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ABSTRACT This paper addresses the reduced-dimension Wiener filter based on perpendicular partition.
Two algorithms, i.e., cyclic per-weight (CPW) and batch CPW (BCPW) are presented, which can efficiently
perform reduced-dimension adaptive beamforming. In particular, the CPW is suitable for the slow changing
environments that have large snapshots to train the weight vector. The BCPW is designed for fast changing
scenarios that have low training sequences and sometimes the number of snapshots is less than the number
of sensors. In these two algorithms, the solutions of the weight vectors are circularly solved one by
one, which only refer to scalar optimization problem then the matrix inversion is avoided. There is no
intermediate transformation or orthogonal/non-orthogonal decomposition requirement in our algorithms,
so their implementations are relatively simple. Convergence analysis and the computational complexities
comparison are provided. Simulation results show the superiorities of the proposed algorithms. Specifically,
the CPW has better convergence properties than previous schemes, and the BCPW has low computational
complexity and good output SINR performance in low snapshots scenarios.

INDEX TERMS MMSE, Wiener filter, adaptive beamforming, cyclical optimization, perpendicular
partition.

I. INTRODUCTION
The array beamforming technique has been extensively used
in wireless communications, radar, sonar, microphone array,
and so on [1]–[5]. There are numerous techniques to imple-
ment the adaptive beamforming [6], [7] such as the sample
matrix inversion (SMI) [8], the least mean square (LMS)
[4], [9], [10] and the recursive least squares (RLS) meth-
ods [11]–[13]. Specifically, the SMI provides a complete
optimal solution, but it requires thematrix inversion operation
which is computationally intense [14]. The LMS presents
a simple solution of filtering, but it often suffers a slow
convergence rate and instability. Normalized LMS (NLMS)
algorithm employs the variable step sizes to improve the
convergence speed, but it still depends on the constant step
size which always degrades the performance of beamformer.
The work of [4] developed another efficient variable step
size mechanism, i.e., the shrinkage linear LMS (SL-LMS)
algorithm. It exploits the relationship between the posteriori
and priori error signals, so it obviously enhances the con-
vergence rate and decreases the miss-adjustment. The RLS
employs the SMW (Sherman Morrison-Woodbury) theorem
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to avoid the matrix inversion and solve the optimal weight
vector by sliding window method [6], [15]. Compared to
the LMS, the RLS has faster convergence rate and higher
computation cost. In regard to the forgetting factor of the
RLS, two recent works [11] and [12] proposed automatically
adjusting forgetting factor scheme, which achieves a better
tracking performance.

However, for massive arrays, all the above mentioned
schemes always need a large number of snapshots to reach
convergence state, which leads to performance deteriora-
tion especially in dynamic scenarios. Many Reduced-rank
or reduced-dimension techniques have been proposed to
enhance the convergence rate and reduce the computational
complexity. The methods are really suitable for the scenarios
with large arrays or low snapshots [16]. Conventional well-
known reduced-rank methods are the principal components
(PC) [17], [18] and the cross spectral (CS) [19], [20] methods,
which require eigenvalue decomposition that always leads
to a large computational burden. Besides, another adaptive
reduced-rank approach is joint iterative optimization (JIO)
scheme [5], [21]–[27], which utilizes the iterative adaptive
method to obtain a low complexity and fast tracking adaptive
beamformer. But the key of the method is how to get an
optimal convergence factor.
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In the past two decades, the family of Krylov subspace
reduced-rank approaches have been studied intensively in
the adaptive beamforming area. It mainly includes the aux-
iliary vector filtering (AVF) [28], the multistage Wiener fil-
ter (MSWF) [29]–[36] and the conjugate gradient [37], [38]
algorithms. Among them, the MSWF usually has the low-
est computational complexity for a similar MSE [39].
In particular, the MSWF utilizes the orthogonal decom-
position to provide an equivalent realization for Wiener
filter. According to the blocking matrix of MSWF, there
are three main algorithms, i.e., the Goldstein Reed Scharf
MSWF (GRS-MSWF) [29], the correlation subtractive struc-
ture MSWF (CSS-MSWF) [30] and the Household MSWF
(HMSWF) [31] algorithms. The sizes of the blocking matrix
in the GRS-MSWF and the HMSWF are decreased stage
by stage, so they have a low computational load. How-
ever, the size of the blocking matrix of the CSS-MSWF
remains invariable. Moreover, unlike the CSS-MSWF and
the HMSWF, the GRS-MSWF needs to compute the block-
ing matrix in every stage. The HMSWF outperforms the
CSS-HMSWF and the GRS-MSWF in numerical stabil-
ity and computational efficiency. In addition, the work
in [31] proposed an improved CSS-MSWF algorithm, enti-
tled MSWF-CSSI, which employs the normalized blocking
matrix to ensure the unit norm of cross-correlation vector.
The key issue of the MSWF, as well as all rank-reduced
approaches, is to determine the required number of rank accu-
rately and efficiently. A new information (NI) rank selection
method is proposed in [30], which has lower complexity
and better performance than other comparable rank selection
methods.

