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ABSTRACT In the process of on-orbit servicing, chasers achieve approach and contact with target spacecraft
are via a series of orbital transfer and motion control. However, most target spacecraft are non-cooperative
targets. As a matter of fact, mainly technical difficulty of non-cooperative targets still lies in unable directly
obtaining their motion parameters, thereby, it is impossible to realize their autonomously rendezvous and
capture. Thus, measure motion parameters of non-cooperative targets from outside is significant for research
on-orbit service. In this paper, a pose measurement method coupled initial pose measurement with model-
based tracking is put forward for space non-cooperative targets. Specifically, an algorithm based on SIFT
matching tomeasure initial pose of target tracking is proposed to start subsequent target tracking. Afterwards,
a target tracking algorithm is presented, which is via a priori information and the combination of edge
features and point features. As well as, anM estimator is introduced to improve the accuracy and robustness
of target tracking algorithm. Finally, an experimental platform is constructed to fulfill experiments to
validate the effectiveness of proposed method. Also, the experimental results demonstrate that our approach
has highly precision and robustness in vary illuminations. Simultaneously, our method could satisfy the
real-time requirement of pose measurement for non-cooperative targets.

INDEX TERMS Pose measurement, non-cooperative target, model-based tracking, feature fusion.

I. INTRODUCTION
Capturing non-cooperative targets is indispensable to multi-
tudes of on-orbit missions, such as prolong spacecraft life-
span, assistance faulty spacecraft into pre-selected orbit, and
push abandoned satellites into the grave orbit [1]–[3]. Thus,
investigate on non-cooperative target capture has gained
increasing attention from researchers. Yet due to state of
motion is unknown, research difficulty on capturing non-
cooperative targets still lies in accurate estimation of the
motion parameters [4]–[7]. To address this issue, researchers
come up with quite a few solutions.

DLR designed a capture mechanism for non-cooperative
target orbit engines, and presented a complex non-
cooperative target recognition algorithm based on multi-
sensor data fusion [8]. However, this method was fully
controlled from ground system. When the delay was large,
entire system would be unstable, thereby the reliability of
method would be affected. The United States carried out
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the FREND project mainly for non-cooperative spacecraft
to perform capture, derailment and other operations, which
used three hand-eye cameras as the posemeasurement system
[9]–[11]. In this project, real-time was critical to the success
of missions. But coordination of multiple cameras and too
involved processing loop constrained the real-time perfor-
mance of tasks. Nassir Oumer and Panin [12] put forward
a method for stereo camera-based 3D tracking to estimate
pose of a non-cooperative satellite. In their approach, for each
point, update stage of the filter was iterated until convergence,
which leads to the pose estimation time would be affected
by iterative times. Fourie et al. [13], [14] established a
visual-inertial system based on stereo vision, and described
a vision-based relative navigation and control strategy for
inspecting an unknown non-cooperative object in space.
Although this method has advantages of highly reliability
and precision, time of visual information processing would
be restricted by external environment. Segal et al. [15] devel-
oped a stereovision-based filtering algorithm for estimating
the relative state between two non-cooperative spacecraft.
They employed multiple iterated extend Kalman filters, and
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each endowed with a different hypothetical target inertia. The
algorithm was robust to inertia modeling uncertainties, and
could estimate the complete relative state, but estimation time
was not fully considered. Peng et al. [16] constructed a stereo
vision system to measure the relative pose of non-cooperative
target. Compared with traditional methods, their scheme has
highly accuracy and efficiency, but exists a problem of large
calculation amounts. Ying et al. [17] put forward an effective
method to identify the features of non-cooperative targets and
track their pose based on point cloud. But the method has a
large amount of computation, due to it was based on particle
filter algorithm.

Although above solutions adopted different algorithms
to achieve pose measurement, they have similarity in idea.
Firstly, the employed computer vision method to imag-
ing. Afterwards, image processing and pose algorithm
were adopted to measure position and attitude parameters.
Finally, the captured part were identified. Nevertheless, these
schemes are defective, a quintessential example should be
cited that large computational will give rise to system delay,
thereby the real-time performance of method could not be
guaranteed.

To deal with previously mentioned problem, a real-time
pose measurement method for non-cooperative target is put
forward, in condition of ensuring the precision and robust-
ness. The remainder of this paper is organized as follows.
Section II introduces the research motivation of our contri-
butions. Then, section III gives an exhaustively formulation
of our thought. Additionally, experimental results are shown
in Section IV is to demonstrate the superiority of presented
approach. Ultimately, in Section V, we conclude the paper,
simultaneously look forward the future work.

II. RESEARCH MOTIVATION
Indeed, essence of pose measurement of three-dimensional
object is to measure the translation and rotation parameters
of world coordinate (model coordinate) fixed on object in
camera coordinate. That is, pose measurement is to measure
both target translations along three coordinate axis and rota-
tion angles generated by target rotate around three coordinate
axis. In mathematical, these translations and rotation angles
are represented by homogeneous transformation matrix.

Yet non-cooperative targets unable to provide priori infor-
mation of cooperation cursor and motion state used for
detection and tracking, which brings certain difficulties to
pose information acquisition. But, motion of non-cooperative
targets in camera are continuous. Thus, priori information
could be obtained from image frame in camera to reduce the
calculations of pose measurement, which means that the pose
information could be acquired in real-time through frame-by-
frame sampling in video sequence. Since target motion is a
continuous process, pose in previous frame image could pro-
vide multitudes of prior information for latter frame image.
When utilizing these prior information in pose solution, not
only posemeasurement error will be reduced to a large extent,
but also pose measurement time will be lessened [18]–[22].

Therefore, priori information of the first frame image dur-
ing measuring non-cooperative targets pose is quite critical.
Meanwhile, insufficient prior information indicates that mea-
surement algorithm of non-cooperative target pose in initial
frame image should be remarkable different from the subse-
quent algorithm.

Furthermore, this research is focus on the need for non-
cooperative targets in near-earth space, and hence, real-time
must be taken into consideration. Whereas, among com-
puter vision methods used for non-cooperative target pose
measurement, model-based method not only has good robust-
ness in variable space environment, but also has lower com-
putation and better real-time performance. It means that
model-based method could deal with the rotation, irregu-
lar motion, etc., as well as could realize the real-time out-
put of non-cooperative target pose information in the video
sequence [23]–[31]. In addition, model-based method could
reduce mismatch points to improve the pose measurement
accuracy.

Last but not the least, compared with large devices, such
as laser and radar, visual camera could provide stable and
reliable 2D visual information, simultaneous has small space
and low energy consumption. Accordingly, a visual camera
is adopted as hardware device of pose measurement in this
paper.

