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ABSTRACT Human activity recognition from multimodal body sensor data has proven to be an effective
approach for the care of elderly or physically impaired people in a smart healthcare environment. However,
traditional machine learning techniques are mostly focused on a single sensing modality, which is not
practical for robust healthcare applications. Therefore, recently increasing attention is being given by the
researchers on the development of robust machine learning techniques that can exploit multimodal body
sensor data and provide important decision making in Smart healthcare. In this paper, we propose an effective
multi-sensors-based framework for human activity recognition using a hybrid deep learning model, which
combines the simple recurrent units (SRUs) with the gated recurrent units (GRUs) of neural networks. We use
the deep SRUs to process the sequences of multimodal input data by using the capability of their internal
memory states. Moreover, we use the deep GRUs to store and learn how much of the past information is
passed to the future state for solving fluctuations or instability in accuracy and vanishing gradient problems.
The system has been compared against the conventional approaches on a publicly available standard dataset.
The experimental results show that the proposed approach outperforms the available state-of-the-art methods.

INDEX TERMS Multi-modal body sensor data, activity recognition, deep recurrent neural networks (RNNs),

simple recurrent unit (SRU), gated recurrent unit (GRU), robust healthcare.

I. INTRODUCTION

In recent years, human activity recognition (HAR) from
wearable body sensor network is becoming popular due to
its immense potential in many application areas such as
smart healthcare, transportation, security, robotics and smart
home [1]-[8]. HAR systems usually convert specific body
movements sensed by various wearable body sensors to some
sensor signal patterns, and can be classified using machine
learning techniques [9]-[12]. For example, various machine
learning algorithms can be used to identify complex activity
patterns such as sitting and relaxing, lying down, walking,
climbing stairs, etc.. Thus, recognition of everyday activities
is essential for keeping up healthy lifestyle among the elderly
residents for monitoring and preventing serious illness.

The associate editor coordinating the review of this manuscript and
approving it for publication was Giancarlo Fortino.
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However, HAR is challenging due to the large variability in
body movements of users in various situations. In particular,
itis not easy to identify an activity from multimodal body sen-
sors data [13]—[15]. Traditional machine learning techniques
are mostly focused on a single sensing modality, which is
not practical for robust healthcare applications. In multimodal
sensor data case, it is difficult to increase recognition accu-
racy while using fewer numbers of features. HAR from mul-
timodal sensor data relies upon combinations of sensors, such
as accelerometer sensors or gyroscope sensors [16]-[18].

To identify human activity properly from multimodal sen-
sor data, robust ML algorithms need to be used. There are
many ML algorithms that could be utilized such as hidden
Markov models (HMM), support vector machine etc. [19].
Now-a-days, deep learning methods have been controlling
over other ML algorithms for a tremendous scope of utiliza-
tions [20]-[28]. DL is a king of neural network that uses many
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non-linear information-processing layers for feature extrac-
tion and classification. Among the deep learning methods,
Deep Belief Network (DBN) [23]-[25] and Convolutional
Neural Network (CNN) network are popular [26], [27]. DBN
uses confined Boltzmann machines that make the preparation
procedure exceptionally quicker than run of the mill enor-
mous neural system. CNN is mostly used in image feature
extraction scenario.

However, these methods do not take into account the
sequences of patterns or do not remember the changes in the
sequences of patterns through the length of intervals between
these sequences. To solve these issues, recurrent neural net-
works (RNNs) are used in many applications to achieve
promise results due to its internal memory capability [28].

Deep learning based on RNNs achieved high accuracies
in many time-series applications for prediction and clas-
sification. Based on the type of recurrent units used to
build the RNNs, there are three architectures of RNNs. The
first architecture of RNNs is based on the simple recurrent
units (SRUs), which is simple and fast. However, it suffers
from the vanishing gradient problem [29]. The second archi-
tecture of RNNs depends on the gated recurrent units (GRUs),
which solve the instability in accuracy and gradient vanishing
problems by using two gates (update and forget gates) [30].
The third architecture is based on long short-term mem-
ory (LSTM) units, which also reduce the vanishing gradient
problem by using three gates (update, forget, and output
gates). Among these different architectures of RNNs, the last
two architectures achieve excellent accuracy results at the
expense of computational cost due to these additional gates.

