IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 29, 2019, accepted July 22, 2019, date of publication August 5, 2019, date of current version August 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933234

Enabling Drone Services: Drone Crowdsourcing

and Drone Scripting

MAIJED ALWATEER"1, SENG W. LOKE"“2, AND NIROSHINIE FERNANDO?

! Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia

2School of Information Technology, Deakin University, Geelong, VIC 3216, Australia

Corresponding author : Majed Alwateer (m.alwateer @latrobe.edu.au)

ABSTRACT Drones are rapidly finding their way into civilian applications, and are mostly networked,
enabling their remote programming, and connectivity with humans. However, drones are limited by the
weight they can carry and battery power resulting in limited resources. Moreover, some applications require
utilising multiple drones to act in coordination. The combination of utilising nearby devices (i.e. with
additional resources beyond the drone capability) and controlling multiple drones in a more convenient way
has the potential to overcome these limitations. This paper proposes and examines programmable crowd-
powered drones, involving two key concepts for combining drones and smartphones as a crowd-powered
resource cloud. In particular, we focus on crowdsourcing for drone computations, and multi-drone service
management using a new scripting language for coordinated flight paths of multiple drones. We describe
our underlying model and experimentation with these concepts. We then extensively discuss the prospect of
drones servicing communities within IoT ecosystems, as a future direction.

INDEX TERMS Drones, smart drone services, crowdsourcing, crowd computing, drone programming.

I. INTRODUCTION
Drones or unmanned aerial vehicles (UAVs) are flying vehi-
cles that do not have on board a human pilot. They have been
commonly used by the military for warfare and to perform
a range of complex tasks. These tasks required substantial
control and instructions, modern ground control computers,
and effective locally available navigation systems. Previ-
ously, performing such tasks has been beyond the capacities
of many, but rapid advances in technology with improvements
in the size, intelligence and cost, have opened the door for
many drone makers to come into existence such as Parrot, !
DIJI? and more. As a result, this technology is now available
to the public with minimal effort, and the uses of drones
have grown far beyond military applications [1]. Drones are
now being used to save lives [2], deliver goods and medical
supplies [3], surveying [4], filming [5], rescuing [6], building
structures [7], pipe inspections [8], farming [9], and much
more.

Due to their mobility, drones can autonomously travel into
close proximity of other flying, moving or fixed objects.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sayed Chhattan Shah.

I www.parrot.com

2www.dji.com

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

They can also carry materials or smart sensors to perform
physical or digital tasks. This places drones in a unique
position that enables them to rapidly provide various services,
as data collectors or resource providers in hard-to-reach areas.
For example, collaboration between drones and other mobile
devices, such as smartphones, or even other drones, can help
overcome the resource limitations of traditional mobile tech-
nologies and deal with complex situations. At present, mobile
computing is at a level that its future promises interesting
developments where ‘‘tens to thousands of mobile nodes can
cooperate in new ways, in order to provide new capabilities
and applications, from scalable context-awareness to new
distributed computational platforms™ [10]. The examples
for this are: mobile crowdsourcing, crowdsensing, crowd-
steering, participatory social systems, mobile device clouds,
and cooperative Intelligent Transport Systems.

However there are many challenges in utilising drones
to effectively deliver crowd-powered services; First, limited
drone control with high-level commands that is user-friendly
and comfortable for human interaction. Second, how drones
collaborate (form a crowd) to handle or process tasks in
parallel for fast evaluation without pilot intervention. Third,
how data are collected by a single or a group of drones
and how data are processed by a group of smart devices.

110035

https://orcid.org/0000-0001-6430-9806
https://orcid.org/0000-0002-5339-9305

IEEE Access

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

In this paper, we address the above mentioned challenges by
focusing on two main requirements; the drone should be able
to crowdsource to surrounding devices and the master should
be able to control multiple drones, in our case, via a high-level
scripting approach.

Our contributions in this paper can be summarised as
follows:

« Propose and investigate the concept of crowd-powered

drone services using three different scenarios.

o Allow a drone to crowdsource tasks to other nearby
smartphones for crowd-powered data processing. While
an Internet-enabled drone can send tasks to the Internet,
i.e., crowdsource processing of tasks to the Internet,
we show how a drone can crowdsource tasks (in our
example, processing of images it takes) to the collection
of local, nearby, devices.

o Develop a scripting framework that allows multiple
drones to be automated, programmed and coordinated
- this can be useful when multiple drones are used in
an application and it is not possible for one human user
to control/fly multiple drones manually; for example,
to use three drones at the same time for an application,
a human user could script the flight of two drones and
control one manually on a critical path.

o Evaluate the scripting-based flight programming and
coordination approach using various examples of single
drone and multidrone flights paths.

This paper is structured as follows. §2 offers a review
of related work. The concept and design of crowd-powered
drone services is described in §3. We have used a poten-
tially real-life scenario to explain the concept and design
of crowd-powered drone services. Various aspects of the
systems design are also described including system compo-
nents, drone monitoring paths, and some other design con-
siderations. Subsequently, §4 describes the prototyping and
some experimentation we have conducted including a proof-
of-concept implementation. Then §5 describes the scripting
language we have proposed for coordinating flight paths of
multiple drones. This includes the syntax of the language,
the workings of the language, and examples of implementa-
tions for different flight paths. Finally, concluding comments
and future work in §6.

Il. RELATED WORK

Recent and ongoing advances in cyber-physical comput-
ing technology have changed people’s preferences for com-
puting, and there is demand for collective computing
paradigms [11] that are more adaptive, and responsive to
mobility. As shown in [12], neighbouring mobile devices can
be used efficiently as a crowd powered resource to comple-
ment the remote clouds. As a type of mobile device, drones
are excellent candidates to be used in crowd-computing sce-
narios due to their versatility [13]-[15]. Existing research on
crowd computing [16], [17] has shown that mobile devices
can be utilised in a social context to perform large-scale
distributed computations, via a static farming method [18].

110036

In crowd computing [19], human expertise is utilised to
answer queries which are too complex for search engines
and database systems. In Crowdsearch [20], mobile devices
are used to perform image search, with the help of human
validation via Amazon Mechanical Turk. Also AEROSEE?
explores drones that are equipped with cameras to find
injured or lost climbers and walkers. Images are crowd-
searched by people in a web-based environment that work in
cross-platform such as PC and smartphones.

The use of smartphones in a generic spatial crowdsourcing
platform is discussed in [21], where queries are based on loca-
tion information. Mobile phones are used to collect sensor
data on Medusa [22], based on user-specified sensing tasks.
In Rankr [23], an online mobile service is used to ask users
to rank ideas and photos. These are primarily concerned with
the aspect of crowdsourcing, with the use of mobile devices as
tools for accessing an online crowdsourcing service hosted on
a remote server. In contrast, Honeybee [24] focuses on offer-
ing local computation services to increase performance gain
and energy savings. Therefore, we adopt Honeybee as the
backbone of our crowd-powered data processing framework.
Nevertheless, instead of using Honeybee, we could use other
frameworks such as EdgeX,4 Golem® or SONM.® However,
we chose Honeybee given its ability to dynamically adjust to
varying numbers of workers.

