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ABSTRACT Multiple-inputs multiple-outputs (MIMO) technology, including massive MIMO, plays an
important role in modern wireless communication systems. Massive MIMO systems with high-order
modulation can promote spectrum efficiency. The algorithm complexity and detection performance are
the main challenges for the massive MIMO system. Thus, the low complexity and high-performance
MIMO detector is important for the practical massive MIMO application. The Expectation Propagation
(EP) detector outperforms many conventional detectors in high-order massive MIMO scenarios. However,
its complexity increases exponentially with the number of sending antennas and the modulation order.
In this paper, we propose a novel information updating scheme for EP MIMO detection algorithm to
achieve high performance with low complexity. The high-efficiency EP detector is based on the expectation
propagation algorithm with the jointed scheme of successive updating, sorting updating and sphere search
aided algorithm. Numerical results show the high-efficiency EP detector reduces over 85% complexity of the
original EP detector for the scenario Nt = Nr = 20 with 64-QAM modulation, and the gain on complexity
becomes more evident with the increase of antenna scale and the modulation order. The high-efficiency
EP detector can outperform the original EP detector in different high-order massive scenarios. Compared
with MMSE algorithm, the proposed scheme can get huge performance gain with 1.5 times complexity for
high-order massive MIMO systems.

INDEX TERMS Expectation propagation, massive MIMO detector, low complexity, high performance,
high-order modulation.

I. INTRODUCTION
MIMO technology is one of the key technologies in modern
wireless communication systems. Through multiple anten-
nas at sending and receiving sides, MIMO can improve the
system capacity and throughput without increasing spectrum
resources and the transmitting power of antennas. At present,
MIMO is adopted in many communication systems, includ-
ing long-term evolution system (LTE), WiFi and microwave
transmission networks, etc. With more antennas at sending
and receiving sides, massiveMIMO can obtainmore diversity
and multiplexing gain, which makes it be one of the key
candidates for the 5th generation (5G) mobile communication
system. Massive MIMO is necessary for future wireless com-
munication systems with high-throughput and high-stability.

For massiveMIMO systems, the increase of antenna scales
takes huge capacity gain as well as some technical issues
and many researchers have worked to solve them [1], [2].

The associate editor coordinating the review of this article and approving
it for publication was Jiayi Zhang.

MIMO symbols detection is one of them. Since MIMO
system was proposed, many MIMO detectors have been
widely researched and some of them have been adopted
in practical systems [3]. Maximum likelihood (ML) detec-
tor [4] can reach the optimal performance while its com-
plexity increases exponentially with modulation order and
the number of antennas, which is unacceptable for practi-
cal massive MIMO systems. The achievable rate of practi-
cal massive MIMO for different channel fading have been
analyzed in [5] and [6]. The practical MIMO detector can
be generally divided into linear detectors and non-linear
detectors. The linear massive MIMO detection algorithms
includeNeumann series approximation algorithm [7], Cheby-
shev iteration algorithm [8], conjugate gradient algorithm [9],
Zero Forcing (ZF) and Linear Minimum Mean Square Error
(LMMSE) [10]. The non-linear massive MIMO detection
algorithms include Sphere Decoding (SD) [11], Tree Search
(TS) [12], Lattice Reduction Aided (LRA) [13], Triangu-
lar approximate semidefinite relaxation (TASER) [14] and
K-Best signal detection algorithm [15]. Generally, non-linear
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detectors have better performance and higher complexity than
linear detectors, while the latter can improve their perfor-
mance with some schemes including Successive Interference
Cancellation (SIC) [16] and Parallel Interference Cancella-
tion (PIC) [17]. For example, LMMSE-PIC detector [18] can
evidently improve the performance of the LMMSE detector,
while its complexity also increases accordingly. It is proved
that the iterative LMMSE detector can achieve the Gaussian
capacity ofMIMO system for Gaussian signaling [19] and the
AMP receiver can achieve the constrained capacity of MIMO
systems for any fixed input distributions [20].