To sum up, a pose measurement method for non-
cooperative target based on model is put forward. The
proposed method is composed of two paramount compo-
nents, respectively are initial pose measurement and model-
based target tracking. Firstly, initial pose of subsequent
target tracking is gained by performing pose measurement
on a query image selected in video sequence. Then, initial
pose is exploited to tracking non-cooperative target in video
sequence with frame by frame to output the real-time pose.
In order to attain the stable, real-time, and accurate output
of non-cooperative target pose in final, pose tracking pre-
cision needs to be judged. When the accuracy conform to
the demands, keep tracking continues, else, pose of non-
cooperative target in current location needs to be recalculated,
as a new initial pose to restart tracking.

III. METHOD
A. INITIAL POSE MEASUREMENT OF
NON-COOPERATIVE TARGET TRACKING
Measure initial pose of target tracking aims at detecting and
locating non-cooperative target in three-dimensional environ-
ment. To accomplish pose measurement in computer vision,
our idea is via extract certain feature information of target,
and matching these information with image information of
target. Because of space target is sensitive to illumination,
occlusion, and view-point variations, while SIFT feature
extraction operator has better adaptability to these factors,
an algorithm based on SIFT matching to measure initial
pose of target tracking is proposed to initial the subse-
quent target tracking, which flow path is summarized as
follows,
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1. Measure pose in query image Iq as reference pose;
2. Extract SIFT feature points from query image Iq and

current image Ic;
3. Eliminate interference points in Iq and Ic;
4. Perform keypoints matching between Iq and Ic by

Brute-Force matcher;
5. Solve corresponding relationship between SIFT feature

points in current image Ic and 3D points in non-cooperative
target model based on reference pose;

6. Couple virtual visual servo with RANSAC (RANdom
SAmple Consensus) to solve pose parameters in Ic and regard
it as initial pose.

Briefly, in order to measure initial pose of target tracking,
our algorithm has three important parts, respectively are, ref-
erence pose measurement of non-cooperative target in query
image, extract and matching SIFT feature points between
query image and current image, and pose solution based on
multipoint matching.

1) MEASURE REFERENCE POSE
In our implementation, pose parameters of non-cooperative
target are known (with a certain uncertainty) at the first frame
in a given video sequence. Thus, one frame is selected from
video sequence as a query image, and pose parameters of
non-cooperative target in this image is called reference pose.
To obtain the reference pose, POSIT pose solving algorithm is
employed owing to its lower computational complexity, faster
convergence, and better robustness.

Nevertheless, classical POSIT could only perform pose
calculation for the selected reference points in non-coplanar,
for the selected reference points in coplanar, coplanar-POSIT
is adopted to achieve pose solving [32]. Unlike POSIT,
coplanar-POSIT could solve two sets of pose parameters.
During iteratively solving pose parameters, above two sets
of pose parameters are judged. Only the solution with less
error is used for each iteration, which could make the final
iteration converge results basically approximate in two sets.
Thus, any of two data sets could be used as the final result of
pose measurement.

For the sake of validating the reliability and accuracy in
reference pose solution, we randomly extract a frame image
as query image. Then, we utilize human-computer interaction
to respectively input three-dimensional coordinates of four
points and their corresponding two-dimensional image fea-
ture points, and determine whether they are coplanar. Finally,
according to the judgment result, Posit or coplanar-Posit pose
measurement algorithm is selected to solve position and atti-
tude of non-cooperative target in query image. The solution
result of reference pose is shown in figure 1.

As is exhibited in figure 1, we respectively select four
non-coplanar points and four coplanar points from non-
cooperative target image, then, non-cooperative target wire-
frame model is re-projected on image to evaluate accuracy
of reference pose solution. Obviously, from figure 1, solution
result of POSIT is better than coplanar-POSIT.

FIGURE 1. Solution results of reference pose.

To sum up, in this work, image plane points correspond-
ing to the feature points of known non-cooperative target
model are selected through the means of human-computer
interaction, as well as, after coplanar judgment of 3D feature
points on model, POSIT or coplanar-POSIT is used to solve
reference pose of non-cooperative target in query image.

2) EXTRACT AND MATCHING SIFT FEATURE POINTS
Since current image has certain translation, rotation, and
scale transformation with respect to the query image, yet
SIFT feature extraction operator has rotation invariance, scale
invariance, as well as has certain resistance to changes in
illumination. In this paper, SIFT feature extraction operator is
adopted to extract SIFT feature points from query image and
current image, furthermore, extracted feature points is used
for matching, after eliminating feature points in background
and mismatch, correspondence between 3D feature points
on model and 2D SIFT feature points in current image is
established by 2D-3D re-projection.
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During pose measurement, extract SIFT feature points
from query image is actually a process of learning query
image. That is, the extracted feature points and their descrip-
tors will be used as learning samples, to match SIFT feature
points and descriptors in current image, and to establish a
one-to-one mapping relationship between them.

Extracted SIFT feature points from non-cooperative target
images is shown in figure 2.

FIGURE 2. Extraction of SIFT feature points.

As previous mentioned, one-to-one mapping relationship
between query image and current image needs to be built in
SIFT feature points matching. Brute Force matching algo-
rithm [33] is used for SIFT feature points matching because
of its stable matching result and highly calculation efficiency.
Specifically, after matching feature descriptor in query image
with feature descriptor in current image to return the opti-
mal match, and setting threshold to eliminate the mismatch,
a one-to-one mapping relationship between query image and
current image is established.

Matching result of SIFT feature points achieved by Brute
Force as shown in figure 3.

FIGURE 3. Matching result of SIFT feature points by brute force.

Moreover, during extracting SIFT feature points, some
points located outside the non-cooperative target and belong
to the background, named background interference points,
are also extracted. Thus, the extracted SIFT feature points
need to be screened.

Screening background interference points is on the basis
of hypothesis that all SIFT feature points are located on
the surface of the non-cooperative target model. Meanwhile,
non-cooperative target model and reference pose are known,
which could be utilized to eliminate SIFT feature points
in background through projecting on 2D image. In fact,
screening background interference points is to only retain
SIFT feature points on non-cooperative target in image. The
result of background interference points elimination as show
in figure 4.

FIGURE 4. Result of eliminate background interference points.

After eliminating the background interference points,
three-dimensional coordinates of points in model coordinate
system corresponding to the remaining SIFT feature points
need to be solved. These three-dimensional coordinates and
their corresponding feature descriptors will be used for sub-
sequent pose measurement based on multi-point matching.

Solution of three-dimensional coordinate is also based on
the assumption that feature points are located on a certain
plane of non-cooperative target model surface. Since non-
cooperative target model and its reference pose in query
image are known, in accordance with space projection prin-
ciple, coordinates of two-dimensional image feature points in
three-dimensional model coordinate could be easily obtained.

3) POSE MEASUREMENT BASED ON
MULTIPOINT MATCHING
Along with obtaining the three-dimensional coordinates of
feature points corresponding to the model coordinate sys-
tem, correspondence between 3D coordinates of SIFT feature
points on non-cooperative target and 2D feature points in
image is also acquired, which could be used for solving non-
cooperative target position and attitude of current image in
camera coordinate system. This paper couples virtual vision
servo [34] with RANSAC [35] to solve pose parameters in
current image.