Drones have proven their utility in numerous applications
in communication, photography, agriculture, surveillance and
avariety of public services [25]. Deploying of such drones has
issues of safety, security and privacy [26]. The work on [25],
explains how Dragnet is emerging as a Cognitive Internet of
Things for amateur drone surveillance. Also, the use of drones
for spotting sharks is being purposed to monitor areas along
the Australian northern NSW coastlines [27]. Operating a
number of drones as a team requires strong Infrastructure
and connectivity among drones [28], [29]. However, the use
of scripting languages assists developers to do various tasks
requiring minimal Infrastructure and no connectivity between
the drones. For example, DicoScript [30] is proposed for
specifying drone details and updating single drone missions
during flight. On the other hand, our DroneScript is used to
manage multiple drones by creating and maintaining multi-
drone missions. Missions are constructed in a way that allow
all commands to be sent to the intended drones simultane-
ously. As each drone has a unique ID, the master immediately
identifies the target drone and send the missions accord-
ingly. While there are other scripting languages for drones,
some provide GUI-based easy programming methods, such
as TYNKER and WORKBENCH, they do not support the
behaviour of programming multiple drones, or programming
of complex flight paths in a succinct way as we do here.

3 https://irevolutions.org/2014/02/17/crowd-computing-uav-imagery/
4www.edgexf0undry.org

5 https://golem.network/

f’https ://[sonm.io/

7https :/ledu.parrot.com/apps.html

VOLUME 7, 2019

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

Roldan et al. [31] use the drone to collect images in order
to build a traffic map of the city, to manage traffic in real time.
Areias et al. [32] present a platform that provides an abstrac-
tion layer between the end-user and the drone to provide
drones as a service. It allows the end-user to communicate
with the drone using high-level control operations via the
platform, but not composing complex flight paths as we do
in our work. A more detailed review focusing on issues of
physical collision avoidance among drones and UAV-to-UAV
communications (or flying ad-hoc networks) is given in [33].

Our approach of utilising a group of surrounding available
drones to work together to do a specific task with minimal
intervention emerges as a novel idea.

Ill. CROWD POWERED DRONE SERVICES:

CONCEPT AND DESIGN

The objective of the drone services framework that we pro-
pose is to use crowd-powered devices to collect and process
data in an efficient manner. Such a framework can have a
number of applications and can be useful in potentially life-
threatening situations. For example, the framework can be
applied to find wreckage from airplane crashes, and also
to help people stranded at a place due to a fire incident.
Other scenarios can be imagined for search and rescue oper-
ations or in disaster situations, where multiple drones, even
from different owners, can be pooled together to do a partic-
ular task, such as searching for survivors, looking for strug-
gling swimmers in the ocean or spotting sharks near beaches.
Using example scenarios, this section explains how data can
be collected using a single drone or multiple drones as well
as how data can be processed by a number of mobile devices
that combine both human and machine intelligence.

A. SCENARIOS

Jack and his friends are on holiday in a remote archipelago.
They are fond of flying drones and have taken their drones
on their holiday for recreational use. It is summertime on
the archipelago, and there are a lot of tourists around. A fire
has started on one of the island due to a lightning strike. The
location of some people who might be in danger on the island
that has caught fire, is not known. Fire rescuers have appealed
to the public to help locate the people in need in whichever
way they can. Jack and his friends have decided to help by
utilising crowdsourced devices and techniques. We have pre-
sented three approaches in which the crowdsourced devices
can be utilised, as described below.

1) SINGLE CROWD - SINGLE DRONE APPROACH

In this approach, one master device will control one drone
to collect data, and the collected data will be processed by
worker nodes connected to the master device (see Figure 1).
Applying this approach to the island fire scenario described
previously, Jack will use his smartphone, as the master device,
to control his own drone, which may help in locating people
trapped on the affected island. Commands and instructions
are sent to the drone; these include taking a large number

VOLUME 7, 2019

T om (I
R ' o

N4

Operational Area Targeted Area

FIGURE 1. Single crowd - single drones approach.

of aerial photographs of the island from different perspec-
tives. Once the drone has completed its mission, data will be
transmitted to the master device for processing. The next task
would be to go through all the photographs to identify anyone
who might be in a dangerous situation. Even though images
are geotagged, doing such a task manually will take a long
time.

It is proposed that all collected data (i.e., photographs) be
shared with a number of people (nodes) connected to the
master device, using a work-sharing technique called Hon-
eybee [24]. This technique can share the workload with other
people by dividing the major task into smaller jobs. The users
are able to review each photograph and help with the massive
task efficiently. Jack will be notified when a participant has
completed a task, and he will be able to review the findings
from the processed photographs one by one. As the fire might
spread too fast, using multiple drones will enable speeding
up of the photograph reviewing process. The next subsection
discusses the Single Crowd - Multiple Drones approach.

2) SINGLE CROWD - MULTIPLE DRONES APPROACH

In this approach, the master device controls a number of
drones by creating a network of drones, and the collected data
(e.g., photographs) are distributed between worker nodes,
as shown in Figure 2. Applying this approach to the island
fire scenario described previously, Jack can request his
friends or other people who have a drone to connect them-
selves to the master device. Multiple drones can then be
utilised to take aerial photographs efficiently. The master
device can deploy the drones in non-overlapping regions of
the island. The same task would have taken one drone much
longer time. This approach is much better than the Single
Crowd - Single Drones approach, as it can save valuable time
in potentially life-threatening situations like a fire. Again,
the collected data can be distributed to the worker nodes
connected to the master device, in the same way as described
in the Single Crowd - Single Drones approach. Wind, dry
conditions and other factors might put neighbouring islands
in a highly threatening situation with respect to the fire.
Again, using more drones might help in reducing the amount
of required time to serve the affected area. However, using
multiple drones means more data to be processed, which
may result in delaying the rescue mission. To overcome this
issue, we can consider the Multiple Crowd - Multiple Drone
approach as described below.

110037

IEEE Access

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

]
=

S %! . " I
e BT L/ —-DD

Operational Area Targeted Area

FIGURE 2. Single crowd - multiple drones approach.

| el E

Yurgeted Area 1

Operational Area2

FIGURE 3. Multiple crowd - multiple drones approach.

3) MULTIPLE CROWD - MULTIPLE DRONES APPROACH

The Multiple Crowd - Multiple Drone approach, as shown
in Figure 3, is an extension of the Single Crowd - Multiple
Drone approach. In this approach, the master devices control
many drones, and the collected data is then processed by
a number of nodes connected to the master devices. This
approach has the advantage of increasing the number of
participating drones (to serve or collect data) and worker
nodes. It is proven that drones can also be part of worker
nodes [34] for data processing. This should allow system
scalability through aggregation of a large number of par-
ticipants in both collecting and processing tasks. As with
the previous approach, this might be expensive or hard to
run, but it may save valuable time in conceivably hazardous
circumstances.

B. SYSTEM DESIGN

While using (non-mobile) infrastructure resources is also a
valid method, there are situations when infrastructure may be
damaged, inaccessible or not existing. Our work focuses on
offloading to the ‘crowd’ (i.e., nearby mobile devices) in such
situations where offloading to non-mobile fixed infrastruc-
ture is not feasible, and is intended to complement the infras-
tructure resources, if and when they do exist. This section
describes the design of a system for the above scenarios.

110038

Crowed Powered Drones ‘ Crowed Powered Devices

Drones Proxies Master Control [Workers |

/

Q@

EERE

FIGURE 4. Crowd powered drone network architecture.

1) SYSTEM COMPONENTS

The main components of the proposed framework are: Drone
nodes (Dy,...;), Worker nodes (Ny,... i), and a Master con-
troller (see Figure 4). Here, we focus on two key concepts:
drone crowdsourcing, and multi-drones service management
(via scripting).

