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ABSTRACT As a common biological sequence, DNA sequences contain important information. The
discovery of frequent patterns in DNA sequences can help to study the evolution, function and variation
of genes. The findings are of great significance to genetic and mutation analysis, analysis of disease causes
and treatment of diseases. Traditional methods of frequent pattern discovery need to scan DNA sequences
multiple times. To overcome this shortcoming, this article proposes a new method to discover frequent
patterns from DNA sequences. This method is based on a two-level nested hash table data structure and
set operation. All frequent patterns and their positions in DNA sequences can be found by scanning DNA
sequences only once. Experimental results show that this method can correctly recognize all the frequent
patterns in DNA sequences and their locations. The method can also be applied to discover frequent patterns
in RNA, protein or other biological sequences.

INDEX TERMS Big data, biological information, data mining, DNA sequence, frequent pattern, hash table.

I. INTRODUCTION
In the era of big data, with the rapid development of network
and the extensive use of large capacity storage devices, a large
amount of data has been accumulated in various fields. These
data contain abundant knowledge and information. If we can
discover the hidden information and make use of it, it will
change the history ofmassive data but poor knowledge, which
is important for the development of various fields.

There is a huge amount of data in the biological world,
and these data contain important information. Discovering
these hidden information can help speed up the process of
biological research and is of great significance to the biolog-
ical world. With the development of computer technology,
the computer’s powerful computing power has made it an
important tool for biological research, thus a new subject
named bioinformatics emerged [1]–[5].

In bioinformatics, biological sequence data is an impor-
tant research object. Biological sequence data include three
kinds of sequences: DNA sequence, RNA sequence and
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protein sequence. The molecular elements of these sequences
can influence and determine the external shape and internal
functions of organisms.

The replication of genes in the process of evolution pro-
duces many repetitive sequences, which can contribute to the
production of new genes, and it is of great significance in
genetic variation analysis. Mutations in repetitive sequences
can lead to diseases [6]–[9], such as muscle atrophy,Williams
syndrome, and thymus hypoplasia syndrome. The analysis
and study of repeated sequences can be used to guide the
research and interpretation of the functions of genes and non-
gene sequences, which can help to understand the evolution
and causes of gene mutation [10].

In order to explore the inherent law in DNA, a novel
method is proposed in this paper. Based on a two-level nested
hash table, frequent recurring patterns (i.e. frequent patterns)
and their locations can be found through set operation.
Compared with the traditional method, which needs to scan
DNA sequence multiple times, our method scans DNA
sequence only once, and at the same time, the positions of
frequent patterns are recorded.
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II. RELATED WORK
Given the importance of DNA in life sciences, there
are a lot of researches about DNA mining and analysis.
Reference [11] made a survey on similarity analysis meth-
ods for DNA sequence. Reference [12] gave a novel model
for DNA sequence similarity analysis based on graph the-
ory. Adjacency matrix of directed graph is used to induce
a representative vector for DNA sequence. To compute the
similarity between DNA sequences, [13] introduced a novel
method based on frequency patterns and entropy to construct
representative vectors of DNA sequences

Frequent sequence discovery is a sub-problem in pattern
recognition, there are many researches focusing on the fre-
quent sequences discovery in DNA sequence. Traditional
methods of discovering DNA frequent patterns usually made
use of Apriori algorithm, that is, firstly collect frequent 1
patterns; then, generate candidate 2 patterns from frequent 1
patterns, and the like.

Since Apriori-based algorithm behaved poor performance
while confronting long sequence, [14] proposed a algorithm
named PrefixSpan to mines the complete set of patterns but
greatly reduces the efforts of candidate subsequence genera-
tion. Reference [15] considered that PrefixSpan is not suitable
for mining long frequent concatenate sequences; thus, it gave
two algorithmsMacosFSpan andMacosVSpan, to mine max-
imal frequent concatenate sequences. By constructing the
spanning tree with a fixed length, [16] showed that its pro-
posed method is much more efficient than MacosVSpan in
terms of retrieval performance. By constructing a suffix tree,
[17] proposed an efficient method to mine maximal con-
tiguous frequent sub-sequences. To adapt to the era of big
data, [18] proposed an efficient approach for mining maximal
contiguous frequent patterns in large DNA sequence data
using MapReduce framework on Hadoop platform.