Basic idea of virtual vision servo for solving non-
cooperative target pose is to regard the problem of solv-
ing pose parameters as the dual topic of 2D visual servo.
In visual servo process, a particular target in image could be
continuously observed by controlling the motion of camera,
which could be achieved by minimizing the error between
desired state parameter s∗ of image feature and actual state
parameter s. Under ideal conditions, exists a unique camera
pose to minimize this error.

Indeed, large amounts of 3D feature points oP exist on
measured target, that is, oP is 3D coordinates of points on
measured target in model coordinate system. We set a virtual
camera, and define its position and attitude in model coordi-
nate system as r , then through minimize the error between
observed data s∗ (2D coordinate of SIFT feature points in
image is p, at this time, s∗ = p) and 2D coordinate s
(according to pose parameter r , 3D feature points are for-
ward projected to image plane to obtain s), named 1, actual
pose parameters of measured target relative to camera could
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be acquired.

1 =

N∑
i=1

(si(r)− s∗i )
2
=

N∑
i=1

(prε(r, oPi)− s∗i )
2 (1)

where, prε(r, oPi) is projection model obtained based on
camera internal parameter ξ and camera pose r , N refers
amount of feature points.

During pose calculation, motion of virtual camera initially
located at ri position follows virtual visual servo control
algorithm to minimize the error parameter1, at convergence
position of algorithm, virtual camera reaches the rd pose to
minimize 1, rd is pose parameter to be solved.

In classical visual servo process, define task function as e,

e = (s(r)− s∗) (2)

Take the derivative of formula 2,

ė =
∂e
∂s
∂s
∂r

dr
dt
= Lv (3)

where, L represents image Jacques matrix, and v refers
velocity vector.

Then, e is decoupled exponentially,

ė = −λe (4)

where, λ is proportional coefficient for controlling attenua-
tion rate.

Thus, following control laws could be obtained,

v = −λL̂+s e (5)

where, L̂s refers pseudo-inverse matrix of L, L̂+s =

(L̂Ts L̂s)
−1L̂Ts .

Finally, velocity vector v is mapped to its corresponding
instantaneous displacement, to update the pose parameters of
non-cooperative target,

cM k+1
o =

cM k
o exp(v) (6)

where, exp(v) represents exponential mapping in the form
of homogeneous matrices, k refers iteration numbers in an
iterative optimization process.

Due to coarse error may be exist in the process of feature
matching and 3D information solving, which will affect the
accuracy of pose control algorithm based on virtual visual
servo. In order to make full use of correspondence of 2D-3D
SIFT feature points, eliminate possible coarse error, improve
the accuracy and reliability of algorithm, RANSAC is intro-
duced for pose measurement, namely, virtual visual servo
is combined with RANSAC to solve non-cooperative target
pose.

RANSAC assumes that data sample contains both correct
data and abnormal data. It solves problem by repeatedly
selecting a set of random subset in data sample, and employs
acquired results to test other data to determine whether these
data are interior points. At last, all interior points are used for
resolving model to obtain the result as correct as possible.

TABLE 1. Algorithm of pose parameters solution.

In this paper, 2D-3D matching relationship of feature
points is a data sample containing abnormal data. Firstly, four
feature points are randomly selected to solve pose parameters.
Afterwards, we make a decision on all data points in entire
data point set, regard points which are close enough to projec-
tion points and feature points as interior points. Finally, pose
of non-cooperative target is to be resolved in accordance with
all obtained interior points. The algorithm of pose parameters
solution via couple virtual visual servo with RANSAC as
shown in table 1.

In above algorithm, reference pose is acquired by query
image based on POSIT. However, if error between refer-
ence pose and solved pose is too large, the algorithm will
diverge or converge at local minimum. At this time, it is
essential to re-select an image close to current image as
reference image, and solve its pose as reference pose, then,
measure pose in current image as initial pose of following
target tracking process, to start model-based target tracking
algorithm.

B. NON-COOPERATIVE TARGET TRACKING
Since three-dimensional model of non-cooperative target is
known, we employ model-based tracking to realize real-time
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solution of non-cooperative target pose parameters. But in
order to improve the accuracy of target tracking, a target
tracking algorithm based on edge feature fusion point feature
is proposed, which takes Harris corner features and edge fea-
tures on non-cooperative target in images as tracking features.
As well as, an M estimator is introduced to enhance the
resistance of nonlinear optimization pose to external points.
Finally, pose parameters could be real-time and accurate
outputted.

1) SEARCHING AND MATCHING EDGE FEATURE
Edge is a prominent feature in image, which has advantages
of stable extraction effect and strong anti-interference ability,
but it is difficult to quantify. Thus, we transform edge features
into sample point features with a certain distance on the
edge, and then, perform a normal one-dimensional search
to determine the matching between model edge points and
image edge points. The details as follows,

1. According to pose parameter rk−1 of non-cooperative
target in previous frame image Ik−1, 3D model of non-
cooperative target is projected on image plane of current Ik th
frame image, to obtain two-dimensional projection edge of
model;

2. Sampling for two-dimensional projection edges of
model at a certain distance, to acquire a sampling point set
of projection edge on model in the Ik th frame image, which
is defined as {xi}

Ng
i=1;

3. For any sampling point xi on projection edge of model,
through the ECM searching algorithm [36] to perform one-
dimensional search along the normal ni of xi point on
model projection edge, and seeking the nearest gray gradient
extreme point in image as corresponding point x ′i , further
to acquire the set of image feature points {x ′i}

Ng
i=1, which is

correspond to the set of sampling points {xi}
Ng
i=1.

The one- dimensional searching along normal as shown
in figure 5.

FIGURE 5. One-dimensional searching along normal.

In above normal one-dimensional searching process, an
m ∗ m convolution template is to be set, which direction is
determined in accordance with normal ni. Moreover, within
searching range R, convolution value of each possible pixel

(xij) along normal ni is obtained by the convolution template,
which has a one-to-one correspondence to likelihood ratio ζj.
Also, points with the maximum likelihood ratio in image and
larger than the set threshold are recorded as corresponding
points x ′i , which will be used for following nonlinear opti-
mization process of pose parameters.

It is well to be reminded that in process of tracking non-
cooperative target, complex small contour features on non-
cooperative target, as well as change in visibility of each
surface during rotation, will greatly effect on the accuracy of
tracking. Hence, to address this issue, this paper judges the
visibility of non-cooperative target model plane, and sets the
minimum threshold of projection line.

In fact, during the tracking process, only edge features on
visible plane could perform low-order edge tracking to update
the pose parameters. Whereas in this paper, determination of
plane visibility is achieved by solving the included angle α,
as shown in figure 6.

FIGURE 6. Determination of plane visibility.

As demonstrated in figure 6, α is an included angle
between the line connecting camera optical center to gravity
center of plane to be determined and plane normal. In this
paper, the threshold k is defined as 80◦, when α < 80◦, plane
to be determined is visible, but when α > 80◦, plane to be
determined is invisible.