First, we developed an application that allows the drone
to work with a framework for mobile crowd computing to
enable crowd-powered drone services. The implementation
and the tests that we have performed, are discussed in detail
in §V of this paper. The idea of this service is to allow the
user to control one or multiple drones to collect data using a
pre-assigned master controller. However, a different aspect
of the work which could be optimised is that instead of a
pre-assigned master, the master could be changed as in [35].
These data are processed by the crowd using two methods:

« Automated Tasking

o Human Tasking

Second, we developed a scripting language to manage,
program and support a framework consisting of multiple
drones. The scripting language is focused on programming
high-level path behaviours, leaving to local on-drone sensors
and controls to avoid obstacles (which we do not focus on
in this paper). This scripting language can support different
tasks including movement tasks, e.g., take off or land, and
processing tasks, e.g., take a photo or crowdsource tasks.
Instructions will be sent from the master to all connected
drones, each drone may have a similar or different set of
commands (or instructions). Once a drone has received an
instruction, it will carry it out and transmit the collected infor-
mation back to the master. The master will then distribute the
processing tasks to the worker nodes that are connected to it.

2) DRONE MONITORING PATHS

One aspect of programming drone behaviour is the flight
path. The implementation of the autonomous drone mis-
sions allows performing many organised operations, espe-
cially with the aid of automated piloting [36] and battery
charging [37]. Figure 5 shows some examples of autonomous
drone monitoring paths. Depending on the requirements of

VOLUME 7, 2019

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

1O

(a) Simple Path

7(©

) Spiral Path

(c) Detailed Path

—_
Gy

FIGURE 5. Drone monitoring paths.

each mission, a drone can monitor any targeted area by flying
along: a simple path (Figure 5a) to perform simple tasks such
as for 2D data, a spiral path (Figure 5b) for intensive photo-
covering of an area, or a detailed path (Figure 5c) such as to
collect 3D data. Further details are provided in §IV.

To be able to offer the best solution to the problem
which the framework will try to solve, the drone monitoring
path can be (1) selected from a set of available options
(e.g., simple, spiral, detailed or other), (2) it can be prescribed
by the user through a drawing or (3) it can be determined
using an optimisation algorithm. A range of available options
can be fed into the system so the users can select the path
which they think is most suitable for a given mission. The
options can be developed by considering a number of use
cases of the framework. However, since it is not possible
to consider all the possible use cases, there should be an
option for the users to program a path they think is most
suitable for the situation - which we consider in this paper
as shown later. Finally, there can also be an option for the
users to request a custom path for the problem by running
an optimisation algorithm. The optimisation algorithm will
require inputs from the user in the form of objectives and
constraints (not considered in this paper).

3) DESIGN CONSIDERATIONS

To design such an architecture, we will explain the workflow.
First, using the same scenario discussed in §III-A.1 which can
be demonstrated in Figure 6a. At time #y Jack uses his phone
as the master controller to send commands to his own drone
D1 to monitor the targeted area. Jack selects the monitoring
path using a list of preset options that are available. At time #;
he receives the collected aerial images and initialises the total

VOLUME 7, 2019

Devices
Na —— :
. _
Master .

ty 4 b 3t te 7 ts Time

DCollected Data .Processed Data —> Request ---> Result

(a) Crowd Powered Single Drone

Devices
No — -
Ni = I
D, f
Dy
Master
ty 4 b 3t g t6 7 ts Time
DCoIIected Data .Processed Data —> Request ---> Result

(b) Crowd Powered Multiple Drones

FIGURE 6. Sequence diagrams of single and multiple drones.

job queue (j). Then using his phone’s Wi-Fi Direct, he scans
the area looking for available worker devices. The master can
accommodate n worker nodes. The results of the Wi-Fi Direct
scan indicate the availability of two people who are willing
to participate with their devices.

The two workers connect to the master, who then transmits
a set of jobs to workers (N; and N, at times t, and f3,
respectively). Workers process the given task based on its
requirements and their preference for how they would like
to contribute. The options in which the participants can
contribute are; offering their machines’ resources, or phys-
ically or manually interacting with the system (i.e., a mobile
app). Once a worker finishes a set of jobs, his/her device sends
the results to the master and is given the option to undertake
more jobs if offered by the master. As shown in Figure 6a,
the master receives results from workers Ny, and N, at time
t3 and t4. The process goes on until the master receives the
last jobs which is in this case at #7, when all the collected data
has been processed.

Second, using the scenario discussed in §III-A.2 which
can be demonstrated in Figure 6b. This scenario is an exten-
sion of the previous scenario and uses more than one drone.
At time fg, Jack uses his phone as the master control to send
commands to two drones D and D;. The monitoring path is
selected in the same way as previously described. At time t;
he receives the collected aerial images from D1, and at time tp

110039

IEEE Access M

. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

. Crowd Powered Drones Crowd Powered Devices
Devices
N I .
N4 } - 7
o :
Dy : :
: g
D4 :
:]
P2 :
: E
Py v :
:]
Master M 4 v
o 4 tp t3 14 ts tg ty tg Y9 Time
DCoIIected Data .Processed Data —> Request ---> Result

FIGURE 7. Sequence diagram of crowd powered multiple drones (with
proxies).

he receives the collected aerial images from D,. The jobs are
queued progressively as the images are received by the master
from the drones. The process in which the jobs are distributed
to the workers and notifications received back by the master
are the same as described previously.

In the real world, each drone belongs to one owner who is
directly connected to it and can operate it via some controller
such as a mobile device. Using these controllers as proxies
should allow one or multiple drones to receive commands
from a channel (e.g., from a remote server). The channel can
be a form of a coordinator of the whole process. It would
be preferable for the channel to be present locally (as close
as physically possible) as opposed to in another physical
location (e.g., another city or country) as this can be less
expensive, most likely promise faster connectivity and require
no additional infrastructure to build a local cloud. Also,
the channel should be compatible with the various individual
devices, which might be using different platforms.

As in the scenario, one can imagine people bringing their
own drones to be pooled together and controlled by acommon
master coordinating the search and rescue mission. As shown
in the Figure 7, at time #(, the master sends commands to all
connected proxies. Each of the proxies (Py, P2, ..., P,) are
connected to a single drone (D1, D, ..., D,, respectively).
When the proxies receive a command from the master, they
execute the command. Proxies allow a local level of control.

This way the master commands the drone’s indirectly
through the proxies. The process to receive feedback works
through the same pathway. The information collected by the
individual drones is fed back to the proxies, and then the
proxies send the information to the master. Then, jobs are
queued progressively as the information is received by the
master from the proxies. The process in which the jobs are
distributed to the workers and notifications received back by
the master are simple Honeybee workers scenario, as detailed
later.

110040

=

(fe
Q‘L

—

FIGURE 8. High level diagram of the experimental scenario.

Controller

Collected Data

IV. PROTOTYPING AND EXPERIMENTATIONS ON DRONE
CROWDSOURCING FOR DRONE DATA PROCESSING

A. OVERVIEW

The focus here is to process and analyse the data collected
by the drone in two ways; using algorithms-based (computa-
tional resources of available devices), and using human intel-
ligence who accompany their devices. We have conducted
some experiments to allow for a comparison between the
two methods. All experiments are conducted using Wi-Fi and
Wi-Fi direct to simulate real-time jobs on a portable cloud.
Working with low-end devices, Wi-Fi would be a superior
alternative, when there is a choice of Wi-Fi available.

The framework ought to have the capacity to change to
different conventions, such as 4G or Bluetooth, relying upon
user abilities and other circumstances. Furthermore, Honey-
bee [24] was used as a crowd computing framework to enable
mobile devices to share work, and utilise local resources in
the mobile context. However, in our experiments, the master
control does not participate in processing the data, it only
distributes the jobs to connected devices for processing as
shown in Figure 8. Using a single master may increase the risk
of single point of failure. Thus, we assume that if the master
fails, one of the connected proxies can takeover to eliminate
the single point of failure. We also assumed that there is at
least one device who is willing to share its resources with the
master.