In recent years, iterative detectors have attracted exten-
sive attention [21]. Belief Propagation (BP) algorithm [22]
is based on Message Passing (MP), it can approximate the
posterior probability distribution for the Factor Graph (FG)
or Markov Random Fields (MRF). Especially, the approx-
imation result is equal to the exact posterior probability
distribution for the FG without loops. BP detector is also
researched by lots of scholars [23]–[25]. However, the FG of
MIMO (including massive MIMO) is fully connected, which
means there are lots of short loops (the number of nodes is
not more than 4) in the FG. As a result, the performance of
BP MIMO detector is poor. Gaussian Tree Approximation
(GTA) detector is based on an optimal tree approximation
of the Gaussian density of the unconstrained linear system,
which can improve the performance of BP in MIMO detec-
tion [26]. It’s further improved by GTA-SIC detector [27].
However, their performances are still not satisfactory. The
Gaussian message passing (GMP) is used to further reduce
the complexity of iterative receiver in the fully connected FG
and obtain a capacity-approaching performance [28], [29].
Thus the convergence and performance of the loopy message
passing receiver have been analyzed and improved. Another
iterative approximated algorithm is Expectation Propagation.
It is worth mentioning that there are two kinds of EP. The
first one is based on EP algorithm which approximates a
distribution by approximating components of the distribution
and updates them by moment matching. EP algorithm is
widely adopted in machine learning and achieves remarkable
accomplishment after being proposed by Minka [30], [31].
The second one is similar to BP and MP, it propagates mes-
sages (such as expectations, this is why the scheme is named)
between nodes in the FG and updates the messages until
they converge. Both two EP schemes are widely adopted in
communication systems. Such as channel estimation (CE),
MIMO detection and channel decoding [32]–[36].

EP MIMO detector based on EP algorithm (the first kind,
we call it ‘‘Original EP’’) was first proposed in [32] with fea-
tures of fast convergence and outstanding performance. The
EP MIMO detector is cited by a lot of MIMO researches. For
example, the EP detector extends to joint BP with variation
MP (BP-EP-VMP) in [37] and EP based on the conjugate
gradient (EP-CG) is used for signal detection in [38]. It is also
adopted in joint channel estimation and symbols detection.
Such as CE based on the orthogonal pilot in [39] and blind

CE in [40]. EP detector is improved in [41] based on the
expectation consistency (EC) framework.

However, there are three drawbacks of the original iterative
EP MIMO detector. Firstly, the original EP detector has to
calculate a matrix inversion whose size is equal to the antenna
scale in each iteration, which causes the high complexity
and restricts its practicability in massive MIMO systems.
Secondly, the EP detector indistinguishably updates differ-
ent posterior distributions of the transmitted symbols, which
could decrease the updating efficiency. At last, the original
EP detector must perform some heavy loaded mathematical
operations, including multiplication and exp, for every trans-
mitted symbol in each iteration and the whole constellation.
It’s unacceptable for high-order massive MIMO systems.
We have proposed a low-complexity EP MIMO detection
algorithm in [42], but its limitation is still obvious.

To improve the mentioned drawbacks of the original EP
detector, we propose a novel information updating algorithm
to achieve high-efficiency EP detector for high-order massive
MIMO systems. The novel updating algorithms include suc-
cessive updating, sorting updating and sphere search aided.
The jointed application of these three novel information
updating algorithms can achieve high-efficiency EP MIMO
detector. Both of the original EP detector and the pro-
posed high-efficiency EP detector approximate and update
the posterior distributions of transmitted symbols iteratively.
However, the proposed high-efficiency EP detector adopts
different updating strategies as well as space compression.
The contributions are listed as follows:
• Successive updating. The high-efficiency EP detector
changes the batch updating of the original EP detector
into successive updating, whichmeans it does not update
the approximated joint posterior distribution (AJPoD)
simultaneously after all approximated marginal prior
distributions (AMPrDs) have been updated. It updates
the AJPoD immediately after a single AMPrD has been
updated. Through successive updating scheme, the high-
efficiency EP detector can avoid the matrix inversion
of the original EP detector and improve the updating
efficiency. Thus, the algorithm complexity is decreased,
and the convergence is sped up.