There are numerous beamforming optimization criteria in
literatures, such as the minimum MSE (MMSE), the max-
imum signal-to-interference-plus-noise-ratio (Max-SINR),
the minimum variance (MV) [40]–[43] and the constrained
constant modulus (CCM) [12], [22], [25], [28], [44], [45],
just to name a few. The MMSE criterion is one of the most
promising date-dependent criteria because it doesn’t require
the direction of arrival (DOA) information. It relies on a
desired signal to obtain the optimal beamformer and it can
deal with multipath signals effectively.

The purpose of this paper is to address the issue of
the reduced-dimension achievement for the Wiener filter.
We design a perpendicular partition Wiener filter and pro-
pose two algorithms, i.e., cyclic per-weight (CPW) and batch
CPW (BCPW). An array beamforming vector is divided into
a number of single weights, which is called perpendicular
partition. Through minimizing the mean square error (MSE)
between the desired signal and the output signal, the update
formula is obtained. Then the per-weight is optimized circu-
larly and the optimal weight vector can be obtained. By the-
oretical analysis, we prove that the proposed algorithms
converge to the optimal solution.

The proposed algorithms and their convergence proofs
are different from the other existing reduced-dimension
approaches, in our limited knowledge. There is no

intermediate transformation or orthogonal/non-orthogonal
decomposition or matrix inversion requirement in our meth-
ods. The comparison of computational complexities indi-
cates that our algorithms have lower complexities than the
RLS, the HMSWF-NI and the MSWF-CSSI-NI. In addition,
simulation experiments show the CPW has fastest conver-
gence speed in comparison with the SL-LMS and the RLS.
And the BCPW has better output SINR performance than
the HMSWF-NI and the MSWF-CSSI-NI in low snapshots
situations.

The main contributions of this paper are as follows:
1) We design a perpendicular partitionWiener filter struc-

ture, which can efficiently achieve reduced-dimension
adaptive beamforming.

2) The CPW is proposed to realize adaptive beamforming
for large snapshots scenarios. It has faster convergence
rate than the SL-LMS and the RLS, and its computa-
tional complexity is lower than that of the RLS.

3) Another method, i.e., the BCPW, is proposed to
improve tracking performance in quickly changing
scenarios. Compared with the HMSWF-NI and the
MSWF-CSSI-NI, the BCPW enjoys not only low com-
putational complexity but easier implementation. Sim-
ulation results show the BCPW has good output SINR
performance in low snapshots situations.

The rest of this paper is arranged as follows. Section II
introduces the system model, the Wiener filter and the
HMSWF-NI briefly. Section III proposes the CPW and
the BCPW, and analyzes their computational complexities.
Section IV establishes the convergence of the proposed algo-
rithms. Then Section V is devoted to the computer simula-
tions, followed by the conclusion of this paper in Section VI.
Notations: (·)∗, (·)T and (·)H indicate complex conjugate,

vector or matrix transpose and Hermitian operation, respec-
tively. Vectors are indicated by lowercase boldface letters and
matrices are represented by uppercase boldface letters. E[·],
‖·‖ and |·| denote the statistical expectation, the 2-norm of
vectors and the absolute value, respectively.