B. PROOF OF CONCEPT IMPLEMENTATION
We have assumed a scenario where the master controller has
sent a drone to capture 100 photographs on an island with
the ultimate objective of identifying people who might be
stranded on the island. Each of the photographs taken by the
drone needs to be reviewed to identify people (i.e. processing
of the data).

The chunk size of each job assigned to each worker is 5
(i.e. the number of images that are allowed to be transmitted
at a given time as a part of one request), further details about

VOLUME 7, 2019

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

TABLE 1. Summary of participating devices.

[Device | Type [Role | OS |
Drone Parrot Bebop 2 Collect Linux
Master Nexus6, 2.7 GHz Krait 450 Control | Android
Worker1 Nexus7, 1.2 GHz Cortex-A9 | Process | Android
Worker2 | Nexus7, 1.2 GHz Cortex-A9 | Process | Android
Worker3 | Nexus7, 1.2 GHz Cortex-A9 | Process | Android
Worker4 | Nexus7, 1.2 GHz Cortex-A9 | Process | Android

400

350

300

g 250

< 200
£

= 150

100

50

0

1 2 3 4

Number of worker nodes

FIGURE 9. Time for machine-based processing of 100 images collected by
the drone.

Honeybee parameters are given in [24]. Table 1 summarises
the participating devices and the roles they play in the exper-
iment. We carried out implementation of both aspects; the
experiments and results are described below.

1) MACHINE-AIDED DATA PROCESSING

The photographs collected from the drone are reviewed using
an Android built-in face recognition algorithm. Such kind
of algorithms are usually computationally expensive (use
high CPU cycles and memory), therefore, it would be better
to distribute the task of processing a massive number of
photographs to multiple machines (i.e., worker nodes). This
approach of distributing the workload will allow for more
efficient and faster processing. Each worker mode that is
engaged can process some photographs using the Android
built-in face detection algorithm and send the results to the
master (illustrated in Figure 10a). Figure 9 shows the number
of images processed by worker nodes and the total time taken
to complete the task.

2) HUMAN-AIDED DATA PROCESSING

Humans are incredible resources when it comes to pattern
recognition. According to [38], it usually takes a human less
than a second to identify an object in an image. However,
it takes time to provide an informative feedback. Conse-
quently, a group of 10 participants were chosen to find out
areasonable amount of response time for identifying humans
in images. Aerial images are categorised into ‘“‘obviously
no one”’, “clearly there is someone”, and a “mix of both”
(i.e., unsure). Participants were told to click on a button,
as soon as they decide if there is or there is not a human in the
image, as shown in Figure 10b. The average time taken for a

VOLUME 7, 2019

(a) Machine aided processing

(b) Human aided processing

FIGURE 10. Drone data processing applications.

Time in sec

1. Obviously no one 2. Clearly there is 3. Mix of both 1 & 2

someone

Aerial images categories
FIGURE 11. Average time taken for a person to process an image.

human to process an image is shown in Figure 11. The results
indicate that it took people the longest time to review images
which had no one, and least time was taken to identify images
which clearly had someone. We have computed and reported
the average of all the results from three sets of experiments,
which is roughly three seconds.

Humans can be utilised instead of machines for the sce-
nario described in §1V-B.2. The master controller distributed
the task of processing 100 images to four worker nodes
(i.e., humans) using Honeybee. Each human that is engaged
can process some photographs through a manual review
(by answering “yes” or “no” (see Figure 10b) to the fol-
lowing question corresponding to each image: ‘Do you see a
person in this image?”’) and send the results to the master.
If any worker node doesn’t interact with the given image
within three seconds the chosen answer can be set to be
either “yes” or “no”’ (or “unsure”’’). The choice of the default
option depends on the context. For example, if time and
resources are not seen as critical factors but certainty is, then
the default value should be a ““yes’’. In time critical situations,
where human lives are at stake, and when resources are most
needed, wasting time looking for someone based on a photo

110041

IEEE Access

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

400
350
300
250
200

Time in sec

150
100
50

1 2 3 4
Number of worker nodes

FIGURE 12. Time for humans to process 100 images collected by the
drone.

(which might not have a human) can cost more human lives.
In this example, we set “no’” as the default value if no answers
are given by the user for each photo. Figure 12 shows the
number of images processed by each human-worker node and
the total time taken by each human-worker node to complete
the task. It can be seen that the performance is quite similar
in this case with the machine-based processing.

C. DISCUSSION
The time taken by each of the worker nodes to process one
photograph depends on the image complexity. In both exper-
iments, all worker nodes use a similar type of device which
results in a similar processing and computational powers.
In the context of machine-aided data processing, the num-
ber of photographs processed by the worker nodes varied
depending on the sequence and/or availability of time from
each node. In our experiment, all the worker nodes had
more than enough time available to cumulatively get through
the small task of processing 100 images. Using the human-
aided data processing, the time taken by each of the worker
nodes to process one photograph is around 3 seconds. In this
instance too, the human-worker nodes had more than enough
time available to cumulatively get through the small task of
processing 100 images (approx. 300 seconds or 5 minutes).
The sequence in which the worker node joined the work-
share was a more important determinant of the number of
images that a node was able to process. The first worker node
that joined the work-share earliest and was able to process
more images than other nodes. Similarly, each subsequent
joiner was able to process fewer and fewer images. Machines
are generally faster than humans. This was true for our
experiment as well. As shown in Figure 9 and Figure 12,
the machine-aided data processing performed slightly better
than the human-aided data processing by a few seconds (also,
for each image, humans were also given a 3second limit to
respond, after which a default value is set) - it must be noted
too that with more powerful mobile devices, the machine-
aided data processing would be much faster while the human
performance would not change (further work is needed to
compare the accuracy of human and machine processing, but
is not within the scope of this paper).

110042

Mission {Drone ID: DI,
Action Take off: T,
Action Forward: F50,
Action Left: LIO,
Action Backward: BS50,
Action Right: RI10,
Action Land: Q }

Listing. 1. A single mission.

V. MULTI-DRONES SERVICE MANAGEMENT
VIA SCRIPTING
A. OVERVIEW
The management of multiple drones and the collection and
distribution of data requires the use of multiple distributed
systems. The efficacy of the usage of the proposed application
requires seamless and robust integration between the multiple
systems [30]. In this section, we describe a scripting language
that enables the master controller to manage multiple drones
(which might use different flight patterns). In our approach,
drone scripting is used to specify the high level control but
we assume that there is low level control to deal with certain
situations that may arise while flying. If there are many
interruption, we assume that a drone may notify the master
about the difficulties of fulfilling the path pattern and may
return home. For example, if there are many obstacles and the
flight path had to keep changing a number of times until its
outside certain bounds, then it has to stop and go back home.
We also provide a sample implementation using (Parrot
SDK)?® to demonstrate the concept, i.e., a scripting language
for drones, which we call DroneScript. Finally, we present our
experiments using Sphinx” simulation tool, compared with
real life flights and mathematical estimates.

B. DRONESCRIPT

DroneScript is a scripting language that enables program-
mers to easily and quickly create missions for drones using
commands issued from the master controller. The essential
language elements are actions and missions. Its syntax is very
simple and includes a set of missions and actions separated by
commas. Each action is represented by a letter followed by a
numerical value to parametrize the respective action. Actions
can be defined as the process of changing the drone status,
movement or activity. Each drone has its own ID.