• Sorting updating. Since the high-efficiency EP detector
updates the posterior distributions of transmitted sym-
bols in successive mode, we can sort the information
according to the reliability of posterior distributions and
update the posterior distributions with high reliability
preferentially, which makes the updating process more
reliable and converges faster than the original EP detec-
tor. what’s more, the performance is also improved.

• Sphere search aided. To reduce the huge calculation
load in the updating process for high order modula-
tions, the high-efficiency EP detector adopts the sphere
search aided (SSA), which can decrease the number
of mathematical operations without performance loss.
Consequently, it reduces the complexity of the original
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EP detector. The SSA scheme is especially effective in
high-order modulation.

Thus, the proposed high-efficiency EP detector can not
only reduce the complexity of the original EP detector in
a single iteration but also speed up the convergence, which
improves the practicability of the EP algorithm in MIMO
symbols detection. What’s more, the high-efficiency EP
detector acquires better performance than EP detector whose
performance is verified in [32] to be better than GTA and
GTA-SIC detector.

We focus on symbols detection for high-order MIMO sys-
tems in this paper. We assume that receiving side gets perfect
channel state information (CSI) and accurate estimation of
channel noise power in our analysis. Although there is an
estimation error in the practical system, it can be trans-
formed into channel noise. The simulation results show the
proposed algorithms are robust for imperfect CSI scenario.
The different scenarios are studied in our simulation works,
including different MIMO sizes, different modulation orders,
symmetric and asymmetric MIMO systems, and imperfect
CSI. According to simulation results, the proposed high-
efficiency EP detector outperforms the original EP MIMO
detector at the reduced complexity.

This paper is organized as follows. The system model and
basic knowledge about MIMO detection are introduced in
section II. Section III gives the details of the EP algorithm and
the corresponding EP detector. Section IV introduces the pro-
posed high-efficiency EP detectors. And Simulation results
and conclusion are presented in section V and section VI,
respectively.
Notation: The lowercase and uppercase in boldface denote

column vector and matrix, respectively. (· )H , (· )T and (· )−1

denote the conjugate transpose, transpose and inversion of a
matrix, respectively. E[·] andV[·] denote the expectation and
variance of random variables. CN (x : a,B) and CN (x : a, b)
denote complex joint Gaussian and complex Gaussian ran-
dom variables, where the three parameters are random vari-
able(s), mean(s) and (co)variance (matrix), respectively. For
a matrixM,M(i, j) is the element at i-th row and j-th column,
M[i] andM〈j〉 are the i-th column vector and j-th row vector,
respectively.R(·) and I(·) are the real part and imaginary part
of a complex number. The operation diag(·) acts on a vector
will get a diagonal matrix. Vec(�) represents the vectorization
of a matrix.

II. MIMO SYMBOLS DETECTION
Fig.1 is a M-QAMmodulationMIMO system withNt and Nr
antennas at sending and receiving sides, respectively.2 is the
set of its constellation points, the transmitted symbols vector
x = [x1, x2, . . . , xNt ]

T
∈ CNt×1 and xi ∈ 2. The received

symbols vector y = [y1, y2, . . . , yNr ]
T
∈ CNr×1 is given by:

y = Hx+ n, (1)

where n ∈ CNr×1 is the additive white circular-
symmetric complex Gaussian noise vector whose entries fol-
low CN (0, σ 2

n ).H ∈ CNr×Nt denotes the flat Rayleigh fading

FIGURE 1. Conceptual illustration of MIMO detection.

channel matrix whose entries are independent and identically
distributed (i.i.d.) with CN (0, 1).
The purpose of MIMO symbols detection is to obtain the

optimal estimation x̂ of transmitted symbols x. Generally,
it needs to calculate the posterior probability p(x|y) and max-
imizes its value to obtain the optimal estimation.

x̂ = arg max
x∈2Nt

p(x|y). (2)

ML detector finishes this by searching the whole solution
space.