In this paper, we propose a framework for human activity
recognition based on a hybrid deep learning model and using
multimodal body sensing data. The hybrid deep learning
model contains a set of neural network layers, combining
two types of recurrent units, which are simple recurrent
units (SRUs) and gated recurrent units (GRUs), called a deep
SRUs-GRUs neural network model. We exploit the advantage
of SRUs, which are simple and fast, and GRUs, which are
effective and more accurate. The main contributions of this
study are summarized in the following points:

. We propose an effective multi-sensors-based framework
for human activity recognition using a hybrid deep learn-
ing model that combines simple and gated recurrent
neural network units.

. We use the deep-simple recurrent units to process the
sequences of multi-sensors input data by using the capa-
bility of their internal memory states and exploit their
speed advantage.

. We use the deep-gated recurrent units to store and learn
how much of the past information is passed to the future
state for solving fluctuations or instability in accuracy
and vanishing gradient problems.

. We use a dropout method to reduce the overfitting
problem by setting off randomly some neurons during
training phase.
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. We optimize the model’s hyper-parameters based on
manual and grid search methods.

. We evaluate the proposed framework using a public
MHEALTH dataset of multi-sensors data and compare
with the state-of-the-art work on the same dataset.

The rest of the paper is organized as follows: proposed
approach is given in Section II, experiments and discussions
are reported in Section III, and finally a conclusion is sum-
marized in Section I'V.

Il. METHODOLOGY

This section explains the methodology adopted in this study.
The main goal of our methodology is to develop an accurate
hybrid deep learning model for recognizing human activities
using multimodal body sensing data. The input of the model is
a sequence of raw data coming from multiple sensors and the
output is the activity name or activity code. In the following,
we describe the dataset used and the proposed model.

A. MHEALTH DATASET
The dataset used in our study is a mobile health (MHEALTH)
benchmarked dataset [31]. It was collected from ten subjects
by using body motion and vital signs recordings of SHIM-
MER?2 wearable sensors. These sensors were attached by
using elastic straps and placed on right wrist, left ankle, and
chest of each subject as shown in Figure 1. All participants
were asked to perform 12 physical activities listed in Table 1.
By using multiple sensors, mobile health system captures the
body dynamics and measures the diversity resulted from the
motion of body parts, such as the acceleration and orientation
of magnetic field.

The sensors placed on chest provide two measurements
of lead ECG. Such dataset collected multimodal body

Sensors placed
on chest

Sensor placed
on right wrist

FIGURE 1. A setup of sensor deployment for gathering the multimodal
sensing data.
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TABLE 1. The Number of Instances for each Activity in the dataset.

ACTIVITY ACTIVITY Name with Number of
Code (repetitions) or (duration) instances
L1 Standing still (1 min) 3072
L2 Sitting and relaxing (1 min) 3072
L3 Lying down (1 min) 3072
L4 Walking (1 min) 3072
L5 Climbing stairs (1 min) 3072
L6 Waist bends forward (20x) 3072
L7 Frontal elevation of arms (20x) 3072
L8 Knees bending (crouching) (20x) 3379
L9 Cycling (1 min) 3072
L10 Jogging (1 min) 3072
L11 Running (1 min) 3072
L12 Jump front & back (20x) 1075
Total 35174

NOTE: In brackets are the number of repetitions (Nx) or the
duration of the exercises (min).

hy

Oy
hy

27

FIGURE 2. A typical structure of SRU.

sensing can be utilized for various arrhythmias checking,
heart monitoring, or even analyzing the effects of exercise on
the ECG.

The sampling rate of this dataset was 50 Hz, which is
sufficient for representing the simulated human activities.
By using video camera, all performed sessions were recorded
to label the data and verify against anomalous in the signals.
The distribution of data points in each activity is shown
in Table 1.

B. METHODS

In this subsection, we explain the methods used to build
the hybrid deep learning model. The hybrid model con-
sists of a set of neural network layers, which combines
SRUs and GRUs to form the deep SRUs-GRUs neural
network model. Through the explanation, the mathemati-
cal equations and basic structures of the methods are first
introduced, then, the proposed framework of multi-sensors-
based human activity recognition will be explained in more
detail.
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FIGURE 3. A typical structure of GRU.