A drone has a number of basic movements that can be
performed, e.g., Take Off, Left, Right, Forward, Backward,
Up, Down and Land. Drones can also perform different type
of activities such as taking photos or orbiting around a given
target location. Table 2 lists the basic functions that are avail-
able in the scripting language. Missions are a combination of
actions which are controlled by a constraint. Listing 1 shows
an example of a complete mission.

The implemented scripting language not only allows con-
trolling a number of drones to fly predefined paths but also

8https ://developer.parrot.com/docs/SDK3/
9https ://developer.parrot.com/docs/sphinx/whatissphinx.html

VOLUME 7, 2019

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

TABLE 2. Basic commands for Drone Script.

Action S Numerical values/ Constraints (C) e.g
Take off T | Hovering time in seconds (optional) T
Left L | Go (left) distance in meters L10
Right R | Go (right) distance in meters R10
Forward F Go (forward) distance in meters F8
Backward B Go (backward) distance in meters B7
Up U | Go (up) distance in meters U10
Down G | Go (down) distance in meters G7
Land Q | Hovering time in seconds (optional) Q
PIO P | Predefined location ID P1
Drone D | Drone ID D2
Rotate Z (+) right and (-) left degree rotation 790
Image taking | I The interval between images in seconds 11
Video V | The length of the video in seconds V2
Hover H | The time drone should be idle in seconds | H10

allows commands to be received during the flight. For exam-
ple, if the drone has already been sent to a location and if
it is hovering over a certain location, additional instructions
can be sent to the drone for further execution. This way,
the mission can be dynamic and open to receiving more
actions during flight. Using such a scripting language allows
missions to be specified for individual drones, and also allows
flying multiple drones simultaneously as well as allowing
drones to autonomously accomplish different type of mis-
sions - manual piloting of multiple drones is difficult but
multiple drones can be scripted. Additionally, the scripts can
be analysed to ensure that the task is done in the most efficient
manner and without any accidents - for example, to check
if no other drone is repeating the same task or preventing a
collision between drones. The scripting language is a high
level language but it is designed in a way so that it can
be translated to lower level languages (e.g., Java APIs) and
be compatible with a range of operating-systems/platforms.
The same actions in DroneScript can translate into dif-
ferent low-level API calls of different drone platforms,
so that DroneScript can be agnostic to the underlying drone
platform.

C. COMMANDS AND PROCESSING

DroneScript is based on a time-based approach that calcu-
lates the required time to complete each action of a mission
as it performs, in relation to delivering a variety of drone
services.. It is useful to formulate the completion time of
a mission to assess and comprehend the ideal outcome for
the situation at hand - a drone script hence allows some
reasoning about flight paths (e.g., to estimate the comple-
tion time of a path or the energy required) before they are
executed.

The completion time 7 of each action A in a mission
M should be known in order to fulfil the needs of the ser-
vice providers and their clients. Clients need to know an
estimate of how long it will take for their service request
to be completed. Also drones have some constraints that
need to be considered such as the battery level. Therefore,
the master device is able to calculate or predict the T required
to complete a M or part of it (i.e. A’s), which is useful for

VOLUME 7, 2019

buffering (BebopDrone mBebopDrone){
mBebopDrone . goTo (0,0,0,0);
try f
Thread . sleep (1000);
} catch (Exception e) {
Log.e(" Buffering exceptions:", e);}

}

Listing. 2. Stabilising time function.

TABLE 3. Time (as estimated via the formula, as determined in simulated
drone runs, and as determined in actual drone flights) taken for each
basic action in seconds.

Action Example | Formula Simulation | Actual
Take off T(T) 1+2b=3 3.003 3.010
Land Q) 1+2b=3 3.011 3.011
left T(L100) dis+2b=22 | 22.011 22.012
Right T(R100) d/s+2b=22 | 22.011 22.011
Forward T(F100) dis+2b=22 | 22.010 22.011
Backward | T(B100) d/s+2b=22 | 22.011 22.011
Up T(U10) dis+2b=4 4.011 4.011
Down T(D10) dis+2b=4 4.010 4.012
Rotate T(Z90) 4+2b=6 6.011 6.011

end-users. Also, each drone needs to know the required time
to complete a mission in advance in order to decide if it is
capable of doing so (considering application-specific time
constraints).

Let n be the number of actions for a given drone D
in a given mission, i.e. the mission is denoted by
M(D, Ay, ...,Ay,). Therefore, we can calculate the total time
T of a mission as follows:

> T
n=1

Each action A has a different 7', for example, if a client
requests a service that requires a drone to perform a left action
with a side length of 50 meters, the 7/(L50) will be greater
than performing the same action with only 10 meters of side
length T(L10). To provide more insight into calculating the
time taken for each action:

« Table 3 summaries the basic actions and their time for-
mulas with examples (note that the actual flight times
assume no wind and other conditions which would affect
flight).

o Drone speed (s) = 5 meters per second

o Stabilising time (b) = 1 second (“buffering” time,
i.e., each function or command requires a waiting time
before and after processing to allow the drone to com-
plete its movements and be stabilised in its position as
shown in Listing 2)

« Distance (d) either given by the user or by calculating
the distance between the current location of the drone
and the target location.

Using these basic commands, next section demonstrates

the ability of drones travelling over different predefined paths
and a pre-calculated processing time.

110043

IEEE Access

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

left (mBebopDrone,d);
rotateright (mBebopDrone,90);
left (mBebopDrone,d);
rotateright (mBebopDrone,90);
left (mBebopDrone,d);
rotateright (mBebopDrone ,90);
left (mBebopDrone,d);

Listing. 3. Square function.

D. PATH PATTERNS

Path planning is an important primitive for autonomous
mobile robots to ensure that robots can perform missions
successfully. Depends on the task the drone is executing,
static path planning can be as simple as flying in a straight
line from point to point or more complex such as orbiting
around an object that is to be viewed at different altitudes.
In order to examine the basic commands, this section pro-
poses three different flight path patterns using DroneScript to
carry out a complete mission; simple path, spiral path, and
detailed path. Each example shows the used algorithm to cre-
ate a drone’s path and a formula to calculate the required time
to accomplish the task. Then followed by an example with the
results obtained, some sample results are given below.

1) SIMPLE PATH EXAMPLES

o Square: A square is a geometric shape with four equal
side d and four interior equal angles (90-degree). Drone
follow a flight path similar to a square of side length d to
perform simple tasks such as monitor a house or a block
of land. In order to calculate processing time prior the
mission, (1) calculate the expected time for the flight to
travel along the complete path. Listing 3 shows the code
to follow a flight path similar to a square of side length
d and rotate by 90 degrees.

4T (L(d)) + 3T(Z(90)) (1)

Example 1: A square shape with a side of 100 T(S100)
— Result using the formula (1) is 108 seconds.
— Result using the simulator is 108.008 seconds.
— Result using the actual drone is 108.09 seconds.
— Figure 13 shows the targeted geometric shape 13a
and the observed shape 13b.

o Octagon: An octagon is a geometric shape with eight
equal side d and eight interior equal angles (45-degree).
Similar to the square example, drone follow a flight path
to perform simple tasks but with shorter rotation angle.
The expected time taken for the flight to complete the
path can be calculated using the formula in (2). Listing 4
shows the code to follow a flight path similar to an
octagon of side length d and rotates by 45 degrees.

8T(Ld) + 3T (Z45))

Example: An octagon shape with a side of 100 T(E100)
— Result using the formula is 182 seconds.
— Result using the simulator is 182.470 seconds.