In the traditional method of discovering DNA frequent
patterns, the DNA sequence needs to be scanned for many
times, the occurrence number of DNA fragments of differ-
ent lengths is counted, and finally, all the DNA fragments
which appear more than the threshold are seemed as frequent
patterns. Usually, these methods usually aimed at finding
frequent patterns, but ignored the positions information of
the patterns. In this paper, we design a new method to dis-
cover frequent patterns just scanning the DNA sequence only
once, and at the same time, all the position information is
recorded.

III. CHARACTERISTICS
The two outstanding characteristics of the DNA sequence are
as follows.

• DNA sequence has only four letters, i.e. A, C, G and
T, representing four nucleotides constituting DNA. They
are adenine, cytosine, guanine, thymine respectively.

• In DNA, the pairing between nucleotides is based on the
complementary principle, that is, A is paired with T and
G is paired with C.

IV. CONCEPTS OF DNA SEQUENCE
Definition 1 (DNA Sequence):DNA sequence is a series con-
sisting of four letters (i.e. A, C, G and T). A DNA sequence
can be represented as S = {s0, s1, s2, . . . . . . , sn−1}, in which,
si ∈ {A,C,G,T}(0 ≤ i ≤ n− 1).
For example, {A, T, G, C, T, A, G} is a DNA sequence.
Definition 2 (The Length of DNA Sequence): For DNA

sequence S = {s0, s1, s2, . . . . . . , sn−1}, n is called the length
of this DNA sequence.

For example, the length of DNA sequence {A, T, G, C, T,
A, G} is 7.
Definition 3: (DNA sub-Sequence): DNA sub-sequence is

a fragment of DNA sequence.
For DNA sequence S = {s0, s1, s2, . . . . . . , sn−1}, if there

is a fragment S′ = {sp, sp+1, . . . . . . , sp+q satisfying p ≥ 0,
q ≥ 0 and p+q ≤ n−1, then S′ is called a DNA sub-sequence
of S.

For example, {T, G, C, T} is a sub-sequence of DNA
sequence {A, T, G, C, T, A, G}
Definition 4 (DNA Super-Sequence): Suppose there is a

DNA sequence S = {s0, s1, s2, . . . . . . , sn−1}, S′1 and S′2
are two sub-sequences of S, and S′1={sp, sp+1, . . . . . . , sp+q},
S′2 = {sp′ , sp′+1, . . . . . . , sp′+q′}. If p

′
≤ p and p+q ≤ p′ + q′,

then S′2 is the super-sequence of S
′

1.
For example, there is a DNA sequence

S = {A,T,G,C,T,A,G}, S′1 = {G,C,T} and S′2 =
{T,G,C,T,A} are two sub-sequences of S, then S′2 is the
super-sequence of S′1.
Definition 5 (DNA Pattern): For DNA sequence S, its

letter constitution is called the corresponding DNA pattern
of S.

For example, ‘‘ATGCTAG’’ is the corresponding DNA
pattern of DNA sequence {A, T, G, C, T, A, G}.
Definition 6 (The Length of DNA Pattern): The length of

DNA pattern M is the number of letters in M, and denoted as
length(M).

For example, the length of DNA pattern ‘‘ATGCTAG’’ is 7.
Definition 7 (DNA sub-Pattern): If S′ is a sub-sequence of

DNA sequence S, then the corresponding DNA pattern of S′

is a sub-pattern of the corresponding DNA pattern of S.
For the example of Definition 3, pattern ‘‘GCT’’ is a sub-

pattern of ‘‘ATGCTAG’’.
Definition 8 (DNA Super-Pattern): If S′ is a super-sequence

of DNA sequence S, then the corresponding DNA pattern
of S′ is a super-pattern of the correspondingDNApattern of S.

