLDR algorithm [4] optimally combines several fea-
ture representation into a unified feature representation.
MKLDR gives a general dimension reduction framework
for features representation of data using multiple kernels.
MKLDR effectively works in learning a detection model
for supervised learning problems. Here we gave a descrip-
tion of the MKLDR algorithm. First, the process of mak-
ing base kernels from multiple features representations are
explained. Next, the process of learning the ensemble kernel
in a discriminative dimensionality reduction framework is
explained.

Let M be the number of MSDAs so that each sample in
our training data has M different feature representations i.e
the training data X is transformed to Fm = {fmi }

N
i=1 ∈ Rd×N
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under the mth deep representation. First, each feature repre-
sentation is described as a kernel matrix. For this purpose,
a distance matrix Dm ∈ RN×N is constructed Dm(i, j) =
dm(fmi , f

m
j ); where dm is the distance under the m feature

representation. The groupwise distances of data samples
are converted to kernal matrices [31], [32] using the Gaus-

sian kernel as Km(i, j) = exp
(
−D2

m(f
m
i ,f

m
j )

σ 2m

)
, where σm

is the Gaussian scale factor. Next, for M kernel matrices
{Km}

M
m=1, the MKLDR algorithm learns an ensemble kernel

in a weighted fashion as:

k(fmi , f
m
j ) =

M∑
m=1

βmkm(fmi , f
m
j ), βm ≤ 0, (9)

where the weights βm for each kernel are automatically
learned in a discriminative learning framework. Km may not
be always positive, but by adding the smallest eigenvalue
of Km into the diagonal, this issue can be resolved [32].
In case if it’s still negative, then the absolute value is added
to the diagonal of Km. The optimal weights β1, β2, . . . .βM
can now be learned for fusing theseM different types of deep
feature representations. This makes the MKLDR algorithm
applicable to many diverse input kernels and distance mea-
sures efficiently. Kernelization in MKLDR is nearly similar
to kernel PCA in [33], but the only difference is that MKLDR
uses more than one kernels {km}Mm=1 [34].
Let φ : Fm →: F is feature mapping induced by K such

that fmi → φ(fmi ), for i = 1, 2, . . . .N . The MKLDR uses
the kernel trick to learn a projection v and the weights βm
simultaneously

vTφ(fmi ) =
N∑
n=1

M∑
m=1

αnβmkm(fmn , f
m
i ) = αTK(i)β (10)

where β = [β1 . . . .βM ]T ∈ RM , α = [α1 . . . .αN ]T ∈ RN

and

K(i)
=

K1(1, i) . . . KM (1, i)
...

. . .
...

K1(N , i) . . . KM (N , i)


With (10) the constrained optimization problem for

one-dimensional MKLDR is as follow:

min
α,β

N∑
i,j=1

||αTK(i)β − αTK(j)β||2wij (11)

s. t.
N∑

i,j=1

||αTK(i)β − αTK(j)β||2w′ij = 1,

βm ≥ 0 for m = 1, 2, . . . ,M . (12)

The positivity constraints in (12) are introduced so that the
learned ensemble kernelK inMKLDR is a non-negative com-
bination of the individual base kernels. Note that v denotes
the one-dimensional projection consisting of the coefficients
in the vector α and the kernel weights β. These two vectors
contribute to the construction of the projection according to

the respective strength of the input samples and the base
kernels. To derive a multidimensional version of the projec-
tion v, P coefficient vectors learned can be represented as
A = [α1 α2 . . . . .αP].
Given the projection matrix A and weight vector β, each

one dimensional projection vi can be found by the respective
coefficient vector αi and the kernel weight vector β. The
learned projection matrix V = [v1 v2 . . . . .vP] can now
project samples to the P-dimensional Euclidean space where
classification can be performed. Analogously to the one
dimensional case, the sample projection xi can be expressed
as VTφ(xi) = ATK(i)β ∈ RP.. The optimization problem
(11) is extended for the multidimensional case as:

min
A,β

N∑
i,j=1

||ATK(i)β − ATK(j)β||2wij (13)

s. t.
N∑

i,j=1

||ATK(i)β − ATK(j)β||2w′ij = 1,

βm ≥ 0, for m = 1, 2, . . . ,M . (14)

The four types of spaces involved in theMKLDRalgorithm
are illustrated in Fig. 1. These include the input feature space
consisting of the deep features learned viaMSDAs, the kernel
space which consists of the input features mapped to a Repro-
ducing Kernel Hilbert Space (RKHS) via a valid kernel and
the Euclidean space where the projection model is learned.