II. PRELIMINARIES
A. SYSTEM MODEL
Suppose there is a uniform linear array (ULA), which is com-
posed of M omnidirectional antennas with an inter-element
space of λ/2 (λ is wavelength). It’s worth noting that the
ULA is selected just for illustration purposes and the scheme
is also applicable to other array configurations. One desired
signal and L interference signals are incident on this array.
We assume that they are all far-field narrowband signals and
uncorrelated with each other. The steering vectors of the
signals are

a(θi) =
[
1, e−jπsinθi , · · · , e−jπ (M−1)sinθi

]T
∈ CM ,

i = 0, 1, . . . ,L, (1)

where θ0 is DOA of the desired signal and θi, i =
1, 2, . . . ,L, are DOAs of L interference signals respectively.
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Assuming that the observed signal is x(k) ∈ CM at the kth
time instant, we have

x(k) = a(θ0)d(k)+
L∑
i=1

a(θi)si(k)+ n(k), (2)

where the desired signal is d(k) and si(k), i = 1, 2, . . . ,L, are
L interferers; n(k) ∈ CM is the additive white Gaussian noise.
The array beamforming vector is defined as w ∈ CM . Then
the array beamformer output signal at the kth time instant is

y(k) = wHx(k). (3)

FIGURE 1. Wiener filter.

B. WIENER FILTER
The classical Wiener filter is shown in Fig. 1. Denote e(k) as
the error signal at the kth time instant of the filter, i.e.,

e(k) = d(k)− wHx(k). (4)

The MMSE beamformer is described as

min
w
{E[|e(k)|2]} = min

w
{E[|d(k)− wHx(k)|2]}. (5)

The solution of (5) refers to the well-known Wiener-Hopf
equation [29], which is given by

Rw=p, (6)

where R = E[x(k)xH (k)] is the auto-correlation matrix
of x(k), and p = E[x(k)d∗(k)] is the cross-correlation vector
between x(k) and d(k). The noted Wiener solution wMMSE is
obtained as

wMMSE = R−1p. (7)

In the SMI [46], R and p are estimated by time average of
K samples, that is,

R̂ =
1
K

K∑
k=1

x(k)xH (k) =
1
K
XXH (8)

and

p̂ =
1
K

K∑
k=1

x(k)d∗(k) =
1
K
XdH , (9)

where X ∈ CM×K and d ∈ CK are obtained by stack-
ing K time instant samples of x(k) and d(k), i.e., X =
[x(1), x(2), · · · , x(K )] and d = [d(1), d(2), · · · , d(K )]T

respectively. Although the SMI is insensitive to eigenvalue
spread of R̂, an ill-conditioned covariance matrix deteriorates
the performance of the SMI. Diagonal load (DL) [47] tech-
nique is a widespread approach to enhance the robustness
of the algorithm. A scaled identity matrix is added to R̂,
in the DL method, which relieves the effects of mismatch
errors, random perturbations, small sample support and so
on. Unfortunately, there is a trade-off between the accuracy
of the inversion and the allowable eigenvalue spread of R̂ for
the SMI.

C. HMSWF-NI ALGORITHM
The MSWF provides a multistage orthogonal decomposition
method for implementing the Wiener filter, which avoids
matrix inversion and eigenvalue decomposition [29]. The
main idea of the MSWF is maximizing the correlation
between this projection output vector and previous stages
output by choosing the additional projection vector. In detail,
the MSWF decomposes the observed signal into two sub-
spaces at each stage. One subspace is in the direction of
the cross-correlation vector and another is orthogonal to
this direction. The blocking matrix affects the computational
complexity and the stability of the algorithm. Now the best
performing method is the HMSWF algorithm [31] because
Householder transformation ensures unitary blocking. TheNI
rank selection scheme not only has a small computation bur-
den but also enjoys high selected-rank accuracy [30]. So the
HMSWF based on the NI rank selection scheme, referred to
as HMSWF-NI, is briefly described in this section.

FIGURE 2. Householder multistage Wiener filter.

The diagram of the HMSWF is shown in Fig. 2, where di ∈
CK and ci ∈ CK are the desired signal vector and the error
vector at the ith stage by stacking K samples respectively.
The HMSWF utilizes the Householder transformmatrixHi ∈

C(M−i+1)×(M−i+1) to decompose the observed signal of ith
stage Xi ∈ C(M−i)×K into two co-orthogonal sections.