x̂ = arg min
x∈2Nt

‖Hx− y‖2. (3)

Linear detectors first equalize the receiving vector by an
equilibrium matrix and then search for the partial optimal
estimation for every transmitted symbol.

x̂i = arg min
xi∈2
|xi − zi|. (4)

where zi is the equalized symbols. From Bayesian inference
theory, there is:

p(x|y) =
p(x, y)
p(y)

=
p(y|x)p(x)

p(y)
. (5)

Since the symbols y, the perfect CSI and channel noise
power are known at the receiving sides, the p(y|x) follows
CN (y : Hx, σ 2

n I). And then the joint posterior distribution of
transmitted symbols satisfies:

p(x|y) ∝ CN (y : Hx,σ 2
n I) · p(x). (6)

In theMIMO communication system, the transmitted sym-
bols are regarded as independent to each other (which is
ensured by the randomness of transmitted symbols and inter-
leaver in the system), that is p(x) =

∏Nt
i=1 p(xi). To improve

the accuracy of MIMO symbols detection, a detector should
calculate the following equation accurately.

p(x|y) ∝ CN (y : Hx,σ 2
n I) ·

Nt∏
i=1

p(xi)

= CN
(
x : (HHH)−1HHy, σ 2

n (H
HH)−1

)
·

Nt∏
i=1

p(xi),

(7)
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Algorithm 1 Expectation Propagation

1: Initialize all approximation term t̃i(x).
2: Compute the posterior of x from the product of t̃i(x) :
q(x) = f (x)

∏
i t̃i(x)/

∫
f (x)

∏
i t̃i(x)

3: Repeat until all t̃i(x) converge:
4: Choose a factor term t̃i(x).
5: Remove t̃i(x) form q(x) to get an ‘old’ posterior:
q\i(x) ∝ q(x)/t̃i(x).

6: Combine q\i(x) with ti(x) and minimize the KL diver-
gence to get a new posterior q′(x) with normalization Zi.

7: Update t̃i(x) = Ziq′(x)/q\i(x).

where p(xi) are the marginal prior distributions of transmitted
symbols.

III. EXPECTATION PROPAGATION MIMO DETECTOR
A. EXPECTATION PROPAGATION ALGORITHM
Expectation Propagation is one kind of approximated algo-
rithms based on Bayesian inference [30], [31]. It is appro-
priate for the probability distributions which belong to
exponential family.1

When an intractable distribution p(x) = f (x)
∏

i ti(x),
where f (x) belongs to exponential family, is difficult to calcu-
late directly, EP can approximate it iteratively with a distribu-
tion q(x) = f (x)

∏
i t̂i(x), where t̂i(x) are approximations of

ti(x) and belong to exponential family. And then q(x) will be
easier to calculate and it is updated as the following principle.

The similarity of two distributions can be described by
Kullback Leibler (KL) divergence:

DKL (p(x)||q(x)) = −
∫
p(x) ln

q(x)
p(x)

dx. (8)

From (8), we know that the smaller the value of KL diver-
gence is, the more similar are the two distributions. In order
to get the optimal approximation of p(x), one feasible method
is to compute the minimum of KL divergence by setting
its gradient to zero. Then the optimal approximation qopt (x)
satisfies the condition2:

Eqopt (x)[u(x)] = Ep(x)[u(x)], (9)

where u(x) represents the sufficient statistics of qopt (x). (9)
means that the expectations of sufficient statistics for approx-
imated distribution are the same as the objective distribution.
This is why the algorithm is called ‘‘Expectation Propaga-
tion’’. And because qopt (x) belongs to the exponential family,
its expectations of sufficient statistics are the different order
moments. Thus, this step is called ‘‘moment matching’’.

EP algorithm updates the t̃i(x) iteratively according to the
criterion of minimum KL divergence. A general form of EP
algorithm is shown as algorithm 1 in [30].