On the other hand, in the first step of tracking process,
non-cooperative target model needs to be projected on a two-
dimensional plane for low-order edge tracking, yet in this
process, line size determination of model projection is added
to improve tracking accuracy. It is stipulated that the line
is included in subsequent sampling matching process only
when the model projection line length is greater than a certain
threshold, and the small contour, which projection line length
is less than this threshold is excluded from the tracking.

To sum up, edge feature matching points {x ′i}
Ng
i=1 in image

as show in figure 7.

2) POINT FEATURE DETECTION AND TRACKING
Naturally, multiple similar edge features might be extracted,
due to the complexity of projected image. In order to
distinguish features, point feature is taken as another visual
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FIGURE 7. Edge feature matching points in image.

feature applied to tracking, since it also has strong anti-
interference ability. In fact, target tracking using feature
points is achieved by nonlinearly optimizing the objective
function 1p (1p is an objective function about the distance
from feature point extracted in current frame to the feature
point tracked in following frame) to solve current pose of
the non-cooperative target. Consequently, this paper uses 3D
feature points on non-cooperative target model and 2D fea-
ture points in image to achieve directly correspond 3D to 2D,
and acquires pose parameter r via optimizing the objective
function 1p.

FIGURE 8. Harris corner feature of non-cooperative target.

In our research, point feature is detected by Harris corner
detector [37] as shown in figure 8, and its tracking is realized
via KLT tracking [38]. That is, our implement reduces the
calculation of tracking by reducing number of tracking points,
to improve the real-time performance of tracking accordingly.

In this paper, details in point tracking based on KLT as
follows,

1. Extracting continuous single frame image from a video
sequence of non-cooperative target;

2. Detecting non-cooperative target ontology from image
sequence as foreground target;

3. Recording a certain frame from image sequence as IO
(foreground target appears in IO);

4. Extracting feature points from IO via Harris operator;
5. Selecting randomly two continuous frames as Ik and

Ik+1 from image sequence, their order are behind IO (fore-
ground target also appears in Ik and Ik+1);
6. Searching position of feature points extracted from IO in

Ik , and solve their coordinate parameters;
7. Interacting for above 6 steps to complete KLT tracking

of feature points.
In above process, define {xi}

Np
i=1 as a feature point set

extracted from the Ik th frame image, then its corresponding

3D feature point set on non-cooperative target model is
recorded as {Xi}

Np
i=1. Apparently, feature point set {x ′i}

Np
i=1 in

the Ik+1th frame image correspond to {xi}
Np
i=1 is obtained

through solving optical flow from the Ik th frame image to
the Ik+1th frame image, which has a one-to-one mapping

relationship with {Xi}
Np
i=1.

Specially, during extracting Harris feature points, some
background interference points are also the included in
extracted feature point, which elimination ways is similar to
the method mentioned above (remove background interfer-
ence points fromSIFT feature points extraction). Finally, only
Harris feature points on non-cooperative target contours are
retained.

3) TARGET TRACKING BASED ON FUSION OF
EDGE FEATURE AND POINT FEATURE
As a matter of fact, accumulative error of pose would be
generated during extracting and tracking of point features.
Fusion of edge feature and point feature is to avoid the
disadvantage of two features, and improve the accuracy and
robustness of target tracking. In consequence, after acquiring
correspondence between 2D feature points and 3D feature
points, issue of solve pose parameter could be equivalent to
a local nonlinear optimization problem. Through local non-
linear optimization of forward projection error 1r between
above two features, the estimated value r̂ of pose parameter
r is finally obtained.

r̂ = argmin
r

1r (7)

1r =
∑

(ei(r))2 (8)

where, ei(r) is the error between two-dimensional feature and
projection feature.

It can be seen from formula (8) that this is a nonlinear
minimization problem about the pose parameter r . Therefore,
Gauss-Newton iteration [39] is applied to iteratively update
the pose parameter r , and finally, optimal estimation of r
could be obtained.

Define set of projection points as {xi,j} acquired by pro-
jecting non-cooperative target model to image, set of points
on non-cooperative target in image correspond to {xi,j} is x ′i,j,
error function 1(r) refers distance from points x ′i,j in image
to model projection points xi,j, then,

1(r) =
∑
i

∑
j

(d⊥(xi,j, x ′i,j))
2 (9)

where, d⊥(xi,j, x ′i,j) is distance from point x ′i,j in image to
model projection point xi,j.

In our implement, starting from the initial pose estimation
r0, in each interaction loop k , performing a tiny displacement
transformation δr for pose parameter rk , and using following
formula to update pose parameter,

rk+1 = rk ⊕ δr (10)

where,⊕ is sum operator in parameter space, which ultimate
goal is to determine the value of rk that minimizes the 1r in
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each iteration loop, and its description in mathematics is,

δr = argmin
δr

∑
i

∑
j

(d⊥(xi,j(rk+1), x ′i,j))
2

= argmin
δr

∑
i

∑
j

(d⊥(xi,j(rk ⊕ δr), x ′i,j))
2 (11)

In process of interaction, tiny displacement transformation
δr is acquired by following formula,

δr = −J+e(r) (12)

where, J+ is pseudo-inverse matrix of J , and J is Jacobian
matrix of error vector e(r), J = ∂e(r)

/
∂r .

Especially, tiny displacement transformation δr is screw
displacement of pose parameter, and δr = (v,w), where v
refers translation displacement parameter, w represents rota-
tion displacement parameter.

In order to achieve the update of pose parameters through
tiny displacement transformation δr , converting the δr to its
corresponding rigid body instantaneous displacement δM via
an exponential map,

δM = exp([δr]) (13)

where, [δr] =
[
w v
0 0

]
.

In addition, define cMo as homogeneous transformation
matrix in process of rigid body transformation, which rep-
resents pose parameters of non-cooperative target relative to
the camera.

Then, on the basis of formula (10), cMo could be update
by δM,

Mk+1 = exp([δr])Mk (14)

However, during solving pose parameters of each frame
in video sequence by using Gaussian-Newton nonlinear opti-
mization, the input parameters maybe contain some outliers,
which will affect the accuracy of pose parameters obtained
by iterative optimization. Consequently, M estimator [40] is
introduced to eliminate the outliers may be generated dur-
ing model projection and edge matching, due to its better
robustness.

In this work, objective of M estimator is to reduce the
influence of outliers in input parameters on estimation results,
via assigning the adaptive weight to input parameter in error
function. Therefore, define R as estimation function of pose
error, then, the expression of nonlinear optimization issue as
following,

1R = ρ(s(r)− s∗) (15)

where, ρ(ei(r)) is robust estimation function.
In above formula, diagonal weight matrix D (D = diag

(w1, . . . ,wn)) is determined by setting the M estimator ρ, as
well as, D is used for setting the weight wi of each parameter
in error vector e under the condition of given error vector e =[
e0 e1 ... en

]
, where 0 < wi < 1, and wi is expressed as,

ωi =
ψ(δi/σ )
δi/σ

(16)

FIGURE 9. Experimental platform.

where, δi is normalized residuals (δi = ei − Med(e)), 9 is
influence function,Med refers median operator, and σ repre-
sents standard deviation of interior point data.