For the example of Definition 4, ‘‘TGCTA’’ is a super-
pattern of ‘‘TGC’’.
Definition 9 (DNA Frequent Pattern): Suppose min_sup is

the minimum support degree threshold which is set manually.
For DNA sequence S, if the corresponding DNA pattern of a
sub-sequence S′ appears in S not less than min_sup, then the
corresponding DNA pattern of S′ is a DNA frequent pattern
in S.

For example, DNA sequence S = {A,T,C,G,A,T},
ifmin_sup is set to 2, pattern ‘‘AT’’ is a DNA frequent pattern
in S.
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Definition 10 (DNA Frequent k Pattern): The DNA fre-
quent pattern with length k is called DNA frequent k pattern.

For the example in Definition 9, ‘‘AT’’ is a DNA frequent 2
pattern.
Theorem 1: The sub-pattern of a DNA frequent pattern is

also frequent.
Proof of Theorem 1: Suppose there is a DNA sequence S,

S = {s0, s1, s2, . . . . . . , sn−1}, S′ is a sub-sequence of S,
S′ = {sp, sp+1, . . . . . . , sp+q}, and the corresponding DNA
pattern of S′ is frequent in S.
Since the corresponding DNA pattern of S′ is frequent,

the occurrence number of {sp, sp+1, . . . . . . , sp+q} in S is not
less than min_sup. Then, the occurrence number of any sub-
pattern of S′ in S is definitely not less than min_sup. Thus,
the sub-pattern of a DNA frequent pattern is also frequent.
Theorem 2: The super-pattern of a DNA infrequent pattern

is also infrequent.
Proof of Theorem 2: Suppose there is a DNA sequence S,

S = {s0, s1, s2, . . . . . . , sn−1}, S′ = {sp, sp+1, . . . . . . , sp+q}
is a sub-sequence of S, and S′′ is the super-sequence of S′.
Since the corresponding DNA pattern of S′ is infrequent,
the occurrence number of {sp, sp+1, . . . . . . , sp+q} in S is less
than min_sup. Thus, the occurrence number of S′′ in S is
definitely less than min_sup. Thus, the super-pattern of a
DNA infrequent pattern is also infrequent.
Definition 11 (The Prefix of DNA Pattern): If the length

of a DNA pattern M is more than 1, then the prefix of M
is its substring removing the last letter. Any DNA pattern
with length 1 has no prefix. The prefix of M is denoted as
prefix(M).
For example, suppose a DNA pattern M = ‘‘ACTGA’’,

then, prefix(M) = ‘‘ACTG’’.
Definition 12 (The Postfix of DNA Pattern): If the length

of a DNA pattern M is more than 1, then the postfix of M
is its substring removing the first letter. Any DNA pattern
with length 1 has no postfix. The postfix of M is denoted as
postfix(M).

For example, suppose a DNA pattern M = ‘‘ACTGA’’,
then, postfix(M) = ‘‘CTGA’’.
Definition 13 (Joinable): Two patterns M1 and M2 are

joinable if and only if either of the following two conditions
are satisfied:
(1) When length(M1) = length(M2) = 1, M1 and M2 are

joinable.
(2) When length(M1) = length(M2) > 1, M1 and M2 are

joinable if and only if postfix(M1) = prefix(M2).
Definition 14 (String Concatenation): The string concate-

nation of two patterns M1 and M2 is denoted as M1+M2,
which is the sequential concatenation of strings M1 and M2.
For example, pattern M1 is ‘‘ATCGC’’, and pattern M2 is

‘‘AGTC’’, then, the string concatenation of M1 and M2 is
‘‘ATCGCAGTC’’.
Definition 15 (The Join of Two Patterns): If two patterns

M1 and M2 are joinable, the join of M1 and M2 is denoted as
join(M1,M2), whose value depends on different conditions
as follows:

(1) If length(M1) = length(M2) = 1, then,
join(M1,M2) = M1+M2, which is the string concate-
nation of M1 and M2. The example is shown in Fig. 1.

FIGURE 1. Join operation when length(M1) = length(M2) = 1.

(2) If length(M1) = length(M2) > 1, then,
join(M1,M2) = M1 + (M2 − prefix(M2)), which is
the string concatenation of M1 and the last letter of M2.
The example is shown in Fig. 2. The letters underlined
represent the prefix or postfix of the patterns.