C. SIMPLE RECURRENT UNIT (SRU)

Simple recurrent unit (SRU) is the simplest type of recurrent
units that can be used to build simple recurrent neural net-
works (RNNs). It achieves a great promise results in many
time series applications due to its internal memory capability.
The simplicity of SRU makes it fast and suitable for real-time
applications [30]. It has no gates and works by multiplying the
input vector x; by the weight matrix W), and multiplying the
previous output vector /;_1, which holds information from
previous units by the weight matrix Uj,. Then, both are added
together and passed through the tanh activation function to
give up an output value between 1 and —1. A typical structure
of SRU is shown in Figure 2. The following equations show
the basic computations behind SRU.

hy = opn(Wpx; + Uphs—1 + by) (D
01 = 0o(Woh: + by) 2)

where x; denotes the input vector, 4; represents the hidden
layer vector, o; represents the output vector, both b, and b,
are the bias vectors of hidden and output layers, W), and W,
represent the weight matrices of hidden and output layers,
and oy, and o, represent the activation function of hidden and
output layers that can be computed as:
2

o (x) = tanh(x) = = 1 3)
D. GATED RECURRENT UNIT (GRU)
In order to solve the vanishing gradient problem, Gated
Recurrent Unit (GRU) was proposed by Cho, et al. [31]. GRU
can be considered as an LSTM unite but with no output gate.
Both GRU and LSTM have a similar architecture and achieve
excellent accuracies.

In this type of architecture, GRU has an update and rest
gates. Both gates enable GRU to pass the information for-
ward over many time windows for a better predication or
classification. More specifically, data and weights are stored
in memory to be used with a given state to update the values
for future as needed [31]. A typical structure of GRU is shown
in Figure 3.
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FIGURE 4. An architecture of proposed hybrid deep SRUs-GRUs model.

In order to understand how GRU works, we explain
its main components in the following lines. As mentioned
before, the GRU consists of two gates, which are the update
gate and the reset gate (current and final memory content).
In update gate, GRU calculates z; at a given time ¢ in order
to solve vanishing gradient problem using the following
calculation:

z =0 Welhi—1, %]+ b2) “

Whereas, in the reset gate, GRU computes z; at a given
time 7 in order to indicate how much of the past information
to forget. This gate performs the following equation:

re =0 (Wrlhi—1, x:] + byr) &)

Current memory content stage is calculated based on the
following equation:

hy = tanh(Wy [rehy 1, %)) 6)

Lastly, final memory at current time step calculates 4; to

store the current unit information for computing the output
vector o, the as following:

he = (1 —z0) by + 21y )

0o(Wohs + bo) (®)

where the bias vector of the output layer is b, and the weight
matrix of the output layer is W,,.

Ot
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E. PROPOSED FRAMEWORK
Figure 4 illustrates a high-level architecture of the proposed
framework and its functions for multi-sensors-based human
activity recognition. The framework consists of several com-
ponents. For capturing the input data to the framework, a set
of wearable body sensors are placed on the patients to record
the multimodal raw data of their activities’ signals. The first
component contains the reshaping phase, which processes the
signals as channels; every channel represents a class of activ-
ity. In this phase, the raw data signals of L length are divided
into a number of time-series blocks of w length, producing N
blocks in order to simplify the classification process. In our
model, the block size is selected to be 100 because it is
sufficient to analyze the activities from multi-sensors data.
The second component is the deep SRUs-GRUs neural
network model, which consists of four hidden layers as
well as the input and output layers. The input layer has
n-input dimensions (23 input dimensions for the MHEALTH
dataset). The first two hidden layers contain 64 units of SRUs
and the second two hidden layers have 32 units of GRUs.
We chose 64 units for the first two hidden layers because they
are sufficiently enough to process and remember the changes
in the activity signals and we selected 32 units for the second
two hidden layers to make the accuracy stable and make the
model fast. The hidden layers of deep SRUs-GRUs model
are separated by dropout regularization method. The goal for
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FIGURE 5. Loss and accuracy values of deep SRUs-GRUs model during the training progress of first experiment.
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FIGURE 6. Confusion matrix of human activities classified of the first
experiment.

dropout here is to avoid the overfitting issue by ignoring some
random neurons in the training phase (10% in our model).
The output layer in the deep SRUs-GRUs model is a fully
connected layer with a softmax activation function, which
represents the final of classification, resulting in the activity
code output. The output layer has m activity codes (12 activity
codes for the MHEALTH dataset).