In forwards recursion of the HMSWF-NI, with House-
holder transform [15], [31], the following computations are
carried out,

Hi = I− βibibHi , bi = pi − κi||pi||ui, i = 1, 2, . . . ,D,

(10)

where bi ∈ C(M−i+1) is the Household vector and D is
the appropriate rank of the HMSWF determined by the NI
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scheme; pi ∈ C(M−i+1) is calculated as p̂i =
Xi−1dHi−1

K ;
ui = [1, 0, · · · , 0]T ∈ C(M−i+1); βi and κi are given by

κi =
p̂i,1
|p̂i,1|

, βi =
−1

κ∗i ||p̂i||bi,1
, (11)

where p̂i,1 is the first element of p̂i and bi,1 is the first element
of bi.

In backwards recursion of the HMSWF-NI, only a scalar
weight needs to be solved at each stage, i.e.,

wi =
||p̂i||
ζi

, ci−1 = di−1 − w∗i ci, (12)

where ζi =
cHi ci
K .

In the HMSWF, with the increasing of the dimensions
of the subspace, the information between the desired signal
and the observed signal is extracted. The main idea of the
NI rank-selected criterion is that using the amount of this
information to determine the appropriate rank. In other words,
the proper rank D is measured by the level of the information
between x(k) and d(k). Compared to other rank-selected
criteria, theNI scheme has less computational complexity and
higher rank selection accuracy [30].

The level of the information between x(k) and d(k) is
denoted as ρi,

ρi = σ
2
di − ||p̂i||

2/ρi−1, (13)

where σ 2
di
= E[|di(k)|2] is the variance of di(k). The NI

scheme is performed as

D = max
i
{i|ρi > η}, (14)

where η is the threshold.
The detailed steps of the HMSWF-NI are summarized in

HMSWF-NI Algorithm.
The HMSWF transforms the matrix inversion to a

sequence of scalar inversion computations, which alleviates
the computational burden. However, the orthogonal decom-
position required by the algorithm involves the extra compu-
tational cost and implementation difficulties.

III. THE PROPOSED ALGORITHMS
In this section, we devise a perpendicular partition Wiener
filter, and then we present two reduced-dimension adap-
tive beamforming algorithms, i.e., the CPW and the BCPW.
The former is suitable for slow changing environments that
have large snapshots to train weight vector; the latter is
designed for fast changing scenarios which have low training
sequences and sometimes the number of snapshots is less than
the number of sensors.

In the beginning, an array beamforming vector is divided
into a number of scalars, which is called perpendicular par-
tition depicted in Fig. 3. Then we directly minimize the
MSE between the desired signal and the output signal. The
weight vector optimization problem is turned into per weight
optimization problem, thus the matrix inversion is replaced
by scalar reciprocal. The weight vector is circularly updated
one by one, and it converges to the optimal solution finally.

HMSWF-NI Algorithm
Initialization: d0 = d,X0 = X.
Forward recursion:
for i = 1, 2, . . . ,M − 1

p̂i =
Xi−1dHi−1

K , ||p̂i|| =
√
p̂Hi p̂i, κi =

p̂i,1
|p̂i,1|

,

bi = p̂i − κi||p̂i||ui, βi = −1
κ∗i ||p̂i||bi,1

,[
κidTi
Xi

]
= Xi−1 − βibibHi Xi−1.

if i = 1
ρi = σ

2
d1
.

else
ρi = σ

2
di
− ||p̂i||2/ρi−1.

end if
if ρi < η

D = i− 1,
break.

end if
end for
Backward recursion:
for i = D,D− 1, . . . , 1

ζi =
cHi ci
K , wi =

||p̂i||
ζi

,
ci−1 = di−1 − w∗i ci.

end for

FIGURE 3. Perpendicular partition Wiener filter.

A. THE CPW ALGORITHM
The diagram of the perpendicular partition Wiener fil-
ter is shown in Fig. 3. The array beamforming vector is
denoted as

w(n) = [w1(n),w2(n), · · · ,wM (n)]T , (15)
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where n indicates the times of updates. Correspondingly,

xi(k) = [x1(k), x2(k), · · · , xM (k)]T (16)

is the observed signal of the kth time instant.
In order to express the case of each weight update, vi(n) ∈

CM is defined as a vector indicating w at updating process.
Specifically, vi(n) denotes that the 1st-ith elements of w have
been updated n times and the (i + 1)th-M th elements have
been updated n− 1 times, i.e.,

vi(n) = [w1(n), · · · ,wi(n),wi+1(n−1), · · · ,wM (n− 1)]T .