FIGURE 2. Join operation when length(M1) = length(M2) > 1.

It is worth noting that, when length(M1) = length(M2) =
1, M1 and M2 are joinable, the joined result is M1 + M2;
in addition, M2 and M1 are joinable too, the joined result is
M2 +M1.
Theorem 3: Any DNA frequent k + 1 pattern is joined by

two DNA frequent k patterns.
Proof of Theorem 3: Suppose m1m2 . . . . . .mk+1 is any

DNA frequent k + 1 pattern. By Theorem 1, the sub-
pattern of DNA frequent pattern is also frequent, so,
the sub-pattern of m1m2 . . . . . .mk+1 is also frequent. Thus,
both m1m2 . . . . . .mk and m2m3 . . . . . .mk+1 are frequent.
In addition, m1m2 . . . . . .mk+1 = join(m1m2 . . . . . .mk ,
m2m3 . . . . . .mk+1), in other words, m1m2 . . . . . .mk+1 is
joined by m1m2 . . . . . .mk and m2m3 . . . . . .mk+1.

Accordingly, any DNA frequent k+ 1 pattern is joined by
two DNA frequent k patterns.
Theorem 4: DNA candidate k+ 1 pattern can be generated

only through self join operation on the set of DNA frequent k
patterns.

Proof of Theorem 4: It can be easily deduced from
Theorem 3.

V. POSITION INFORMATION OF DNA
Definition 16: The positions of DNA pattern M in DNA
sequence S is the index set of all occurrence of M in S,
denoted as PositionsM ,S .

The index of the first letter in a DNA sequence is stipulated
as 0, and so forth.
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For example, suppose a DNA sequence is {A, G, C, A, C,
T, A, G, T, A, G, C}, the positions of DNA pattern ‘‘AGC’’ in
this DNA sequence is {0, 9}.
Definition 17 (+n set): If there is a set E = {ei}, satisfying

1 ≤ i ≤ |E|, then, +n set of E is defined as E+n = {ei + n},
here, n is any natural number.

For example, E = {1, 4, 9}, then, E+1 = {2, 5, 10}, and
E+2 = {3, 6, 11}.
Definition 18 (−n set): If there is a set E = {ei}, satisfying

1 ≤ i ≤ |E|, then -n set of E is defined as E−n = {ei− n|ei−
n ≥ 0}, here, n is any natural number.

For example, E = {0, 1, 4, 9}, then, E−1 = {0, 3, 8}, and
E−2 = {2, 7}.
Theorem 5: The positions of a DNA pattern M in DNA

sequence S is two sets’ intersection. These two sets are: the
positions of M’s prefix in S and -1 set of the positions of
M’s postfix in S. That is, PositionsM,S=Positionsprefix(M), S ∩

Positions−1postfix(M), S.
Proof of Theorem 5 (We demonstrate): PositionsM,S =

Positionsprefix(M), S ∩ Positions
−1
postfix(M), S from two aspects:

(1) We need to demonstrate Theorem 5.1:
Theorem 5.1: if x ∈ PositionsM,S, then x ∈

Positionsprefix(M), S ∩ Positions
−1
postfix(M), S.

Proof of Theorem 5.1: Since PositionsM,S ⊆

Positionsprefix(M), S, so if x ∈ PositionsM,S, then x ∈
Positionsprefix(M), S.
If x ∈ PositionsM,S, then x + 1 ∈ Positionspostfix(M), S.

Since x ≥ 0, then x+ 1 ≥ 1, so x ∈ Positions−1postfix(M), S.
Thus, we get: x∈Positionsprefix(M), S∩Positions

−1
postfix(M), S.