Especially, the influence function 9 is defined as,

ψ(u) =

{
u(C2

− u2)2| u| ≤ C
0| u| > C

(17)

where, C is constant.
Also, standard deviation of interior point data σ is another

important parameter, which is unknown in initial case, but it
could be obtained by median absolute deviation σ̂ ,

σ̂ =
1

8−1(0.75)
Medi(|δi −Medj(δj)|) (18)

where, 8() is normal cumulative distribution function, and
8−1(0.75) = 1.48.
As a result, after above calculation, the formula (12) could

be updated,

δr = −(DJ )+De(r) (19)

Additionally, in process of solving non-linear pose param-
eters mentioned above, the error function is also need to be
solved and non-linear optimization.

Firstly, error function of edge feature is to be solved, which
is expressed as,

1g(r) =
1
Ng

∑
i

ρg(egi (r))

=
1
Ng

∑
i

ρg(σ−1g d⊥(li(r), x′i)) (20)

where, d⊥(li(r), x ′i ) represents distance from feature point x ′i
to projection straight line li(r), ρg is M estimator, and σ g

refers normalization factor of standard deviation for egi , which

is expressed as σg =
√

1
Ng

∑
i
ρg(d⊥(li(rf ), x ′i )).

Obviously, function expression of li(r) needs to be known
to obtain the d⊥(li(r), x ′i ).
Define function expression of initial model projection

straight line li(rk ) as,

x cos θxi + y sin θxi = ρxi ∀(x, y) ∈ li(rk ) (21)
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FIGURE 10. Distribution of absolute pose measurement error.

where, θxi is included angle between x axis of image plane
coordinate and normal direction of li(rk ), ρxi refers distance
between li(rk ) and image plane coordinate origin.
Since θxi and ρxi could be acquired in process of model

projection, as well as pose parameters in previous frame
of non-cooperative target model are known, then, function
representation of straight ling Li inmodel coordinate on three-
dimensional model of non-cooperative target corresponding
to li(rk ) could be acquired.

In accordance with current pose parameter r , li(r) could
be obtained by projecting Li to image plane and update
θxi and ρxi . Then, d⊥(li(r), x

′
i ) could described as,

d⊥(li(r), x ′i ) = ρxi − ρx ′i (22)

In formula (22),

ρx′i
= xx′i cos θxi + yx′i sin θxi (23)

where, xx ′i and yx ′i are coordinates of x ′i in image plane
coordinate.

Furthermore, Jacobian matrix Jegi of egi (r) needs to be
solved, which is defined as,

Jegi =
∂egi
∂r
=
∂egi d⊥(li(r), x

′
i )

∂r
(24)

Then, substituting formula (17) to formula (24),

Jegi =
∂ρX i

∂r
−

∂ρX ′i
∂r

=
∂ρX i

∂r
+ (xX ′i sin θX ′i − yX ′i cos θX ′i )

∂θX i

∂r

=
∂ρX i

∂r
+ α

∂θX i

∂r
= Jρxi + αJθxi (25)

where, α = xX ′i sin θX ′i − yX ′i cos θX ′i , Jρxi and Jθxi is obtained
by literature [41],

Jρxi = [λρxi cos θxi λρxi sin θxi − λρxiρxi · · ·

×(1+ ρ2xi ) sin θxi − (1+ ρ2xi ) cos θxi0] (26)
Jθxi = [λθxi cos θxiλθxi sin θxi − λθxiρxi · · ·
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FIGURE 11. Pose parameter cure of target tracking.

×ρxi cos θxi − ρxi sin θxi − 1] (27)

In formula (27),

λρxi =
(Aρxi cos θxi + B sin θxi + C)

D
(28)

λθxi =
(Aρxi sin θxi + B cos θxi + C)

D
(29)

In formula (28) and formula (29),AX+BY+CZ+D = 0 is
a function representation of a certain three-dimensional plane
to which the straight line Li belongs in model coordinate.
Since model parameters of non-cooperative target are known,
four parameters (A, B, C and D) of three-dimensional plane
could be obtained by using pose parameters of previous frame
image and three-dimensional coordinates of mentioned sam-
pling point Xi in model coordinate.

Through combining formulas (26), (27), (28) and (29), the
needed Jacobianmatrix Jegi for nonlinear optimization of pose
parameters could be obtained,

Jegi =



λd⊥ cos θxi
λd⊥ sin θxi
−λd⊥ρxi

(1+ ρ2xi ) sin θxi − αρxi cos θxi
−(1+ ρ2xi ) cos θxi − αρxi sin θxi

−α



T

(30)

where, λd⊥ = λρxi + αλθxi .
Secondly, according to one-to-one mapping relation-

ship between three-dimensional point set {Xi}
Np
i=1 and two-

dimensional point set {x ′i}
Np
i=1, error function of point feature
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FIGURE 12. Error curve of target tracking.

could be expressed as follows,

1p(r) =
1
Np

Np∑
i

ρp(epi ) (31)

where, ρp is M estimator, and epi is defined as,

epi = σ
−1
p (xi(r)− x ′i ) (32)

where, xi(r) represents the result of three-dimensional point
Xi being projected into image plane based on pose parameter
r to be solved, namely, xi(r) = pr(Xi, r), σp is normalization
factor of standard deviation for epi , which is expressed as σp =√∑

i
ρp(xi(rf )− x ′i )

/
Np.

Moreover, Jacobian matrix Jepi of point feature is also
acquired by literature [41],

Jepi =
∂epi
∂r

=

[
px 0
0 py

]−
1
Z

0
x
Z

xy −1− x2 y

0 −
1
Z

y
Z

1+ y2 xy −x


(33)

where, px and py are focal ratio parameters of camera, x and
y are coordinates of feature point xi(r) = pr(Xi, r) in image,
Z refers depth value of 3D point on model corresponding to
feature point xi.
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Lastly, in order to achieve target tracking based on fusion of
edge feature and point feature, thereby to solve pose param-
eters with nonlinear optimization algorithm, a global error
function1 composed of edge feature error function and point
feature error function is set up,

1 = ωg1g
+ ωp1p (34)

where, 1g is error function of edge feature, 1p is error
function of point feature, wg and wp are weight parameter,
meanwhile, 0 < wg < 1, 0 < wp < 1.
Similarly, global error vector e is described as,

e =
[√

λgeg
√
λpep

]
(35)

where, eg =

 eg1
...

egNg

 , ep =
 ep1

...

epNp

.
As well as, global Jacobian matrix is expressed as,

J =
[√

λgJeg√
λpJep

]
(36)

where, Jeg =


Jeg1
...

JegNg

 , Jep =

Jep1
...