As the direct optimization of a problem (13) is often diffi-
cult, MKLDR algorithm [4] uses an iterative two-step algo-
rithm to optimize A and β in an alternating fashion. In every
iteration, the optimization of one ofA or β is performedwhile
the other is fixed. The roles of A and β are switched. These
iterations are repeated until convergence is achieved or up to
some maximum number of iterations.
Optimizing A. By fixing β and using the property ||u||2 =

trace(uuT ) for a column vector u, the optimization problem
(13) is reduced to

min
A

trace(ATSβ
w,A)

s. t. trace(ATSβ
w,A) = 1 (15)

where

Sβ
W =

N∑
i,j=1

wij(K(i)
−K(j))ββT (K(i)

−K(j))T

Sβ

W ′ =

N∑
i,j=1

w′ij(K(i)
−K(j))ββT (K(i)

−K(j))T (16)

where W and W′ are the affinity matrices defined for a
specific dimensionality reduction framework e.g. Linear Dis-
criminant Analysis (LDA) and wij and w′ij represents the
values at the index ij. It can be observed that the problem

(15) is a trace ratio optimization problem, minA
trace(AT Sβ

wA)
trace(AT Sβ

w′
A)
.

Following [35] and [36], a closed-form solution can be
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obtained by converting (15) into a corresponding ratio trace
problem, i.e., minA trace[(ATSβ

w′A)
−1(ATSβ

wA)].
Consequently, the columns of the optimal A∗ =

[α1 α2 . . . . .αP], consists of the eigenvectors that correspond
to the first P smallest eigenvalues of Sβ

wα = λSβ

w′α.
Optimizing β. Next, A is fixed and letting ||u||2 = uT u,

the problem in (13) now reduces to:

minβ βTSAwβ

s. t. βTSAwβ = 1

and β ≥ 0, (17)

where

SAW =
N∑

i,j=1

wij(K(i)
−K(j))TAAT (K(i)

−K(j)),

SAW ′ =
N∑

i,j=1

w′ij(K(i)
−K(j))TAAT (K(i)

−K(j)) (18)

The additional constraints β ≥ 0 make the optimization
of problem (17) to be no longer a generalized eigenvalue
problem. Rather, the problem now becomes a non-convex
quadratically constrained quadratic programming (QCQP)
problem, which is generally hard to solve. One way to solve it
is to use its convex relaxation by adding the auxiliary variable
B of size M ×M :

min
β,B

trace(SAw,B) s. t. trace(SAw,B) = 1 (19)

eTmβ ≥ 0, m = 1, 2, . . . . .,M (20)[
1 βT

β B

]
� 0 (21)

where em in (20) is a column vector of zeros except having
a 1 at themth index. Moreover, the constraint in (21) enforces
that the square matrix should be positive semi-definite. The
above problem is solved using the semi-definite program-
ming (SDP) as explained in [4].

The algorithm of MKLDR needs an initial value for either
A or β in the alternating optimization. Two different vari-
ations can be used. For example, β can be initialized by
setting all the weight elements to 1. Similarly, A can also be
initialized by setting it to identity matrix AAT

= I . Usually,
the second initialization strategy achieves better results than
the first strategy. In our experiments, we used the second
initialization strategy to learn our model.

B. TEST SAMPLE CLASSIFICATION
After accomplishing the training procedure of MKLDR,
we are ready to project a testing sample which is encoded
from the multilevel auto-encoders, say ft , into the learned
space of lower dimension by

xt 7→ ATK(z)β, (22)

where K(z)
∈ RN×M and K(z)(n,m) = km(fn, ft ).

After the low dimensional feature representation is obtain
for ft we use the Nearest Neighbor (NN) classifier to estimate
the label.