EP approximates the belief states by retaining the expec-
tations of sufficient statistics, such as mean and variance,

1More details about exponential family can be found in [43].
2The inference process can see [44].

and iterates until these expectations are consistent throughout
the Bayesian network. This makes it applicable to hybrid
Bayesian networks with discrete and continuous nodes.
Moreover, EP updates the approximated posterior distribu-
tions by moment matching, which is proved to be effective
and can obtain excellent performance. These two features
make EP draw extensive attention and successfully adopted
in machine learning.

B. THE ORIGINAL EP MIMO DETECTOR
In the MIMO system, the distributions are Gaussian-like.
Then EP algorithm can approximate them by Gaussian dis-
tributions which belong to exponential family. The sufficient
statistics of Gaussian distributions include

{
x, x2

}
and their

expectations are the first order and second order moments,
which are the mean and variance of Gaussian distribution,
respectively. When applied to MIMO symbols detection, EP
algorithm approximates joint posterior distribution of the
transmitted symbols. Just as mentioned in section II, the joint
posterior distribution satisfies p(x|y) ∝ CN (y : Hx, σ 2

n I) ·∏Nt
i=1 p(xi) . The original EP detector uses some unnormalized

Gaussian distributions p̂(xi) = exp(−1/2λix2i + γixi) to
approximate the marginal prior distributions, then the AJPoD
can be expressed as:

p̂(x|y) ∝ CN (y : Hx, σ 2
n I) ·

Nt∏
i=1

p̂(xi)

∝ exp
(
−

1
2σ 2

n
(y−Hx)H I(y−Hx)

) Nt∏
i=1

exp
(
−
1
2
λix2i + γixi

)

= exp

(
−

1
2σ 2

n
(y−Hx)H I(y−Hx)+

Nt∑
i=1

(
−
1
2
λix2i + γixi

))
,

(10)

and it follows joint Gaussian distribution, that is:

p̂(x|y)∼CN (x :u,C)∝exp
(
−
1
2
(x−u)HC−1(x−u)

)
, (11)

where u and C are the mean vector and covariance matrix of
AJPoD, respectively. Comparing (10)) with (11), there are:

C =
(
σ−2n HHH+ diag(λ)

)−1
, (12)

u = C ·
(
σ−2n HHy+ γ

)
, (13)

where λ = [λ1, λ2, . . . , λNt ]
T , γ = [γ1, γ2, . . . , γNt ]

H .
For the transmitted symbols are independent to each other,
the approximate marginal posterior distributions (AMPoDs)
are the corresponding components of AJPoD. That is
p̂(xi|y) ∼ CN (xi :u(i),C(i, i)). Referring to the process of
EP algorithm in section III, and the superscript (l) represents
the l-th iteration, we summarize the details of original EP
detector [32] as follow :
• Step-1: Initialize the parameters λ(0)i = E−1s , γ

(0)
i = 0,

where Es denotes the average symbol energy;
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• Step-2: Preprocessing: Compute the mean vector
u(0) and covariance matrix C(0) of the AJPoD as
(12) and (13).

• Step-3: Until the break condition or the maximum
iterations, loop:

1) Choose an AMPoD p̂(xi|y), update the correspond-
ing λ(l)i and γ (l)

i as follows:

a. Compute the marginal cavity distribution:

p̂\i(l)(xi|y) =
p̂(l)(xi|y)
p̂(l)(xi)

∼ CN (xi :m
(l)
i , ε

2(l)
i ),

(14)

where:

ε
2(l)
i =

C(l−1)(i, i)

1− C(l−1)(i, i) · λ(l−1)i

, (15)

m(l)
i = ε

2(l)
i

(
u(l−1)(i)
C(l−1)(i, i)

− γ
(l−1)
i

)
. (16)

b. Compute the mean u∗(l)i and variance σ ∗2(l)i
of replacement distribution p(l)r (xi|y) =

p̂\i(l)(xi|y) · p(xi), where p(xi) is a discrete uni-
form distribution about the constellation points
of transmitted symbols when there is no prior
knowledge.

c. Match the moments of replacement distribu-
tion p(l)r (xi|y) and partly-updating distribution
p(l)pu(xi|y) = p̂\i(l)(xi|y) · p̂(l)(xi), then get the λ

(l)
i

and γ (l)
i by:

λ
(l)
i =

1

σ
∗2(l)
i

−
1

ε
2(l)
i

, (17)

γ
(l)
i =

u∗(l)i

σ
∗2(l)
i

−
m(l)
i

ε
2(l)
i

. (18)

2) Check if all AMPoDs have been updated, if the
answer is ‘no’, go back to 1).