JepNp

.
In formula (35) and formula (36), λg and λp are

described as,

λg =
ωg

Ng
, λp =

ωp

Np
(37)

However, it is known that from formula (19), global
weight matrix D also needs to be solved for performing
Gauss-Newton optimization based on M estimator, which is
expressed as,

D = blockdiag(Dg,Dp) (38)

Accordingly, the formula (19) could be updated as,

δr = −(DJs)+De(r)

= −(λgJgTDgTDgJg + λpJpTDpTDpJp)−1 ∗

×(λgJgTDgTDgeg(r)+ λpJpTDpTDpep(r)) (39)

Finally, through using above formula and Gauss-Newton
iterative optimization algorithm, pose parameters of non-
cooperative target could be solved and update in real-time.
As a consequence, target tracking based on fusion of edge
feature and point feature is exploited for experimental per-
formance assessment.

IV. EXPERIMENTS
A. ESTABLISH EXPERIMENTAL PLATFORM
Objective of experiment is to verify the effectiveness of pro-
posedmethod in this paper. Thus, in accordance with research
needs, we make use of existing conditions and equipment to
establish our experimental platform, as shown in figure 9.

FIGURE 13. Target tracking experiment under poor imaging condition.

It can be clearly seen from figure 9 that established experi-
mental system is composed of non-cooperative target model,
CCD camera, 6 DOF manipulator, infrared location and
tracking system, and a computer. More precisely, adopted
non-cooperative target model is Chang’e-2 satellite model
with a ratio of 1:30 compared to the real satellite. The CCD
camera transmits collected image data to computer is via
network port communication. Meanwhile, type of 6 DOF
manipulator is a motorman SV3X industrial manipulator with
repeated positioning accuracy of 0.03mm and a maximum
working radius of 677mm. In our experiments, CCD camera
is fixed to the end of manipulator through a special fixture.
It means that motion of CCD camera follows movement
of manipulator. Thus, manipulator is used for simulating
motion of non-cooperative target relative to CCD camera.
Furthermore, infrared location and tracking system is Polaris
Spectra System produced byNDICompany of Canada, which
transmits actual pose parameters through the USB interface.
The transmitted data is regarded as reference data to evaluate
the accuracy of proposed algorithm in this paper. Last but
certainly not least, computer is used for collecting image data
and solving pose parameters.

Additionally, it is worth noting that in our experiments,
since measurement range of Polaris Spectra System and view
field range of CCD camera are limited, position range of
pose measurement experiment is limited from 1200mm to
1550mm, which is equivalent to measure non-cooperative
target pose at a distance from 36m to 46.5m via using ratio
of 1:30 for conversion.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) MEASUREMENT ACCURACY VERIFICATION
OF INITIAL POSE
In order to evaluate the accuracy of proposed initial
pose measurement algorithm, we collect 20 groups of

106190 VOLUME 7, 2019



L. Zhang et al.: Pose Measurement for Non-Cooperative Target Based on Visual Information

FIGURE 14. Pose parameters curve of tracking in condition of poor imaging.

experimental data, and analyze error between measurement
values and actual values. Specially, measurement values
are obtained by the proposed algorithm, and actual values
are acquired via Polaris Spectra System. For convenience,
we define error between measurement value and actual value
as absolute pose measurement error, Tx , Ty, and Tz represent
translations along x, y, and z axes, respectively, meanwhile,
Rx , Ry, and Rz respective represent rotations along x, y,
and z axes.

The distribution of absolute pose measurement error is
shown in figure 10.

In this experiment, we use the average value of absolute
pose measurement error to evaluate the measurement accu-
racy, as shown in table 2.

TABLE 2. Comparison of absolute pose measurement error.

It is apparent from table 2 that average error of rotation
parameters are no more than 2.5◦, and average error of trans-
lation parameters are less than 10.6mm, which illustrates that
in our implement, besides the systematic error of Polaris
Spectra System, error of proposed initial pose measurement
algorithm is relative to slight.

In our actual application, rotation precision is required to
be less than 5◦, and translation precision is required to be
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FIGURE 15. Pose error curve of tracking.

less than 20mm. Thus, the table 2 demonstrates that accuracy
of initial pose measurement is highly enough to satisfy the
requirement in actual application.

2) TARGET TRACKING
In order to verify the accuracy, robustness and real-time of
model-based target tracking algorithm, as well as further to
examine the reliability and accuracy of initial pose obtained
by pose measurement algorithm after starting the target track-
ing, we designed and conducted model-based target tracking
experiments.

Primarily, target tracking experiment in condition of nor-
mal light is performed, to validate feasibility and accuracy of
proposed pose measurement algorithm. Comparison images
between actual values acquired by experiment and measured

values are shown in figure 11, as previous mentioned, Tx ,
Ty, and Tz represent translations along x, y, and z axes,
respectively, meanwhile, Rx , Ry, and Rz respective represent
rotations along x, y, and z axes.
As is exhibited in figure 11 that red curve is measured

value, and blue curve represents the actual value. Afterwards,
error curve of target tracking could be acquired via data
processing for figure 11 is shown in figure 12.

As is known from analysis of figure 11 and figure 12,
error of rotation tracking along x, y, and z axes are less
than 2.5◦, and error of translation tracking along x, y, and z
axes are less than 20mm, which satisfy the requirement of
precision in our actual application. Thus, the experimental
results demonstrate that proposed tracking algorithm has an
ideal tracking effect.
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Next in line, target tracking experiment under poor imaging
condition is accomplished, to confirm robustness and accu-
racy of proposed pose measurement algorithm. The imaging
effect and target tracking effect as shown in figure 13, pose
parameter curve of tracking is shown in figure 14, and pose
error curve of tracking is displayed in figure 15. Also, Tx ,
Ty, and Tz represent translations along x, y, and z axes,
respectively, meanwhile, Rx , Ry, and Rz respective represent
rotations along x, y, and z axes.

It can be seen form figure 14 and figure 15 that rotation
tracking accuracy of rotation parameters Rx , Ry, and Rz are
less than 2◦, and tracking accuracy of translation parameters
Tx , Ty, and Tz are less than 20mm. Obviously, accuracy of
tracking under poor imaging condition is not significantly
different from normal condition, which illustrate that pro-
posed pose tracking algorithm has good robustness, and could
satisfy the pose tracking requirements under different lighting
conditions to some extent.

Finally, tracking speed verification experiment of pose
tracking algorithm is carried out, to test the pose parame-
ters calculation speed of tracking algorithm. In this imple-
ment, the algorithm is used for tracking poses of four video
sequences with different frames, and the recorded data is
shown in table 3.

TABLE 3. Data of pose tracking speed verification experiment.

Table 3 reflects that pose tracking algorithm in this paper
has a processing speed of about 10frame /s. In this work,
image processing speed is required to be at least 4frame /s.
Thus, table 3 illustrate that our algorithm could satisfy the
requirements of real-time pose tracking for non-cooperative
targets in real-time.