(17)

Specially, v0(n) and vM (n) are the beginning and the end of
the nth update of w respectively; they can be expressed as

v0(n) = w(n− 1) and vM (n) = w(n). (18)

Similarly, the output signal y(n)i (k) and the error e(n)i (k) in the
system are respectively given by

y(n)i (k) = vHi (n)x(k) and e
(n)
i (k) = d(k)− vHi (n)x(k). (19)

In accordance with (18) and (19), we have

e(n)0 (k) = e(n−1)(k), e(n)M (k) = e(n)(k). (20)

Then the optimization problem in (5) is replaced as

min
w

E[|e(n)i (k)|2] = min
vi(n)

E[|d(k)− vHi (n)x(k)|
2]. (21)

Define 1wi(n) as an increment of wi in the nth update, i.e.,

wi(n) = wi(n− 1)+1wi(n). (22)

Further, we have

vHi (n)x(k) = vHi−1(n)x(k)+1w
∗
i (n)xi(k). (23)

Therefore, according to (23), we can rewrite Eq. (21) as

min
vi(n)

E[|d(k)− vHi (n)x(k)|
2]

= min
1wi(n)

E[|d(k)− vHi−1(n)x(k)−1w
∗
i (n)xi(k)|

2]. (24)

Using the Lagrange multiplier method, the objective function
is given by

L(1wi(n)) = E[|d(k)− vHi−1(n)x(k)−1w
∗
i (n)xi(k)|

2].

(25)

The gradient of L with respect to 1w∗i (n) is given by

L′1w∗i (n)
= E{xi(k)[xi(k)1w∗i (n)+ vHi−1(n)x(k)− d(k)]

∗
}

= E[|xi(k)|2]1wi(n)+E{xi(k)[vHi−1(n)x(k)−d(k)]
∗
}. (26)

Set L′
1w∗i (n)

= 0, we obtain

1wi(n)

= {E[|xi(k)|2}−1{E[xi(k)d∗(k)]− E[xi(k)xH (k)vi−1(n)]}
= r−1ii [pi − rivi−1(n)], i = 1, 2, . . . ,M , (27)

where rii = E[|xi(k)|2] is the variance of xi(k); pi =
E[xi(k)d∗(k)] is the cross-correlation value between xi(k)
and d(k); ri = E[xi(k)xH (k)] is the cross-correlation vector
between xi(k) and x(k). The update formula of the CPW is
given by

wi(n) = wi(n− 1)+r̂−1ii [p̂i−r̂ivi−1(n)], i = 1, 2, . . . ,M .

(28)

The averages of K samples are applied to estimate rii, pi and
ri for i = 1, 2, . . . ,M ,

r̂ii =
1
K

K∑
k=1

|xi(k)|2, (29)

p̂i =
1
K

K∑
k=1

xi(k)d∗(k), (30)

r̂i =
1
K

K∑
k=1

xi(k)xH (k). (31)

The detailed procedure of the CPW can be implemented in
Algorithm 1.

Algorithm 1 Cyclic Per-Weight (CPW)
Initialization:
w(0) = [w1(0),w2(0), · · · ,wM (0)]T = v0(1) = 0,
w(1) = u1 = [1, 0, · · · , 0]T ∈ CM ,

r̂ii = 1
K

K∑
k=1
|xi(k)|2, slove r̂

−1
ii ,

p̂i = 1
K

K∑
k=1

xi(k)d∗(k), r̂i = 1
K

K∑
k=1

xi(k)xH (k),

for i = 1, 2, . . . ,M , set n = 1.
Iteration procedure:
while ||w(n)−w(n− 1)||2 > ς (small positive value) do
for i = 1, 2, . . . ,M do
wi(n) = wi(n− 1)+ r̂−1ii [p̂i − r̂ivi−1(n)],
vi(n) =
[w1(n), · · · ,wi(n),wi+1(n− 1), · · · ,wM (n− 1)],

end for
w(n)=vM (n), n = n+ 1.

end while

It is worth noting that the update formula (28) of the CPW
only involves the scalar reciprocal computation, thus, R−1 is
replaced with r−1ii in the CPW; rii is the ith diagonal element
of R. The CPW can be regarded as an alternative imple-
mentation of the reduced-dimension adaptive beamforming
algorithm.