(2) We need to demonstrate Theorem 5.2:
Theorem 5.2: if x∈Positionsprefix(M), S∩Positions

−1
postfix(M), S,

then x ∈ PositionsM,S.
Proof of Theorem 5.2: If x ∈ Positionsprefix(M), S ∩

Positions−1postfix(M), S, then x ∈ Positionsprefix(M), S and x ∈
Positions−1postfix(M), S.
If x∈Positions−1postfix(M), S, then x+1 ∈ Positionspostfix(M), S.
If x ∈ Positionsprefix(M), S and x+1 ∈ Positionspostfix(M), S,

then x ∈ PositionsM,S.
Consider Theorem 5.1 and 5.2 comprehensively, we can

get Theorem 5.
Example of Theorem 5: Suppose there are a DNA

sequence S ‘‘A, G, C, A, C, T, A, G, T, A, G, C’’, and a DNA
pattern M ‘‘AGC’’, we have:

PositionsM,S= {0, 9}

prefix (M)= "AG"

postfix (M)= "GC"

Positionsprefix(M), S= {0, 6, 9}

Positionspostfix(M), S= {1, 10}

Positions−1postfix(M), S= {0, 9}

Positionsprefix(M), S ∩ Positions
−1
postfix(M), S= {0, 6, 9} ∩ {0, 9}

= {0, 9}

VI. DATA STRUCTURE
In traditional frequent pattern mining methods, in order to
discover the frequent patterns with different lengths, it is nec-
essary to scan the sequence multiple times to count the occur-
rence number of frequency patterns with different lengths.
According to Theorem 5, the positions of any DNA pattern
in a sequence can be obtained by set operations using the
positions of the pattern’s prefix and postfix.

In order to reduce the number of sequence scanning, we use
a nested hash table to save the positions of frequent patterns
in the sequence, and its data structure is shown in Fig. 3.

FIGURE 3. Nested two-level hash table storing DNA frequent patterns.

This data structure is a nested two-level hash table. In the
first-level hash table, the Key stores the length of frequent
patterns, and the Value is a nested hash table. The Key of this
nested hash table stores frequent patterns, and theValue stores
the locations of frequent patterns.

VII. SCANNING OF DNA SEQUENCE
In our method, we only need to scan the DNA sequence
only once to find all the frequent patterns. In the scanning
process, the location of each letter in DNA sequence is stored
at the same time. The location information is stored in another
simple hash table. The structure of this hash table is shown
in Fig. 4. We call it DNA letter-position hash table.

FIGURE 4. DNA letter-position hash table.

In this hash table, the Key stores DNA letters, i.e. A, G,
C, T, and the Value stores all the positions of DNA letters in
DNA sequence.

For example, suppose a DNA sequence is ‘‘A, G, C, A,
C, T, A, G, T, A, G, C’’, after scanning the sequence once,
the position information is stored in the following letter-
position hash table, as shown in Fig. 5.

FIGURE 5. Example of DNA letter-position hash table.
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VIII. DISCOVERING METHOD OF FREQUENT PATTERNS
A. WORKFLOW OF THE METHOD
The workflow of our method is shown in Fig. 6.

FIGURE 6. Workflow of the method.

B. ALGORITHM DESCRIPTION
1. Scan DNA sequence

After scanning the DNA sequence S only once, a letter-
position hash table is created. Suppose the minimum
support threshold ismin_sup, letters that appear not less
than min_sup will be frequent 1 patterns.

2. Generate candidate 2 patterns from frequent 1 patterns
Suppose the set of frequent 1 patterns is denoted
as Freq − 1 = {t}, t ∈ {A,C,G,T}, satisfying
Positionst,S ≥ min_sup, then, the set of candidate 2 pat-
terns is generated using: Candidate− 2 = join(Freq−
1,Freq− 1) = {t1t2}, satisfying t1, t2 ∈ {A,C,G,T}.

3. Using Theorem 5 to calculate the positions and occur-
rence times of candidate 2 patterns, those candidate
2 patterns with occurrence times not less than min_sup
are reserved as frequent 2 patterns.

4. Start with k = 2, loop the following steps:

4.1. The set of candidate k + 1 patterns is gener-
ated from the set of frequent k patterns, using:
Candidate − (k + 1) = join(Freq-k,Freq-k) =
{join(t1, t2)} where t1, t2 ∈ Freq-k.

4.2. Using Theorem 5 to calculate the positions and
occurrence times of candidate k + 1 patterns,

those candidate k + 1 patterns with occurrence
times not less than min_supare reserved as fre-
quent k+ 1 patterns.