IIl. EXPERIMENTS AND DISCUSSIONS

A. EXPERIMENT SETUP AND EVALUATION METRICS

All experiments are implemented on a laptop computer
i7-4510U 2.0GHz CPU and 8GB RAM with operating system
windows (x64) version 10, and using python programming
language tool. To evaluate the performance of the proposed
model, four evaluation metrics are used as well as the
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FIGURE 7. Confusion matrix of human activities classified of the second
experiment.

recognition time. These four evaluation metrics are computed
as follows:

(TP+1N)
Accuracy = )
(TP+FP+ TN + FN)
. TP
Precision = —— (10)
TP + FP
Recall(Sensitivity) = TP (11)
ecall(Sensitivity) = TP+ FN
2 X (Recall x Precision)
F1 — score = (12)

(Recall + Precision)

where TP and TN are true positive and true negative rates,
FP and FN are false positive and false negative rates.
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For more detail, F1-score is the weighted average of Pre-
cision and Recall. Therefore, this score takes both false
positives and false negatives into account. On the other hand,
the accuracy is used to measure the ratio of correctly classi-
fied activities from the total activities in the testing dataset.
Whereas, the precision is used to measure the ratio of cor-
rectly classified true positive activities to the total classified
activities of true positive and false positive. The recall metric
is the ratio of true positive activities to the true positive
and false negative of activities. For F1-score, the weighted
average result of recall and precision is computed.

In the following, the hyper-parameters settings and exper-
imental results will be explained with more discussions.

B. HYPER-PARAMETERS SETTINGS

For developing deep learning models, a rigorous effort is
necessary for settings the models’ hyper-parameters. This is
done by choosing the best values for these hyper-parameters
that achieves high results. In machine learning field, there are
commonly three methods for tuning the hyper-parameters of
the models. These methods are manual-based method using
the results of validation set and the experience in the domain,
random-based method using a random set of values, and grid
search-based method using an exhaustive set of values. In our
model, an effective method based on manual and grid search-
methods is used. This method starts with an initial range of
coarse values, after that, we narrow this range based on the
results of validation set and our experience in the field. Based
on the results of tuning process, the value of learning rate
is set to be 0.001. The number of epochs is set to be 50.
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The number of SRUs in the first and second hidden layers
is 64 units. In addition, the number of GRUs in the third and
fourth hidden layers is 32 units. We selected these numbers
of units because they are sufficient to process the raw data of
activities.

C. EXPERIMENTAL RESULTS

The experimental results are obtained based on two exper-
iments. The first experiment is conducted using holdout
technique. While, the second experiment is performed using
10-folds cross validation technique. In the first experiment,
the dataset is divided into two data subsets: training dataset
that contains 70% (2348 instances), and testing dataset that
contains 30% (1007 instances). For validation, a subset
of 40% (940 instances) from the training dataset is taken
as a validation dataset. On the other hand, in the second
experiment, the dataset is divided into ten subsets or folds;
each fold has 336 instances. Each time of ten times, one fold
is used for testing and the remaining nine folds are used for
training, as well as 20% (604 instances) of training set is taken
as a validation dataset. Figure 5 shows the training progress
of the model in the first experiment. In the training progress,
the loss and accuracy values are monitored among the number
of training epochs.

We can see the stability of the model after the epoch
number 20 and we can notice that the gap between training
and validation sets is small, which means that there is no any
overfitting in the training phase.

Figure 6 demonstrates the confusion matrix of classified
activities of the first experiment. It can be seen that the model
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TABLE 2. Results of evaluation metrics (in percentage) obtained from the
first experiment.

Activity Precision Recall F1-score
L1 100 100 100
L2 100 100 100
L3 100 100 100
L4 100 100 1.00
LS 100 98 99
L6 100 100 100
L7 99 100 99
L8 99 100 99
L9 100 100 100
L10 100 100 100
L11 100 100 100
L12 100 100 100
Weighted avg. 100 100 100

TABLE 3. Results of evaluation metrics (in percentage) obtained from the
second experiment.

Activity Precision Recall F1-score
L1 100 100 100
L2 100 100 100
L3 100 100 100
L4 100 100 100
L5 100 100 100
L6 100 100 100
L7 100 100 100
L8 100 100 100
L9 97 100 98
L10 100 97 98
L11 100 100 100
L12 100 100 100
Weighted avg. 100 100 100

is able to recognize almost all activities in the testing dataset.
From the confusion matrix of the first experiment, the model
achieves 99.80% of accuracy for recognizing the activities.

The results of other evaluation metrics are listed in Table 2,
in which the model attains a weighted average of 100% for
the F1-score.

In Table 2, we can notice that the model can able to classify
all activities with high results in terms of precision and recall
(sensitivity). The high results of recall and precision of the
first experiment demonstrate that the model has a high ability
to reduce the false positives and false negatives problem in
human activity recognition application that uses multimodal
sensing data. During the experiments, we found that the
average classification time of 1007 samples of the model is
2.4 seconds, making it efficient for real-time human activity
recognition applications. Figure 7 shows the confusion matrix
of classified activities, obtained from the average of 10-folds
test sets amongst the second experiment.