3) Update the mean vector u(l) and covariance matrix
C(l) of the AJPoD as (12) and (13).

• Step-4: Output the estimation x̂ of transmitted symbols
from the hard decision of AMPoDs p̂(xi|y).

In the process of original EP detector, there may return a
negative value in (17), which is illogical as a variance. It indi-
cates that there is an unsuitable approximate distribution.
In this situation, the detector gives up updating the approx-
imation and uses the previous reserved results. Meanwhile,
to improve the stability, updating (17) and (18) the detector
can use a low-pass filter as follow:

λ
(l)
i = β

(
1

σ
∗2(l)
i

−
1

ε
2(l)
i

)
+ (1− β)λ(l−1)i , (19)

γ
(l)
i = β

(
u∗(l)i

σ
∗2(l)
i

−
m(l)
i

ε
2(l)
i

)
+ (1− β)γ (l−1)

i , (20)

Besides, the detector controls the value of σ ∗2(l)i by σ ∗2(l)i =

max
(
V[p(l)r (xi|y)], τ

)
. Both β and τ are experimental

parameters.
EP detector is an application of the EP algorithm in the

MIMO communication system, and it inherits the character-
istic of good performance. EP detector also converges rapidly.
Reference [32] shows that the EP detector with two iterations
outperforms the Gaussian tree approximation (GTA) detector.

IV. HIGH-EFFICIENCY EP DETECTOR
A. MOTIVATION
Though the original EP detector has excellent performance,
its complexity is very high. Reference [32] shows that the
complexity of the original EP detector is O(LN 3

t + LNtM ),
where L denotes the iterations of the original EP detector,
while the complexity of MMSE detector is O(N 3

t + N
2
t ).

FIGURE 2. The illustrations of different EP detectors: (a) The properties of
the original EP detector, (b) The architecture of the high-efficiency EP
detector.

As shown in Fig.2(a), the main complexity of the original
EP detector is caused by two parts. One is the computation
of matrix inversion as (12). It is performed in each iteration,
which makes the complexity become O(LN 3

t ). The other
is the computation in the updating process of Step-3-1)-b.
To get the mean u∗(l)i and variance σ ∗2(l)i of replacement
distribution, the original EP detector must calculate the value
of probability density of approximated Gaussian distribution
for every transmitted symbol in the whole constellation space,

VOLUME 7, 2019 125229



G. Yao et al.: High-Efficiency EP Detector for High-Order Massive MIMO Systems

that is where the itemO(LNtM ) comes from. For a high-order
massive MIMO system, both the values of Nt andM are big,
and though the convergence speed of the original EP detector
is faster than BP based algorithms, it still needs more than
6 or 7 iterations to achieve converge. These mean that to reach
the excellent performance of the original EP detector needs a
huge computation load.

Besides, the updating processes of the original EP detector
for different transmitted symbols are indiscriminate, which
restricts the updating accuracy. The gain in each iteration is
limited. That is, the more iterative updating is required for the
original EP detector. It also means there are enhanced spaces
for the original EP detector in convergence and performance.
Thus, to design a high-efficiency EP detector which can
reduce the complexity of the original EP detector and further
improve the performance of the original EP detector is our
intention.

From the motivation, we proposed the high-efficiency EP
MIMO detector which includes three main algorithms. They
are successive updating, sorting updating and sphere search
aided. Just shown as Fig.2(b), successive updating can avoid
matrix inversion in the iteration, sorting updating and succes-
sive updating can achieve better updating performance and
faster convergence than the original EP MIMO detector, SSA
and sorting updating can reduce calculation loads.With better
information updating performance, faster convergence speed
and lower calculation loads, the proposed high-efficiency EP
MIMO detector can achieve better detection performance
than the original one with lower algorithm complexity.