V. EXPERIMENTAL RESULTS
We perform experiments on two benchmark intrusion detec-
tion datasets and compare the results of the proposed algo-
rithms in terms of DDoS detection accuracy with six recent
machine learning based DDoS detection algorithms. These
methods include Naive-Bayes [37], Decision Tree [37],
KN [38], LSVM [38], Random Forest [39] and LSTM [39].
For the baseline, we learn a detection model using the linear
SVM on the raw features of the labeled training data. The
details of the datasets used in our experiments are provided
below.

A. UNB ISCX INTRUSION DETECTION
EVALUATION 2012 DATASET
The first publicly available dataset used in our experiments
is UNB ISCX Intrusion Detection Evaluation 2012 dataset
named IDE2012. We use the 11th June testbed named
as IDE2012/11 and 16th June testbeds [40] named as
IDE2012/16. In the IDE2012/11, there are 325,757 samples
(packets) each having 204 features. Similarly, in IDE2012/16,
there are 464,989 samples each having 204 features. The
labels of each sample are provided as safe, unsafe, acceptable
and unrated. We discretize the labels into safe (0), unrated
(1) and acceptable (2). Some example features of each data
packet include values such as source port, destination port,
event generator, event signature, event priority, ndpi risk,
ndpi detected protocol, payload bytes first, etc. Features that
are not numbers were discretized. According to this dataset,
10000 packets are infected by DDoS attacks, which is 15% of
total packets, showing 15% is the infection rate. Part of this
dataset is shown in Table 2.

TABLE 2. Example features and their corresponding labels of four
packets in the IDE2012/11 DataSet.

To test our model’s ability to learn from various amounts
of data, we also randomly sample 10,000 samples from each
dataset. In addition to the two-class classification settings
safe (0), unsafe (1), we also evaluate our model on the four
class classification settings where the labels correspond to
safe (0), unsafe (1), acceptable (2) and unrated (3). The details
and names for these splits of the datasets are shown in Table 3.
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FIGURE 2. The Average accuracy of the proposed method on the 16 datasets.

TABLE 3. Details of the packets, features, and subsets generated from
the IDE2012 Dataset.

B. UNSW-NB15 DATASET
The next publicly available dataset that we used in our
experiments is the UNSW-NB15 [41] dataset. The Australian
Center for Cyber Security (ACCS) used the IXIA Perfect-
storm tool to create the UNSW-NB15 dataset. There is a total
of 7,00,001 packets (samples) each having 49 features. Some
example features include source IP, source port, destina-
tion IP, destination port, transaction protocol, state, duration,
source jitters (mSec), destination jitters (mSec), record start
time, record last time and attack category, etc. For our work,
we convert the non-number feature into discrete features. The
labels are provided as non-attack and attack.We discretize the
labels as an attack (0) and non-attack (1). Again, to push our
model limits divided 4 sets of this dataset as shown in Table 4.

VI. EXPERIMENTAL SETUP
In total, we have 16 datasets named D1 to D16. To evaluate
our model, we randomly divide these datasets into two por-
tions, one having 80% data, and the other one with 20% data
of this dataset. 80%of data is then used to train ourmodel, and
20% is for testing purposes. This process is repeated 10 times
and average accuracy is reported for 10 experiments.

TABLE 4. Details of the packets, features and subsets generated from the
UNSW-NB15 dataset.

To analyze the performance of the proposed algorithm,
we used the following performance indicators. TN (True
Negative) is used for the amount of normal data detected
as normal. FN (False Negative) is used for the amount of
normal data detected as infected. TP (True Positive) is used
for the amount of infected data detected as infected.FP (False
Positive) is used for the amount of infected data detected as
normal. These quantities are used to measure the Accuracy=

TN+TP
TN+FN+TP+FP of the proposed algorithm.

The proposed algorithm includes the parameters of the
MSDA and the parameters of the MKLDR algorithm. For
feature learning the parameters include a number of deep
MSDAsM , corruption probability p and the number of layers
in each MSDA L. We use M = 9 MSDAs in our experi-
ments. The number of layers in each MSDA is selected as
Lm = [1, 3, 5, 7, 9, 11]. The corruption probability pm for
each MSDA is set from the set 0.1,0.2,. . . ,0.5. Note that these
parameters can also be further tuned in a cross-validation
framework for more improved results. ForMKL theMKLDR
algorithm includes the Gaussian scale factor for each ker-
nel σm, the choice of dimensionality reduction algorithm to
compute the affinity matrices W, W′ and the dimensionality
of the low dimensional space. In MKLDR the parameter σm
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TABLE 5. Average accuracy and standard deviations of 10-fold cross validation experiments.