110044

T1

<

T2 T4

-

T3
(a) Expected (b) Observed

Figure 13. A square targeted geometric shape.

double edge = getSideLength(radius);
for(int i = 1;i<8;i++){
left (mBebopDrone ,edge);
rotateright (mBebopDrone ,45);

}
left (mBebopDrone ,edge);

Listing. 4. Octagon function.

(a) Expected

(b) Observed

Figure 14. A square targeted geometric shape.

— Result using the actual drone is 182.472 seconds.
— Figure 14 shows the targeted geometric shape 14a
and the observed shape 14b.

2) SPIRAL PATH EXAMPLES

« Square Spiral: Square spiral is an extension of a square
but only two sides of the shape are equal in what we call a
spin unit (k). Then in each spin the shape double its side
length. Using the pattern will allow more complexity
and may allow more details, in the context of providing
drone monitoring services. The expected time taken for
the flight to complete the path can be calculated using
the formula (3) (which includes k the sum of stabilising
times). Listing 5 shows the code to follow a flight path
similar to half a square going in a loop.

k
> @T(L20)n) + 2T(Z90)) + k (3)
n=1
Example: A Spiral square with a spin unit of 4 T(M4)
— Result using the formula is 148 seconds.

VOLUME 7, 2019

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

for(int i = l;i<=size;i++){
rotateright (mBebopDrone,90);
left (mBebopDrone,i*20);
rotateright (mBebopDrone,90);
left (mBebopDrone,i=20);
buffering (mBebopDrone);

}

Listing. 5. Square spiral function.

K3

k1

j—‘j K2 K4 *

K3 K1

K2

K4
(a) Expected (b) Observed

Figure 15. A spiral square targeted geometric shape.

for(int i = l;i<=size;i++){
rotateright (mBebopDrone ,45);
left (mBebopDrone,i*20);
rotateright (mBebopDrone ,45);
left (mBebopDrone,i*20);
rotateright (mBebopDrone ,45);
left (mBebopDrone,i*20);
rotateright (mBebopDrone ,45);
left (mBebopDrone,i%20);
buffering (mBebopDrone);

Listing. 6. Octagon Spiral function.

— Result using the simulator is 148.015 seconds.

— Result using the actual drone is 148.017 seconds.

— Figure 15 shows the targeted geometric shape 15a
and the observed shape 15b.

o Octagon Spiral: Octagon spiral is an extension of an
octagon but only four sides of the shape are equal
in what we call a spin unit (k). Then in each spin
the shape double its length side. The expected time
taken for the flight to complete the path can be cal-
culated using (4). Listing 6 shows the code to fol-
low a flight path similar to half an octagon going in
loop.

k
> (4T(L20)n) + 4T(245)) + k)

n=1

Example: A spiral octagon with a spin unit of 4 T(N4)
— Result using the formula is 292 seconds.
— Result using the simulator is 292.023 seconds.
— Result using the actual drone is 292.028 seconds.
— Figure 16 shows the targeted geometric shape 16a
and the observed shape 16b.

VOLUME 7, 2019

%

(b) Observed

(a) Expected

Figure 16. A spiral octagon targeted geometric shape.

for(int i = l;i<=size;i++){
rotateleft (mBebopDrone ,90);
forward (mBebopDrone ,10);
rotateleft (mBebopDrone ,90);
forward (mBebopDrone ,50);
rotateright (mBebopDrone ,90);
forward (mBebopDrone ,10);
rotateright (mBebopDrone,90);
forward (mBebopDrone ,50);

Listing. 7. Detailed path function.

(a) Expected [&
(b) Observed

Figure 17. A detailed targeted geometric shape.

3) DETAILED PATH EXAMPLE

For more comprehensive coverage of an area, this pattern
allows the drone to cover broad and complex areas of interest,
to provide different types of tasks such as generating collab-
orative maps and 3D models. The expected time taken for
the flight to complete the path can be calculated using (5).
Listing 7 shows the code to follow a flight path similar to a
structured zig-zag pattern.

k
Z(4T(Z90) +2T(F10) + 2T(F10)) + k (5)

n=1

Example: A detailed path with a spin unit of 4 T(x4)

« Result using the formula is 228 seconds.

« Result using the simulator is 228.027 seconds.

« Result using the actual drone is 228.030 seconds.

o Figure 17 shows the targeted geometric shape 17a and
the observed shape 17b.

110045

IEEE Access

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

| JCHE]
WIiFi DD

Master
& Drone2
W C:\:‘veected
Drones
& Dronel
W Connected
Control Disconnect Send(2)
Group Owner IP - 192.168.49.1
Am | the Group Owner? yes
D1,T,F100,11,560,1,Z-90,F80,Q;
D2,T,F110,11,E60,1,Z-135,F110,Q;
Missions
Creator
/ Editor

(a) Master UI

Figure 18. Drone data collecting applications.

TABLE 4. Multiple drones missions.

IR
BebopActivity

Battery

Status

Help

Controls
Connection
Status

TAKE OFF DOWNLOAD

(b) Proxy Ul

Drones:

DI D2

Missions:

M1{D1,T,F100,I1,S60,1,Z-90,F80,Q} M2{D2, T,F110,11,E60,1,Z-135,F110,Q}
Map:

Car Hark 2C, L
TrabeMniversity

LS

La Trobe University

La Trobe University
Baseball Club

Regston Baseball Club

Total Time taken:

T(M1) = 132.027 seconds

T(M2) = 190.499 seconds

Collected Data:

76 aerial images

133 aerial images

E. MULTIPLE DRONE EXAMPLE

Let us consider a scenario where there are three mobile
devices available, one phone (as a master controller
shown in Figure 18a), and two tablets (as proxies shown
in Figure 18b) and we have two drones. Using the
same scenario of the fire on the island described previ-
ously, the script to collect photos from the island can be

110046

executed using the phone. The instructions from the script
will be relayed to the two tablets by the master con-
troller which are the respective local controllers for the two
drones. The tablets can then send the instructions using the
script to the two respective drones. The drone can go on
separate paths, collect photographs and relay them to the
proxies.

VOLUME 7, 2019

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

Table 4 shows the flight paths (using different path pat-
terns) followed by the two drones. The master controller
sends the commands to the first and the second tablets (prox-
ies) to instruct their respective drones to follow path resem-
bling a square and an octagon. The two tablets then relay
the instructions to their respective drones. Drone 1 and 2
follow the paths they have been instructed to follow as shown
in the table below in approx. 132 and 191 seconds, respec-
tively. Furthermore, drone 1 and 2 captured 76 and 133 pho-
tos, respectively. The photos are then relayed back to their
respective proxies. The notion of the proxies has a number
of advantages, e.g., to allow local personalised control if the
commands somehow cannot be carried out, and to extend the
range of communication between the master controller and
the drones.

F. DISCUSSION

We note also that some drones have built-in obsta-
cle avoidance and so our script provides a ‘“high-level”
paths or behaviour for the drones, and the drones can fol-
low the paths, taking into account low-level variations and
changes. Also, such drone scripts can be executed like Cron
jobs enabling repeated complex drone behaviours to be easily
created, or triggered by context conditions.

By analysing DroneScripts, the behaviour of drones can be
predicted, e.g., time estimations for complex drone missions
comprising multiple drones and composite behaviours can
be analysed and determined beforehand, by improving the
time estimates of component behaviours. Decisions about
missions, whether they can be carried out or not, and charg-
ing or billing models for drone services can then be based on
such estimates.