B. THE BCPW ALGORITHM
In the fast changing scenarios, low snapshots usually lead to
an ill-conditioning R̂, and the eigenvalue spread can always
reach a point where the computer cannot accurately invert the
matrix. Especially, whenM > K , R̂ is rank-deficient, the full-
rank algorithms can’t work. In the DL scheme, a scaled
identity matrix is added to R̂ for compensating eigenvalue
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spread of R̂. Unfortunately, how to choose the loading level
reliably and accurately is still a problem although there are
many different schemes for computing the DL level automati-
cally [48]. Our proposed perpendicular partitionWiener filter
is a reduced-dimension model of the classical Wiener filter.
In the CPW, we only need to invert r̂ii, which is the diag-
onal element of R̂. The processing of transforming R̂

−1
to

r̂−1ii eliminates the correlations among the eigenvalues of R̂.
Therefore, the CPW is suitable for low snapshots support
situations. Considering the features of the schemes of rank-
reduced, we present the BCPW to effectively achieve adaptive
beamforming in low snapshots situations.

Set L′
1w∗i (n)

= 0, we can get another form of the solution,

1wi(n) = {E[|xi(k)|2}−1E{xi(k)[d(k)− vHi−1(n)x(k)]
∗
}

=
E[xi(k)e(n)∗i−1 (k)]

E[|xi(k)|2}
, i = 1, 2, . . . ,M . (32)

Then the updating formula of the BCPW is given by

wi(n) = wi(n− 1)+
E[xi(k)e(n)∗i−1 (k)]

E[|xi(k)|2}
, i = 1, 2, . . . ,M .

(33)

In the BCPW, we take the average of K snapshots as the
estimates of the expectations in (33). Firstly, X is perpendic-
ularly partitioned as

X=[xT1 , x
T
2 , · · · , x

T
M ]T , (34)

where xi ∈ CK is the ith partition of X and it is composed of
K snapshots, i.e.,

xi=[xi(1), xi(2), · · · , xi(K )]; (35)

and the K errors e(n)i (k), i = 1, 2, . . . ,K are stacked into an
error vector ei(n).

ei(n) = [e(n)i (1), e(n)i (2), · · · , e(n)i (K )]. (36)

Finally, (33) is simplified as

wi(n) = wi(n− 1)+
xieTi−1(n)

xixHi
. (37)

The detailed steps of the BCPW are summarized in
Algorithm 2.

C. COMPLEXITY ANALYSIS
Here, we compare the computational complexities of the
proposed algorithms and other existing ones. In Table 1,
the computational complexities of these algorithms are eval-
uated in terms of the number of complex multiplications per
symbol. As shown in the table 1, except for the SL-LMS [9],
the numbers of complex multiplications of all the meth-
ods scale quadratically with M . The LMS type approaches
usually enjoy low computational complexities and simplici-
ties, meanwhile, suffer slow convergence rate and instability.
TheMSWF type approaches need orthogonal decomposition,
which leads to extra computational burden. The dimension

Algorithm 2 Batch Cyclic Per-Weight (BCPW)
Initialization:
w(0) = [w1(0),w2(0), · · · ,wM (0)]T = v0(1) = 0,
n = 1, w(1) = u1 = [1, 0, . . . , 0]T , e0(1) = d.
Iteration procedure:
while ||w(n)− w(n− 1)||2 > ς (small real value) do
for i = 1, 2, . . . ,M do
wi(n) = wi(n− 1)+

xieTi−1(n)
xixHi

,
vi(n) =
[w1(n), · · · ,wi(n),wi+1(n− 1), · · · ,wM (n− 1)],
ei(n) = d− vHi (n)X.

end for
w(n)=vM (n), e0(n+ 1) = eM (n), n = n+ 1.

end while

TABLE 1. Computational complexity comparison.

FIGURE 4. Computational complexity comparison among six algorithms:
CPW, BCPW, HMSWF-NI, CSSI-MSWF-NI, RLS and SL-LMS.

of each blocking matrix of the MSWF-CSSI-NI equals to M
while that is decreasing stage by stage in the HMSWF-NI,
so the computational complexity of the MSWF-CSSI-NI
is larger than the HMSWF-NI. Our proposed algorithms
utilize perpendicular partition to avoid matrix, and they
don’t need intermediate transformation or orthogonal/non-
orthogonal decomposition or matrix inversion. All in all,
the computational complexities of the CPW and the BCPW
are less than that of the RLS, the MSWF-CSSI-NI [30] and
the HMSWF-NI [31].