B. SUCCESSIVE UPDATING
First of all, to solve the item O(LN 3

t ) in complexity, which
is from the matrix inversion as (12) in every iteration,
we adopt the successive updating scheme in the EP detector
(We call the EP detector with successive updating scheme as
‘‘EP-SU detector’’). We notice that the matrix inversion
is caused by batch updating scheme for AJPoD. That is,
the AJPoD is updated after all AMPrDs have been updated,
which brings two drawbacks. One is the AJPoD cannot be
updated immediately; another is that all the AMPrDs take part
in calculating when updating the AJPoD, which lead to high
complexity.

In fact, the AJPoD of the transmitted symbols changes after
any single AMPrD of a transmitted symbol has been updated.
Based on this, we proposed EP-SU detector. Once a single
AMPrD of a transmitted symbol has been updated, the EP-SU
detector updates the AJPoD of transmitted symbols instantly,
which can accelerate the updating speed. Besides, the succes-
sive updating scheme only needs the parameters of the latest
updated transmitted symbol for AJPoD calculation, which
can avoid the matrix inversion in the batch updating. So that
the complexity can be reduced significantly. The details of
EP-SU detector are realized as follows.

Firstly, EP-SU detector initializes and preprocesses as the
EP detector does and it retains the updating process of a
single transmitted symbol. After it obtains the AMPoDs of

all transmitted symbols in the preprocessing, EP-SU detector
updates the AMPrD of each transmitted symbol by iterative
and successive mode.

The original EP MIMO detector computes u(l) and C(l)

after obtaining all pairs of (λ(l)i , γ
(l)
i ) while the proposed

method updates the mean vector and covariance matrix of
AJPoD once one pair of (λ(l)i , γ

(l)
i ) is obtained. According

to this update mode, assume CN (y : Hx, σ 2
n I) is a factor F ,

and combine (10), the relation between the AJPoD before and
after updating is3:

p̂(l)i (x|y) = F
i∏

j=1

p̂(l)(xj) ·
Nt∏

k=i+1

p̂(l−1)(xk )

= F
i−1∏
j=1

p̂(l)(xj) ·
Nt∏
k=i

p̂(l−1)(xk ) ·
p̂(l)(xi)
p̂(l−1)(xi)

= p̂(l)i−1(x|y) ·
p̂(l)(xi)
p̂(l−1)(xi)

= p̂(l)i−1(x|y)exp
(
−
1
2
1λ

(l)
i x

2
i +1γ

(l)
i xi

)
, (21)

where 1λ(l)i = λ
(l)
i − λ

(l−1)
i ,1γ

(l)
i = γ

(l)
i − γ

(l−1)
i . Assume

thatC(l)
i is the covariance matrix of the AJPoD after i pairs of

(λ(l)i , γ
(l)
i ) have been updated in the l-th iteration. In this way

there is C(l)
N = C(l+1)

0 = C(l+1) . According to (21), we can
get:

C(l)
i =

((
C(l)
i−1

)−1
+1λ

(l)
i eieTi

)−1
, (22)

where ei is the i-th column of identity matrix and there is a
rank-1 theorem for N-order square matrix inversion:

(A+ uvH )−1 = A−1 −
A−1uvHA−1

1+ vHA−1u
, (23)

where u ∈ CN×1, v ∈ CN×1. Combining (22) and (23), then
we have:

C(l)
i = C(l)

i−1 −
1λ

(l)
i

1+1λ(l)i C(l)
i−1(i, i)

C(l)
i−1 [i]C

(l)
i−1〈i〉. (24)

In this way, we replace the complicated matrix inversion in
each iteration with successive iterative vector multiplication
and matrix addition, which decreases the complexity greatly.
What’s more, since C(l)

i is a conjugate symmetric matrix,
the complexity can be further decreased. After obtaining the
covariance matrix, we only compute one mean of the next
transmitted symbol, that is4:

u(l)i (i+ 1) = C(l)
i [i+ 1] ·

(
σ−2n HHy+ γ (l)

i

)
, (25)

where γ
(l)
i = [γ (l)

1 , γ
(l)
2 , . . . , γ

(l)
i , γ

(l−1)
i+1 , . . . , γ

(l−1)
N ]T

denotes the parameter whose former i components are
updated.