V. CONCLUSION AND DISCUSSIONS
To solve the pose measurement problem of non-cooperative
targets in space environment, a pose measurement approach
combined initial pose measurement with model-based target
tracking is put forward. Purpose of measure initial pose is
to start target tracking. Thus, an algorithm based on SIFT
matching to measure initial pose of target tracking is pro-
posed, which is to initial the target tracking. To solve the
pose parameters, the algorithm couples virtual visual servo
with RANSAC based on multipoint matching. Then, a target
tracking algorithm is proposed. Distinct from conventional
model-based tracking, edge and point are taken as visual fea-
tures in this paper. Moreover, anM estimator is introduced to
resist the interference from environment during target track-
ing, to realize the real-time measurement of pose parameters.

Lastly, a series of experiments are carried out to confirm the
pose measurement method in this paper has highly precision,
robustness, and good real-time performance. The experimen-
tal results demonstrate that our proposed method not only
could adapt various illumination conditions, but also could
satisfy the requirements of real-time solving pose parameters
in video sequences.

Particularly, a beneficial work to be finished in the future
is study on recover the structure of non-cooperative target
from motion via using visual sensors, to realize the identi-
fication and pose measurement of unknown non-cooperative
targets. Also, with the development of visual sensors, initial
pose measurement will be further deeply investigated, such
as based on RGB-D sensor, multi-lens, laser radar, and etc.
In addition, how to predict and correct the data in pose
tracking to improve the accuracy and robustness of tracking
algorithm is an important topic of future research.

ACKNOWLEDGMENT
The authors would like to express the sincere gratitude to
anonymous reviewers and editors for their professional sug-
gestions on improving the manuscript. They also would like
to thank Dr. Baoshi Cao for paying his precious time to put
forward the valuable suggestion on writing.

REFERENCES
[1] N. G. Cui, P. Wang, J. F. Guo, and X. Cheng, ‘‘A review of on-orbit

servicing,’’ J. Astronaut., vol. 28, no. 4, pp. 805–811, 2007.
[2] B. Liang, D. Xiaodong, L. Cheng, and X.Wenfu, ‘‘Advances in space robot

on-orbit servicing for non-cooperative spacecraft,’’ Robot, vol. 34, no. 2,
pp. 242–256, Mar. 2012.

[3] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, ‘‘A review of space
robotics technologies for on-orbit servicing,’’ Prog. Aerosp. Sci., vol. 68,
pp. 1–26, Jul. 2014.

[4] K. Landzettel, C. Preusche, A. Albu-Schaffer, and D. Reintsema,
‘‘Robotic on-orbit servicing—DLR’s experience and perspective,’’ inProc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006, pp. 4587–4594.

[5] F. Sellmaier, T. Boge, J. Spurmann, S. Gully, T. Rupp, and F. Huber,
‘‘On-orbit servicing missions: Challenges and solutions for spacecraft
operations,’’ in Proc. Spaceops Conf., Apr. 2010, p. 213.

[6] M. H. Shan, J. Guo, and E. Gill, ‘‘Review and comparison of active
space debris capturing and removal methods,’’ Prog. Aerosp. Sci., vol. 80,
pp. 18–32, Jan. 2016.

[7] R. Tomasz, ‘‘Obstacle avoidance in space robotics: Review of major chal-
lenges and proposed solutions,’’ Prog. Aerosp. Sci., vol. 101, pp. 31–48,
Aug. 2018.

[8] G. Hirzinger, K. Landzettel, B. Brunner, M. Fischer, C. Preusche,
D. Reintsema, A. Albu-Schäffer, G. Schreiber, B.-M. Steinmetz, ‘‘DLR’s
robotics technologies for on-orbit servicing,’’ Adv. Robot., vol. 18, no. 2,
pp. 139–174, 2004.

[9] T. Debus and S. Dougherty, ‘‘Overview and performance of the front-
end robotics enabling near-term demonstration (FREND) robotic arm,’’ in
Proc. AIAA Infotech, 2009, pp. 1–12.

[10] J. Lennon, C. Henshaw, and W. Purdy, ‘‘An architecture for autonomous
control of a robotic satellite grappling mission,’’ in Proc. AIAA Guid.,
Navigat. Control Conf. Exhibit, 2013, p. 7259.

[11] J. Obermark, G. Creamer, B. E. Kelm, W. Wagner, and C. G. Henshaw,
‘‘SUMO/FREND : Vision system for autonomous satellite grapple,’’ Proc.
SPIE, vol. 6555, May 2007, Art. no. 65550Y.

[12] N. W. Oumer and G. Panin, ‘‘3D point tracking and pose estimation of a
space object using stereo images,’’ in Proc. Int. Conf. Pattern Recognit.,
Nov. 2012, pp. 796–800.

[13] D. Fourie, B. Tweddle, S. Ulrich, and A. Saenz-Otero, ‘‘Vision-based
relative navigation and control for autonomous spacecraft inspection of
an unknown object,’’ in Proc. AIAA Guid., Navigat., Control (GNC) Conf.,
2013, p. 4759.

VOLUME 7, 2019 106193



L. Zhang et al.: Pose Measurement for Non-Cooperative Target Based on Visual Information

[14] D. Fourie, B. E. Tweddle, S. Ulrich, and A. Saenz-Otero, ‘‘Flight results of
vision-based navigation for autonomous spacecraft inspection of unknown
objects,’’ J. Spacecraft Rockets, vol. 51, no. 6, pp. 2016–2026, May 2014.

[15] S. Segal, A. Carmi, and P. Gurfil, ‘‘Stereovision-based estimation of
relative dynamics between noncooperative satellites: Theory and experi-
ments,’’ IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 568–584,
Mar. 2014.

[16] J. Peng, W. Xu, and H. Yuan, ‘‘An efficient pose measurement method of a
space non-cooperative target based on stereo vision,’’ IEEE Access, vol. 5,
pp. 22344–22362, 2017.

[17] Y. He, B. Liang, J. He, and S. Li, ‘‘Non-cooperative spacecraft pose
tracking based on point cloud feature,’’ Acta Astronautica, vol. 139,
pp. 213–221, Oct. 2017.

[18] J. Thienel, J. Van Eepoel, and R. Sanner, ‘‘Accurate state estimation
and tracking of a non-cooperative target vehicle,’’ in Proc. AIAA Guid.,
Navigat., Control Conf. Exhibit, 2006, p. 6802.

[19] L. Regoli, K. Ravandoor, M. Schmidt, and K. Schilling, ‘‘On-line robust
pose estimation for rendezvous and docking in space using photonic mixer
devices,’’ Acta Astronautica, vol. 96, pp. 159–165, Mar./Apr. 2014.

[20] T. Tzschichholz, T. Boge, and K. Schilling, ‘‘Relative pose estimation
of satellites using PMD-/CCD-sensor data fusion,’’ Acta Astronautica,
vol. 109, pp. 25–33, Apr./Jun. 2015.

[21] S. Sharma and S. D’Amico, ‘‘Comparative assessment of techniques
for initial pose estimation using monocular vision,’’ Acta Astronautica,
vol. 123, pp. 435–445, Jun./Jul. 2016.