Fig. 4 depicts the computational complexity for per symbol
versus the number of antennas. For comparison purposes,
we set D = 3 for the HMSWF-NI and the CSSI-MSWF-NI.
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As can be seen from the figure, the SL-LMS has the lowest
computational quantity, followed by the BCPWand the CPW;
the CSSI-MSWF-NI has the highest computational quantity.
It should be pointed out that the computational complexity
of the BCPW is lower than the CPW because of K = 1.
The computation complexity of the BCPW increases with the
number of training symbols; so the BCPW is more suitable
for low snapshots scenarios than the CPW.

In summary, the CPW and the BCPW enjoy lower
complexities than the RLS, the CSSI-MSWF-NI and the
HMSWF-NI. Although the SL-LMS has lowest computa-
tional complexity, it usually suffers poor performance.

IV. CONVERGENCE ANALYSIS
The MSE between the desired signal and the output signal is
denoted as ε,

ε(n) = E[|e(n)(k)|2], εi(n) = E[|e(n)i (k)|2]. (38)

Then, εi(n) is calculated as

εi(n) = E[|e(n)i (k)|2] = E[|d(k)− vHi (n)x(k)|
2]

= E[|d(k)− vHi−1(n)x(k)−1w
∗
i (n)xi(k)|

2]

= εi−1(n)+1w∗i (n)E[|xi(k)|
2]1wi(n)

− 21w∗i (n)E[xi(k)e
(n)∗
i−1 (k)]

= εi−1(n)−1w∗i (n)E[|xi(k)|
2]1wi(n)

= εi−1(n)− |1wi(n)|2E[|xi(k)|2],
i = 1, 2, . . . ,M , n = 1, 2, . . . , (39)

and from (32), we haveE[xi(k)e(n)∗i−1 (k)] = E[|xi(k)|2]1wi(n).
Considering |1wi(n)|2E[|xi(k)|2] ≥ 0, in (39), we get

εi(n) ≤ εi−1(n). According to (20) and (38), we have

ε0(n) = ε(n− 1), εM (n) = ε(n). (40)

So we can obtain relationships are as follows

ε1(n) ≤ ε0(n) = ε(n− 1),

ε(n) = εM (n) ≤ · · · ≤ ε1(n), (41)

and

ε1(n+ 1) ≤ ε0(n+ 1) = ε(n),

ε(n+ 1) = εM (n+ 1) ≤ · · · ≤ ε1(n+ 1). (42)

Following (41) and (42), we obtain

εi+1(n) ≤ εi(n) ≤ εi−1(n),

ε(n+ 1) ≤ ε(n) ≤ ε(n− 1),

i = 1, 2, . . . ,M , n = 1, 2, . . . . (43)

So εi(n) is a non-negative monotonically decreasing
Cauchy sequence. Therefore the sequence εi(n) converges,
which can be expressed as

lim
n→∞
|εi(n)− εi(n− 1)| = 0, i = 1, 2, . . . ,M . (44)

Considering E[|xi(k)|2] > 0, and it is incorporated with
(39) and (44) simultaneously we have

lim
n→∞
||1wi(n)||2 = 0, i = 1, 2, . . . ,M . (45)

In the end, we have

lim
n→∞
||w(n)− w(n− 1)||2 = 0. (46)

Hence, the convergence properties of the CPW and the
BCPW are verified. It is worth noting that with the increasing
of the number of iterations, the MSEs of proposed algorithms
are decreasing monotonically. So the weight vectors of our
approaches are steadily converge optimal solution.

V. SIMULATION RESULTS AND ANALYSES
In this section, we study and analyze the performances of the
proposed schemes via computer simulations. Here, the CPW
is compared with the RLS and the SL-LMS; the BCPW is
compared with the HMSWF-NI and the CSSI-MSWF-NI.
In these simulations, a uniform line array (ULA) is used
with the inter-element spacing of half wavelength and all
antennas are omnidirectional. The desired signal is presumed
to arrive at θ0 = 0◦, while three interferers are impinge
on this array with DOAs of θ1 = −50◦, θ2 = 30◦ and
θ3 = 60◦. Supposed that they are all far-field narrowband
signals and uncorrelated with each other. The input signal-to-
noise-ratio (SNR) is 0dB with spatially and temporally white
Gaussian noise, and the interference-to-noise-ratio (INR) of
each interferer is fixed at 10dB.Without loss of generality, all
numerical results are averaged over 200 independent Monte-
Carlo experiments. The performances of the algorithms are
assessed by the output SINRs calculated as

SINR =
wHRsw
wHRi+nw

, (47)

where Rs and Ri+n are the covariance matrices of signal and
the interference plus noise, respectively.