4.3. If the set of frequent k+ 1 pattern is not empty, k
plus 1, return to Step 4; otherwise, the algorithm
terminates.

5. Finally, the set of all frequent patterns is obtained as⋃
Freq-k,k ≥ 1.

C. EXAMPLE
We use a short toy DNA sequence fragment to describe
the procedure of our method in details. Suppose there is a
short DNA sequence fragment S ‘‘ACTGCATGCTATGCAT-
GCC’’, and min_sup is set to 2. The working process of our
method is as follows.

(1) The DNA sequence is scanned only once and each let-
ter’s position is stored in DNA letter-position hash table. For
easy observation of DNA sequence, this toy DNA sequence
and its position labels is shown in Table 1.

TABLE 1. Toy DNA sequence with position labels.

The letter-position hash table of this toy DNA sequence is
shown in Table 2.

TABLE 2. The letter-position hash table of toy DNA sequence.

(2) Since min_sup is 2, and all letters exist in DNA
sequence more than twice, so all letters are kept as frequent 1
patterns.

(3) Generate candidate 2 patterns from frequent 1 patterns
by join operation and calculate their positions by Theorem 5,
as shown in Table 3.

(4) Those candidate 2 patterns with occurrence times not
less than min_sup are reserved as frequent 2 patterns. These
patterns and their positions are shown in Table 4, and they are
added into nested two-level hash table.

(5) Generate candidate 3 patterns from frequent 2 patterns
by join operation and calculate their positions by Theorem 5,
as shown in Table 5.

(6) Those candidate 3 patterns with occurrence times not
less than min_sup are reserved as frequent 3 patterns. These
patterns and their positions are shown in Table 6, and they are
added into nested two-level hash table.
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TABLE 3. Candidate 2 patterns and their positions.

TABLE 4. Frequent 2 patterns and their positions.

(7) Generate candidate 4 patterns from frequent 3 patterns
by join operation and calculate their positions by Theorem 5,
as shown in Table 7.

(8) Those candidate 4 patterns with occurrence times not
less than min_sup are reserved as frequent 4 patterns. These
patterns and their positions are shown in Table 8, and they are
added into nested two-level hash table.

(9) Generate candidate 5 patterns from frequent 4 patterns
by join operation and calculate their positions by Theorem 5,
as shown in Table 9.

TABLE 6. Frequent 3 patterns and their positions.

(10) Since there is not any candidate 5 patterns occuring
more than twice in S, thus the algorithm terminates. Here,
we get all frequent patterns.

IX. THE TRADITIONAL METHOD
In order to verify the correctness of ourmethod, it is necessary
to compare our method with the traditional method to verify
whether our method can find all the frequent patterns cor-
rectly. The traditional method uses sliding windows to scan
DNA sequences several times and records the occurrence
number of sub-patterns in different sizes of sliding windows.
The workflow of the traditional method is shown in Fig. 7.

TABLE 5. Candidate 3 patterns and their positions.
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TABLE 7. Candidate 4 patterns and their positions.

TABLE 8. Frequent 4 patterns and their positions.

FIGURE 7. Workflow of the traditional method.

The steps of the traditional method are as follows:

1. Start with k = 1, loop the following steps:

1.1. Set the size of the sliding window to k, scan
the DNA sequence from front to back, record
the occurrence number of patterns dropped in the
sliding window gliding on the DNA sequence,
and store the frequent k patterns with occurrence
times not less than min_sup into the set denoted
as Freq-k.

1.2. If the set of frequent k pattern is not empty, k plus
1; otherwise, the algorithm terminates.

2. Finally, the set of all frequent patterns is obtained by⋃
Freq-k,k ≥ 1.

A sketch map of sliding window with size 3 gliding on a
DNA sequence fragment is shown in Fig. 8.

FIGURE 8. A sketch map of sliding window with size 3.

TABLE 10. Source code of generating DNA sequence with specific length
randomly.