FIGURE 3. Effect on the accuracy by using a different number of MSDAs on subsets of ISCX IDE 11-June dataset. The final accuracy saturates
beyond using 7 MSDAs.

is automatically tuned by the method given in [4]. For the
computation of affinity matrices, we select the LDA algo-
rithm. The parameters of the compared algorithms are set
according to the recommendations of the original authors
to achieve the best results. For both datasets and their sub
datasets, we perform 10-fold cross-validation and the average
of the 10-folds is presented as the final detection accuracy.
All the experimentation were performed on a computer with
32.5 GB memory and NVIDIA Tesla V100 GPUs using
Matlab implementations.

VII. RESULTS AND ANALYSIS
Figure 2 shows that the average accuracy achieved by the
proposed method on the 16 datasets. Achieved accuracy with
large datasets (D1,D3,. . . ,D15) is slightly lower as compared

to accuracy achieved on the smaller datasets. This is because
of large number of test sets in large dataset. However, the pro-
posed method can learn equally good features from both
small and large datasets. The highest accuracy of 97% is
achieved on the D2 dataset.

Table 5 shows a comparison of the average accuracy of
the proposed method with six other machine learning based
methods for DDoS attack detection. It can be observed that
the proposed algorithm has significantly outperformed the
compared algorithms. This is because our algorithm is able
to learn rich features in multiple auto-encoders and then
combine these representations in the kernel domain. Most of
the previousmethods use a single representation that is unable
to achieve satisfactory accuracy. Our algorithm, on the other
hand, uses multiple deep models that are able to learn useful
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FIGURE 4. Relationship of the number of MSDAs vs the final accuracy on different subsets of ISCX IDE 16-June dataset. The final accuracy
saturates beyond using 8 MSDAs.

FIGURE 5. Relationship of the number of MSDAs vs the final accuracy on different subsets of UNSW NB15 1 and 2 datasets. The final accuracy
saturates beyond using 8 MSDAs.

FIGURE 6. Relationship of the number of MSDAs vs the final accuracy on different subsets of UNSW NB15 3 and 4 datasets. The final accuracy
saturates beyond using 7 MSDAs.

features from the training data. The LSTM [39] based method
achieves better results than the other compared methods.
However, due to the fusion of multiple models, our proposed
method achieved better results than the standalone LSTM
based method.

A. EFFECT OF NUMBER OF MSDAS USED ON ACCURACY
We analyze the accuracy of the proposed method by fusing
a different number of MSDAs to build the final classifier.

These experiments were performed on the D1-D16 datasets.
Specifically, we vary the number of MSDAs to be fused from
2 to 10. The number of layers in each MSDA is randomly
chosen from the set Lm = [1, 3, 5, 7, 9, 11]. These MSDAS
are then fused using the MKLDR algorithm to obtain a final
classifier. Figure (3)(4)(5)(6) shows the accuracy of vary-
ing the number of MSDAs in case of each dataset. It can
be observed that for each dataset the accuracy increases as
we increase the number of MSDAs. However, the accuracy
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saturates at around 6 MSDAs. This trend shows that the
proposed fusion method is effective.

VIII. CONCLUSION
We presented a DDoS attack detection system based on
multilevel deep learning technology. The overall system is
targeted towards more accurate and more efficient DDoS
attack detection in the smart grid network. Our algorithm
exploits both shallow and deep auto-encoders for learning
powerful features in an unsupervised manner. Features from
multilevel auto-encoders are combined usingMultiple Kernel
Learning (MKL) that automatically learns the weights of
the features in the ensemble. Experiments are performed on
two benchmark DDoS attack detection databases (and their
subsets) and the results are compared with six state-of-the-
art methods. Our results show that the proposed method
outperforms the compared methods in terms of accuracy and
simplicity. In the future, this work can be implemented in a
run time environment for securing against DDoS attacks.
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