From the confusion matrix of the second experiment,
the average accuracy for the 10-folds is approximately
99.70%. The results of other evaluation metrics are also
listed in Table 3. The weighted average of precision, recall,
Fl-score is 100%, which proves the effectiveness of the
developed model.
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TABLE 4. Results of accuracy and average classification time of deep
SRUs-GRUs and deep SRUs models.

Average Classification

Model Accuracy Time of 1007 samples
in Seconds

Deep SRUs-GRUs 99.80% 2.4

Deep SRUs 94.14% 1.7

TABLE 5. Comparison results of sensitivity and F1-score for the proposed
framework against the mHealthDroid framework.

mHealthDroid
. framework [1] Proposed framework
Activity
Sensitivity Fl-score | Sensitivity  Fl-score
L1 1.00 1.00 1.00 1.00
L2 1.00 1.00 1.00 1.00
L3 1.00 1.00 1.00 1.00
L4 1.00 1.00 1.00 1.00
L5 0.99 0.99 1.00 1.00
L6 0.97 0.97 1.00 1.00
L7 1.00 0.99 1.00 1.00
L8 0.95 0.96 1.00 1.00
L9 1.00 1.00 0.97 0.98
L10 0.96 0.95 1.00 0.98
L11 0.94 0.95 1.00 1.00
L12 0.99 0.99 1.00 1.00
Average 0.982 0.982 0.997 0.996

To show the effectiveness of the hybrid deep SRUs-GRUs
model, we conducted the first experiment on the deep SRUs
model that contains 64 simple units and compared it with the
hybrid deep model. Figure 8 shows the loss and accuracy
values of deep SRUs model during the training progress
of first experiment. Table 4 demonstrates the accuracy and
average classification time of 1007 samples by using deep
SRUs-GRUSs and deep SRUs models.

As shown in Table 4, the accuracy of deep SRUs-GRU is
higher than the accuracy of deep SRUs with a slight increase
in average classification time, which highlighted in a bold
font face. This proves the effectiveness of adding the deep
GRUs to the model. Moreover, the Figure 8 demonstrates
how the hybrid deep SRUs-GRUs solves the problem of
fluctuations or instability in accuracy.

To compare the proposed framework with a recent related
work of activity recognition using multimodal sensing data,
we selected the work published in [30] that used the 10-folds
cross validation technique on the same dataset. The authors in
this work used statistical functions and time/frequency trans-
formations for feature extraction. In addition, they used the
sallow classification techniques to build a framework, called
mHealthDroid. Table 5 shows the results of comparison in
terms of sensitivity and F1-score.

We can see that the sensitivity and F1-score results of deep
SRUs-GRUs model are higher than the results of mHealth-
Droid framework. The reason for this improvement is due to
the ability of the proposed framework to process and remem-
ber the signals’ patterns for recognizing human activities
from multimodal body sensing data.
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IV. CONCLUSIONS AND FUTURE WORK

Sensor-based user behavior and health status monitoring is
getting more and more interest in the huge amount of pattern
recognition researchers, with the promise of improving peo-
ple’s wellness, health, and lifetime. Given such goals, smart
environments support application which very often demand.
Hence, the user care applications in smart environments very
often demands continuous observation of the users’ activi-
ties with the help of an event-driven system. In this work,
we proposed a deep SRUs-GRUs based activity recognition
system based on the wearable body multi-sensors data. The
novelty of the work is the application of the proposed deep
learning model, which is a hybrid of SRUs and GRUs, for
recognizing effectively the human activities using a multi-
modal body sensing data. We use the deep SRUs networks
to process the sequences of multi-sensors input data by using
the capability of their internal memory states and exploit
their speed advantage. We then use a dropout technique to
ignore randomly some neurons during the training phase,
reducing the overfitting problem. Next, we use the deep
GRUs networks to store and learn how much of the past
information is passed to the future state for solving fluctu-
ations or instability in accuracy and vanishing gradient prob-
lems. Finally, we optimized the model’s hyper-parameters
based on manual and grid search methods. The experi-
mental results have showed good performance by achiev-
ing 0.99 precision, recall, Fl-score, and accuracies on the
big datasets.

In the future, the proposed deep SRUs-GRUs based
human activity recognition system can be more analyzed on
complex and bigger datasets with more complex activities
to get a real-time human behavior monitoring system.
Moreover, we aim to conduct another study investigat-
ing the consumption of computational resources for SRUs-
GRUs model on constrained mobile devices with limited
resources.
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