A. OUTPUT PERFORMANCES IN SLOW
CHANGING SCENARIOS
This simulation is conducted to test the performances of the
CPW in slow changing scenarios. The number of array ele-
ments and snapshots are M = 16 and K = 500 respectively.
In Fig. 5, we compare the CPWwith the SL-LMS [9], the RLS
and the SMI. In slow changing scenarios, to achieve the best
performance for the RLS, the forgetting factor is set to 0.999.
The beampatterns, the output SINRs and the MSEs of four
algorithms are depicted in Fig. 5. The theoretical bounds
for the performances are given by the SMI. It is seen that
in Fig. 5(a) the mainlobes of all beam patterns aim to the
direction of the desired signal while the nulls are adjusted
to the directions of the interferers. As shown in Fig. 5(b)
and Fig. 5(c), the output SINR and the MSE of the CPW
are similar with that of the SMI. The CPW enjoys fastest
convergence and the best steady-state performance among
three algorithms (SL-LMS and RLS). It is reasonable that the
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FIGURE 5. The performance comparison of four algorithms (CPW,
SL-LMS, RLS and SMI). (a) Beam pattern; (b) Output SINR versus the
number of iterations; (c) MSE versus the number of iterations.

SL-LMS suffers the slowest convergence rate and the lowest
output SINR because the essence of the SL-LMS is stochastic
gradient descent. It should be noted that the CPW has faster
convergence rate and better output performance than the RLS
while the computational complexity of the CPW is actually
less than the RLS.

B. OUTPUT SINR VERSUS THE NUMBER OF SNAPSHOTS
The approaches of reduced-rank or the reduced-dimension
are designed to enhance the convergence rate and alleviate

FIGURE 6. The output SINR performance comparison versus the training
size of three algorithms (BCPW, HMSWF-NI and MSWF-CSSI-NI);
(a) M = 32; (b) M = 64; (c) M = 128.

the computational complexity in large array or fast chang-
ing scenarios. This simulation demonstrates the perfor-
mances of the BCPW in low snapshots and large array
situations.

Fig. 6 shows the output SINR performance versus the num-
ber of snapshots for the BCPW and existing works including
the HMSWF-NI and the MSWF-CSSI-NI [30], [31]. There
are three cases of M = 32, M = 64 and M = 128
in Fig. 6(a), Fig. 6(b) and Fig. 6(c), respectively. From Fig. 6,
we can see that with the increasing of the number of the
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snapshots, the output SINRs of three methods converge to the
steady state. When the number of snapshots is lower than 19,
31 and 41, the BCPW has highest output SINR among the
three algorithms for M = 32, M = 64 and M = 128 respec-
tively. This is because that the low snapshots bring errors of
block matrices in the HMSWF-NI and the MSWF-CSSI-NI,
and the errors are accumulated stage by stage. Moreover,
when the snapshots are larger than the points, the perfor-
mance of the BCPW is similar to the HMSWF-NI and the
MSWF-CSSI-NI. In summary, the BCPW has lower compu-
tational complexity and better output SINR performance than
the HMSWF-NI and the MSWF-CSSI-NI in low snapshots
situations.

VI. CONCLUSION
This paper has conducted the reduced-dimension Wiener fil-
ter based on perpendicular partition. Two effective algorithms
have been proposed, i.e., the CPW and the BCPW. By cycli-
cally update on the per-weight, the optimal MMSE beam-
former can be achieved. Without intermediate transformation
or orthogonal/non-orthogonal decomposition or matrix inver-
sion, the implementations of the proposed algorithms are sim-
ple and desirable in practical application. The convergence
and computational complexities analysis of our algorithms
have been investigated. Simulation results demonstrated the
advantages of proposed algorithms. In particular, the CPW
has faster convergence rate than existing algorithms, and the
BCPW has low computational complexity and good output
SINR performance in small number of snapshots situations.
This paper focused on the case in which the desired signal
is assumed to be known exactly. In the following research
we will study robust beamforming algorithm in the case of
incomplete knowledge of desired signal.
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