X. EXPERIMENTS
A. DATA SOURCE
Since DNA sequences are composed of four letters A, C,
G, T, we use a random method to generate virtual DNA
sequences in order to verify our method on DNA sequences
with different lengths. In other words, the length of DNA
sequence is set artificially, a random letter is selected from
four letters at a time, and finally a DNA sequence that meets
the length requirement is generated.

The source code of generating DNA sequence with specific
length randomly in Java is shown in Table 10.

TABLE 9. Candidate 5 patterns and their positions.
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TABLE 11. Experiment results.
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TABLE 11. (Continued.) Experiment results.

B. ACCURACY VERIFICATION
From Theorem 5 we know that, the positions of patterns
can be obtained through set operation; thus, all the frequent
patterns and their positions will be found and recorded using
the method proposed in Section VIII.

In addition, the correctness of the method can also be ver-
ified on the randomly generated DNA sequences of different
lengths. The results show that the frequent patterns obtained
by the two methods are totally the same, which proves the
accuracy of the method, as seen in Table 11. Besides that,

we can also see that, under different lengths, our method
can find all the frequent patterns and their positions in DNA
sequence.

In Table 11, frequent patterns and their positions are stored
in the form of:

{the length of frequent pattern = {frequent pattern =
[positions]}}

Each ‘‘{}’’ pair represents a single-level hash table. The
positions of frequent patterns in DNA sequence are stored in
‘‘[ ]’’. In DNA sequence, the position of letters starts from 0.
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TABLE 12. Running time of our method and the traditional method on DNA sequences with different lengths.

TABLE 13. Average running time of our method and the traditional method on DNA sequences with different lengths (the number of iterations is 10).

C. COMPARISION
Our method is based on two hash tables. Scanning the DNA
sequence only once, each DNA letter and all its locations
are stored in the letter-position hash table. After that, gener-
ate candidate k + 1 patterns from frequent k patterns, only
through join operation. By using Theorem 5, perform set
operations on the set of the locations of frequent patterns
stored in the secondary hash table, then, the occurrence
number of candidate k + 1 patterns in DNA sequences is
calculated.

In the process of discovering all the frequent patterns in
DNA sequences, our method scans the DNA sequences only
once. However, the number of times the traditional method
scans the DNA sequences depends on the length of the max-
imum frequent patterns; that is, the value of k when the
traditional method stops.

D. RUNNING TIME
To compare the running time of ourmethod and the traditional
method, several DNA sequences with different lengths are
created randomly. These two methods run on the same DNA
sequences for comparison (min_sup=7). Table 12 shows their
running time data.

Since DNA sequences generated at each time are differ-
ent, for specific DNA length, multiple DNA sequences were
randomly generated. The running time of these two methods
was recorded for different DNA sequences, and the aver-
age running time of each method was calculated, as shown
in Table 13.

E. ANALYSIS
Compared with the traditional method, our method consumes
more time, this is because in our method, after scanning
DNA sequence, all characters and their positions need to
be stored in the hash table; and then, in each subsequent
iteration, a large number of set operations are needed to
perform through Theorem 5.

The apparent advantage of our method is that, the tradi-
tional method has to scan the DNA sequence many times to
discover the frequent patterns. However, in our method, all
position information of each element has been recorded in
the only once scan, and frequent patterns and their position
information can be calculated through set operation.

XI. CONCLUSIONS
The traditional method of discovering frequent patterns from
DNA sequence needs to scan the DNA sequence several
times, record the occurrence times of DNA sub-patterns with
different lengths, and then take those whose occurrence times
not less than the minimum support threshold as frequent pat-
terns. In order to avoid multiple scanning of DNA sequence,
two data structures: a simple one-level hash table and a two-
level nested hash table, are introduced in. The letters and
their positions in DNA sequence are stored in a simple letter-
position hash table by scanning the DNA sequence only once.
On the basis of this hash table, utilizing the set operations of
location information, candidate k + 1 patterns are generated
from frequent k patterns, and their location information is cal-
culated. Finally, all DNA frequent patterns are obtained. The
experiments show that the proposed method can get exactly
the same results as the traditional method, and its correctness
is verified. This method can be extended to discover frequent
patterns in RNA sequences or protein sequences.
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