VI. CONCLUSION

The prevalence and usage of both smartphones and drones
is on the rise. Smartphones are constrained by resources
and capabilities to undertake large tasks (e.g. computation-
ally expensive tasks) and individual drones are constrained
by physical limitations (e.g. number of photos they can
take or area they can cover).

A review of related work has indicated that the idea
proposed is unique and exploring the synergies of smart-
phones/wearables and drones would be valuable contribution
in this domain. In this concept paper, we have proposed a
framework for drone crowdsourcing and multi-drones ser-
vice management via scripting. We demonstrated the concept
using an example of an island where there has been a fire
and how drones and other devices assisted with locating
the people who were stranded in dangerous situations. But
many scenarios can be imagined for our framework. We have
discussed the various aspects of design of such a frame-
work including the system components, path specification
and monitoring. The data processing aspects of the concept
have also been described. A scripting language which can
control and manage the systems has also been proposed.

VOLUME 7, 2019

Future work will involve exploring further applications
of crowdsourcing from drones, including providing human
input and machine resources for drones performing com-
plex tasks in smart city environments (e.g., guiding drones
as they perform tasks such as guiding tourists, emergency
settings, patrol, or inspection). Also, an aspect of future work
is investigating how to avoid single point of failure by using a
redundant master. There are other challenges not addressed in
this article, mainly energy [33], low-level collision avoidance,
and multi-drones autonomous cooperation when performing
tasks that require multiple drones [39]. We will be working on
developing some cooperative strategies and dealing with the
energy limitation. Note that a key contribution of this paper
is the idea of high-level scripting of multiple drones by a user
via DroneScript.

We will also investigate implementing DroneScript across
a range of different drone platforms, so that drones from
different manufacturers can work together, and also exploring
further multi-drone services scripted via DroneScript. The
scripting language enables a means of estimating drone mis-
sion times and resources - we can extend this to estimate
energy and other resources (for drone actions) required for
a given mission. Also, interesting is to explore the notion
of mission in [40] where instead of mobile software agents
carrying out cyber-world missions, we have drones carrying
out physical-world missions. Our path pattern approach is a
high-level control operation, with the system relying on the
low level drone sensing and control to deal with certain sit-
uations that may arise such as avoiding immediate obstacles
along the way. However, if the drone deviates too far from
the intended path (e.g., go outside certain threshold bounds),
it has to be reported back to the master and the drone has
to come home, this will be an important avenue for future
work.

We envision smart civilian drone services in the future,
and we have only contributed towards two aspects of this
in this paper: involving human and machine processing of
drone data and automating multidrone flights. Further work
is required to explore other aspects, from Al-based smarter
drones to smarter human control of drones.

REFERENCES

[1] M. Alwateer, S. W. Loke, and A. M. Zuchowicz, “Drone services: Issues
in drones for location-based services from human-drone interaction to
information processing,” J. Location Based Services, vol. 13, no. 2,
pp. 94-127, 2019.

[2] A.Claesson, L. Svensson, P. Nordberg, M. Ringh, M. Rosenqvist, T. Djarv,
J. Samuelsson, O. Hernborg, P. Dahlbom, A. Jansson, and J. Hollenberg,
“Drones may be used to save lives in out of hospital cardiac arrest due to
drowning,” Resuscitation, vol. 114, pp. 152-156, May 2017.

[3] C.A.Thiels,J. M. Aho, S. P. Zietlow, and D. H. Jenkins, “Use of unmanned
aerial vehicles for medical product transport,” Air Med. J., vol. 34, no. 2,
pp. 104-108, 2015.

[4] L. Tang and G. Shao, “Drone remote sensing for forestry research
and practices,” J. Forestry Res., vol. 26, no. 4, pp. 791-797,
Dec. 2015.

[5] E. Natalizio, R. Surace, V. Loscri, F. Guerriero, and T. Melodia, “Filming
sport events with mobile camera drones: Mathematical modeling and
algorithms,” HAL, Lyon, France, Res. Rep. hal-00801126, 2012.

110047

IEEE Access

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

[6]

[71

[8]

[91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. W. Loke, M. Alwateer, and V. S. A. A. A. Don, ‘““Virtual space
boxes and drone-as-reference-station localisation for drone services:
An approach based on signal strengths,” in Proc. ACM 2nd Work-
shop Micro Aerial Vehicle Netw., Syst., Appl. Civilian Use, 2016,
pp. 45-48.

S. Daftry, C. Hoppe, and H. Bischof, “Building with drones: Accurate
3D facade reconstruction using MAVs,” in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), May 2015, pp. 3487-3494.

A. Shukla, H. Xiaogian, and H. Karki, “Autonomous tracking and nav-
igation controller for an unmanned aerial vehicle based on visual data
for inspection of oil and gas pipelines,” in Proc. 16th Int. Conf. Control,
Automat. Syst. (ICCAS), Oct. 2016, pp. 194-200.

M. Bacco, A. Berton, E. Ferro, C. Gennaro, A. Gotta, S. Matteoli,
F. Paonessa, M. Ruggeri, G. Virone, and A. Zanella, “Smart farm-
ing: Opportunities, challenges and technology enablers,” in Proc.
IEEE IoT Vertical Top. Summit Agricult.-Tuscany (I0T), May 2018,
pp. 1-6.

S. W. Loke, Crowd+Cloud Machines. Cham, Switzerland: Springer, 2017,
pp. 11-25. doi: 10.1007/978-3-319-54436-6_2.

G. D. Abowd, “Beyond weiser: From ubiquitous to collective computing,”
Computer, vol. 49, no. 1, pp. 17-23, Jan. 2016.

N. Fernando, S. W. Loke, and W. Rahayu, “Computing with nearby mobile
devices: A work sharing algorithm for mobile edge-clouds,” IEEE Trans.
Cloud Comput., vol. 7, no. 2, pp. 329-343, Apr./Jun. 2019.

A. Fotouhi, M. Ding, and M. Hassan, ‘‘Flying drone base stations for macro
hotspots,” IEEE Access, vol. 6, pp. 19530-19539, 2018.

N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-based IoT platform:
A crowd surveillance use case,” IEEE Commun. Mag., vol. 55, no. 2,
pp. 128-134, Feb. 2017.

E. Salisbury, S. Stein, and S. Ramchurn, “Real-time opinion aggregation
methods for crowd robotics,” in Proc. Int. Conf. Auton. Agents Multiagent
Syst., 2015, pp. 841-849.

D. G. Murray, K. Nilakant, J. Crowcroft, and E. Yoneki, Task
Farming Crowd Computing. Hoboken, NJ, USA: Wiley, 2013,
ch. 13, pp. 491-513. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/9781118511305.ch13

K. Parshotam, “Crowd computing: A literature review and defini-
tion,” in Proc. South Afr. Inst. Comput. Scientists Inf. Technolo-
gists Conf. (SAICSIT), New York, NY, USA, 2013, pp. 121-130.
doi: 10.1145/2513456.2513470.

D. G. Murray, E. Yoneki, J. Crowcroft, and S. Hand, “The case for
crowd computing,” in Proc. SIGCOMM Workshop Netw., Syst., Appl.
Mobile Handhelds (MobiHeld), New York, NY, USA, 2010, pp. 39-44.
doi: 10.1145/1851322.1851334.

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“CrowdDB: Answering queries with crowdsourcing,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), New York, NY, USA, 2011,
pp. 61-72. doi: 10.1145/1989323.1989331.

T. Yan, V. Kumar, and D. Ganesan, ‘“CrowdSearch: Exploiting crowds
for accurate real-time image search on mobile phones,” in Proc. 8th Int.
Conf. Mobile Syst., Appl., Services (MobiSys), New York, NY, USA, 2010,
pp. 77-90. doi: 10.1145/1814433.1814443.