[22] V. Pesce, R. Opromolla, S. Sarno, M. Lavagna, and M. Grassi,
‘‘Autonomous relative navigation around uncooperative spacecraft based
on a single camera,’’ Aerosp. Sci. Technol., vol. 84, pp. 1070–1080,
Jan. 2019.

[23] R. Opromolla, G. Fasano, G. Rufino, andM. Grassi, ‘‘A review of coopera-
tive and uncooperative spacecraft pose determination techniques for close-
proximity operations,’’ Prog. Aerosp. Sci., vol. 93, pp. 53–72, Aug. 2017.

[24] F. Terui, ‘‘Model based visual relative motion estimation and control of
a spacecraft utilizing computer graphics,’’ in Proc. 21st Int. Symp. Space
Flight Dyn., Tolouse, France, Sep. 2009, pp. 1–15.

[25] B. Tamadazte, E. Marchand, S. Dembélé, and N. Le Fort-Piat, ‘‘CAD
model-based tracking and 3D visual-based control forMEMSmicroassem-
bly,’’ Int. J. Robot. Res., vol. 29, no. 11, pp. 1416–1434, Jul. 2010.

[26] V. Kumar, H. B. Hablani, and R. Pandiyan, ‘‘Relative navigation of
satellites in formation using monocular model-based vision,’’ IFAC Proc.
Volumes, vol. 47, no. 1, pp. 497–504, 2014.

[27] R. Opromolla, G. Fasano, G. Rufino, and M. Grassi, ‘‘Performance eval-
uation of 3D model-based techniques for autonomous pose initialization
and tracking,’’ in Proc. AIAA Infotech. Aerosp., 2015, p. 1426.

[28] R. Opromolla, G. Fasano, G. Rufino, and M. Grassi, ‘‘A model-based
3D template matching technique for pose acquisition of an uncooperative
space object,’’ Sensors, vol. 15, no. 3, pp. 6360–6382, Mar. 2015.

[29] L. Liu, G. Zhao, and Y. Bo, ‘‘Point cloud based relative pose estimation of
a satellite in close range,’’ Sensors, vol. 16, no. 6, p. 824, Jun. 2016.

[30] R. Opromolla, G. Fasano, G. Rufino, and M. Grassi, ‘‘Pose estima-
tion for spacecraft relative navigation using model-based algorithms,’’
IEEE Trans. Aerosp. Electron. Syst, vol. 53, no. 1, pp. 431–447,
Feb. 2017.

[31] S. Sharma, J. Ventura, and S. D’Amico, ‘‘Robust model-based monocular
pose initialization for noncooperative spacecraft rendezvous,’’ J. Space-
craft Rockets, vol. 55, no. 6, pp. 1414–1429, Jun. 2018.

[32] G. Schweighofer and A. Pinz, ‘‘Iterative pose estimation using copla-
nar feature points,’’ Comput. Vis. Image Understand., vol. 63, no. 3,
pp. 495–511, 1996.

[33] J. Cheng, C. Leng, J. Wu, H. Cui, and H. Lu, ‘‘Fast and accurate image
matching with cascade hashing for 3D reconstruction,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1–8.

[34] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, ‘‘Real-
time markerless tracking for augmented reality: The virtual visual servoing
framework,’’ IEEE Trans. Vis. Comput. Graph., vol. 12, no. 4, pp. 615–628,
Jul./Aug. 2006.

[35] M. A. Fischler and R. Bolles, ‘‘Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy,’’ Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[36] P. Bouthemy, ‘‘A maximum likelihood framework for determining mov-
ing edges,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 5,
pp. 499–511, May 1989.

[37] C. G. Harris and M. Stephens, ‘‘A combined corner and edge detector,’’ in
Proc. Alvey Vis. Conf., Aug. 1988, vol. 15, no. 50, pp. 147–152.

[38] J. Shi and C. Tomasi, ‘‘Good features to track,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Ithaca, NY, USA: Cornell Univ., Jun. 1993,
pp. 593–600.

[39] S. Gratton, A. S. Lawless, and N. K. Nichols, ‘‘Approximate Gauss–
Newton methods for nonlinear least squares problems,’’ SIAM J. Optim.,
vol. 18, no. 1, pp. 106–132, 2007.

[40] P. J. Huber, ‘‘Robust statistics,’’ J. Amer. Stat. Assoc., vol. 78, no. 381,
pp. 1248–1251, 2011.

[41] B. Espiau, F. Chaumette, and P. Rives, ‘‘A new approach to visual servoing
in robotics,’’ IEEE Trans. Robot. Autom., vol. 8, no. 3, pp. 313–326,
Jun. 1992.

LONGZHI ZHANG received the B.S. degree in
mechanical engineering from the Heilongjiang
University of Science and Technology, in 2010,
and theM.S. degree fromHarbin Engineering Uni-
versity, China, in 2014. She is currently pursuing
the Ph.D. degree with the State Key Laboratory of
Robotics and System, Harbin Institute of Technol-
ogy (HIT), China. Her research interests include
computer vision, image processing, and robotics.

DONGMEI WU received the B.S. and M.S.
degrees in computer science and automation engi-
neering from Heilongjiang University, China, in
1990 and 1993, respectively, and the Ph.D. degree
inmechatronics engineering from the Harbin Insti-
tute of Technology (HIT), in 2003, where she is
currently a Professor with the State Key Labora-
tory of Robotics and System. Her research inter-
ests include computer vision, image processing,
SLAM, and robotics.

YUQI REN received the B.S. and M.S. degrees in
mechatronics engineering from the Harbin Insti-
tute of Technology (HIT), China, in 2013 and
2015, respectively. He is currently an Assistance
Researcher with Shenzhen Whalehouse Technol-
ogy Company Ltd., China. His research interests
include computer vision, SLAM, and robotics.

106194 VOLUME 7, 2019


	INTRODUCTION
	RESEARCH MOTIVATION
	METHOD
	INITIAL POSE MEASUREMENT OF NON-COOPERATIVE TARGET TRACKING
	MEASURE REFERENCE POSE
	EXTRACT AND MATCHING SIFT FEATURE POINTS
	POSE MEASUREMENT BASED ON MULTIPOINT MATCHING

	NON-COOPERATIVE TARGET TRACKING
	SEARCHING AND MATCHING EDGE FEATURE
	POINT FEATURE DETECTION AND TRACKING
	TARGET TRACKING BASED ON FUSION OF EDGE FEATURE AND POINT FEATURE


	EXPERIMENTS
	ESTABLISH EXPERIMENTAL PLATFORM
	EXPERIMENTAL RESULTS AND ANALYSIS
	MEASUREMENT ACCURACY VERIFICATION OF INITIAL POSE
	TARGET TRACKING


	CONCLUSION AND DISCUSSIONS
	REFERENCES
	Biographies
	LONGZHI ZHANG
	DONGMEI WU
	YUQI REN