Z. Chen, Rui Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao,
Y. Tong, and C. J. Zhang, “gMission: A general spatial crowdsourcing
platform,” in Proc. VLDB Endowment, vol. 7,no. 13, pp. 1629-1632,2014.
M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A pro-
gramming framework for crowd-sensing applications,” in Proc. 10th Int.
Conf. Mobile Syst., Appl., Services (MobiSys), New York, NY, USA, 2012,
pp- 337-350. doi: 10.1145/2307636.2307668.

Y. Luon, C. Aperjis, and B. A. Huberman, ‘“Rankr: A mobile system
for crowdsourcing opinions,” in Mobile Computing, Applications, and
Services, J. Y. Zhang, J. Wilkiewicz, and A. Nahapetian, Eds. Berlin,
Germany: Springer, 2012, pp. 20-31.

N. Fernando, S. W. Loke, and W. Rahayu, “Honeybee: A programming
framework for mobile crowd computing,” in Proc. Int. Conf. Mobile Ubiq-
uitous Syst., Comput., Netw., Services. Berlin, Germany: Springer, 2012,
pp. 224-236.

G. Ding, Q. Wu, L. Zhang, Y. Lin, T. A. Tsiftsis, and Y.-D. Yao,
“An amateur drone surveillance system based on the cognitive Internet
of Things,” IEEE Commun. Mag., vol. 56, no. 1, pp. 29-35, Jan. 2018.
doi: 10.1109/MCOM.2017.1700452.

K. W. Smith, “Drone technology: Benefits, risks, and legal considera-
tions,” Seattle J. Environ. Law, vol. 5, no. 1, p. 1, 2015.

110048

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

O. Chang. (2016). NSW Premier Mike Baird has Launched a $250,000
Shark-Spotting Drone. [Online]. Available: https://www.businessinsider.
com.au/nsw-premier-mike-baird-has-launched-a-250000-shark-spotting-
drone-2016-2

J. Lee, K. Kim, S. Yoo, A. Y. Chung, J. Y. Lee, S. J. Park, and H. Kim,
“Constructing a reliable and fast recoverable network for drones,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1-6.

S. Yoo, K. Kim, J. Jung, A. Y. Chung, J. Lee, S. K. Lee, H. K. Lee,
and H. Kim, “Poster: A multi-drone platform for empowering drones’
teamwork,” in Proc. ACM 21st Annu. Int. Conf. Mobile Comput. Netw.,
2015, pp. 275-2717.

A. El-Sayed and M. ElHelw, “Distributed component-based framework
for unmanned air vehicle systems,” in Proc. IEEE Int. Conf. Inf. Automat.
(ICIA), Jun. 2012, pp. 45-50.

J. J. Roldan, P. Garcia-Aunon, E. Pefia-Tapia, and A. Barrientos, ‘“Swarm-
City project: Can an aerial swarm monitor traffic in a smart city?”” in
Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (UNAGI),
Mar. 2019, pp. 862-867.

B. Areias, N. Humberto, L. Guardalben, J. M. Fernandes, and S. Sargento,
“Towards an automated flying drones platform,” in Proc. VEHITS, 2018,
pp- 529-536.

N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based Internet of Things services: Comprehensive survey and
future perspectives,” IEEE Internet Things J., vol. 3, no. 6, pp. 899-922,
Dec. 2016.

M. Alwateer, S. W. Loke, and W. Rahayu, “Drone services: An investi-
gation via prototyping and simulation,” in Proc. IEEE 4th World Forum
Internet Things (WF-1oT), Feb. 2018, pp. 367-370.

W.-S. Jung, J. Yim, and Y.-B. Ko, “Adaptive offloading with MPTCP for
unmanned aerial vehicle surveillance system,” Ann. Telecommun., vol. 73,
nos. 9-10, pp. 613-626, 2018.

F. Flammini, R. Naddei, C. Pragliola, and G. Smarra, ‘“Towards automated
drone surveillance in railways: State-of-the-art and future directions,”
in Proc. Int. Conf. Adv. Concepts Intell. Vis. Syst. Cham, Switzerland:
Springer, 2016, pp. 336-348.

C. H. Choi, H. J. Jang, S. G. Lim, H. C. Lim, S. H. Cho, and I. Gaponov,
“Automatic wireless drone charging station creating essential environ-
ment for continuous drone operation,” in Proc. IEEE Int. Conf. Control,
Automat. Inf. Sci. (ICCAIS), Oct. 2016, pp. 132-136.

S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, p. 520, 1996.

A. S. Aghdam, M. B. Menhaj, F. Barazandeh, and F. Abdollahi, “Coop-
erative load transport with movable load center of mass using multi-
ple quadrotor UAVS,” in Proc. IEEE 4th Int. Conf. Control, Instrum.,
Automat. (ICCIA), Jan. 2016, pp. 23-27.

G. T. Jayaputera, S. W. Loke, and A. B. Zaslavsky, “Design, imple-
mentation and run-time evolution of a mission-based multiagent sys-
tem,” Web Intell. Agent Syst., vol. 5, no. 2, pp. 139-159, 2007.
[Online]. Available: http://content.iospress.com/articles/web-intelligence-
and-agent-systems-an-international-journal/wia00110

MAJED ALWATEER received the B.S. degree
from Canterbury University, New Zealand,
in 2012, and the M.S. degree in computer science
from La Trobe University, Australia, in 2014,
where he is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Information Technology. He is also a member of
the Distributed Systems and IoT Research Group,
Deakin University, Australia. His research inter-
ests and expertise are primarily in the areas of

pervasive computing, mobile computing, drone computing, the Internet of
Things, and service oriented architecture, working with technologies like
Android development, AnyLogic, and software engineering.

VOLUME 7, 2019

http://dx.doi.org/10.1007/978-3-319-54436-6_2
http://dx.doi.org/10.1145/2513456.2513470
http://dx.doi.org/10.1145/1851322.1851334
http://dx.doi.org/10.1145/1989323.1989331
http://dx.doi.org/10.1145/1814433.1814443
http://dx.doi.org/10.1145/2307636.2307668
http://dx.doi.org/10.1109/MCOM.2017.1700452

M. Alwateer et al.: Enabling Drone Services: Drone Crowdsourcing and Drone Scripting

IEEE Access

SENG W. LOKE was a Reader and an Asso-
ciate Professor with the Department of Computer
Science and Information Technology, La Trobe
University. He is currently a (Full) Professor of
computer science with the School of Informa-
tion Technology, Deakin University, where he co-
directs the IoT cluster in the School. His research
interests include pervasive (ubiquitous) comput-
ing and mobile computing, the Internet of Things

; (IoT), focusing on issues concerning systems and
information, with current emphases on complex cooperation among things
(including smart vehicles viewed as smart things, i.e., the Internet of Vehi-
cles, the Internet of Drones, and so on), crowd-powered mobile computing,
mobile big data, mobile big systems, the social impact of mobile technology
innovation, mobile/physical web/cloud development, and how they might
interact. Some of his work can be categorised under mobile cyber-physical
systems.

VOLUME 7, 2019

NIROSHINIE FERNANDO received the Ph.D.
degree in computer science from La Trobe Uni-
versity, Melbourne, Australia, in 2015. She is cur-
rently a Lecturer of software engineering with the
School of Information Technology, Deakin Uni-
versity. Her research interests include the IoT, edge
and fog computing, software engineering, and per-
vasive computing.

110049