3In order to mark simply, there we ignore the normalization factor and
adopt ‘=’ instead of ‘∝’.

4When i = Nt , the index i+ 1 = 1, in a general form, i = mod(i+ 1,Nt ).
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Besides reducing the complexity, the successive updating
scheme can also speed up the convergence process of detec-
tor. To prove it, we compare the convergence of EP and
EP-SU detectors. We present the changes of approximated
means and variances of different detectors with the changes
of iterations in Fig.3 and Fig.4. Both the 2 figures are got
under the condition of SNR = 10 log(NtEs · σ−2n ) = 23 dB,
16-QAM modulation and Nt = Nr = 32.

FIGURE 3. The changes of approximated means of EP and EP-SU
detectors when Nt = Nr = 32 and SNR = 23 dB.

FIGURE 4. The changes of approximated variances of EP and EP-SU
detectors when Nt = Nr = 32 and SNR = 23 dB.

In Fig.3 there are 4 values of the real and imaginary parts
of exact means of transmitted symbols for 16-QAM, that is
R (2) = I (2) = {+3,+1,−1,−3}. We choose 4 different
posterior distributions to observe their convergence. They
are p(x1|y), p(x2|y), p(x3|y), p(x4|y) and they have different
means. All of them converge to the exact values no matter
the detector is EP or EP-SU. The changes of variances are
presented in Fig.4, all the variances converge to zero. The
convergence of means and variances indicates that both EP
and EP-SU detectors are converged. Because of the same pre-
processing of EP and EP-SU detectors, their initial approx-
imated means and variances are the same. However, the
following approximated values indicate that EP-SU detector

FIGURE 5. The SER performance of different EP detectors with 16-QAM
modulation when Nt = Nr = 32 and SNR = 23 dB.

can converge to exact values faster, their Euclid distances
from exact values and the approximated variances are both
smaller.

C. SORTING UPDATING
In the update process of the original EP detector, the AMPrDs
of transmitted symbols are batch updated and have no differ-
ence to each other, which means they are not updated in time
sequence and have the same effect on AJPoD calculation.
However, the reliability of different AMPoDs whose param-
eters (mean and variance) are used for updating AMPrDs are
different because of different channel response coefficients
and the different actual noise power. In general, the reliability
of AMPoDs are determined by their variances: the smaller the
variance, the more reliable the AMPoD is, and vice versa.

Because of the successive updating of EP-SU detector,
the AJPoD updates after every AMPrD has been updated.
Thus, the EP detector with successive updating can choose
sorting updating. If we update the transmitted symbols in
the sequence of serial numbers, such as in a sequence of
x1, x2, x3, . . ., there will be a drawback. When the AMPoD
of the present transmitted symbol is inaccurate or has low
reliability, then updating this symbol preferentially leads to
propagating the inaccuracy to other symbols. Although the
subsequent updating possibly corrects this problem, it will
slow down the convergence speed of the EP detector. Thus,
we sort the variances of AMPoDs of transmitted symbols
before every iteration and preferentially update the AMPrDs
of symbols whose variance is smaller, which propagates the
reliability of transmitted symbols optimally. The EP detector
with sorting updating scheme (Because the sorting updating
scheme must combine with successive updating, we call it
‘‘Sorting EP-SU detector’’) accelerates the convergence in
some extent and improves the performance of the original EP
detector.

We give the statistical results of convergence by SER per-
formance for different scenarios in Fig.5 and Fig.6. We can
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FIGURE 6. The SER performance of different EP detectors with 16-QAM
modulation when Nt = Nr = 80 and SNR = 21 dB.

find that the EP-SU and the Sorting EP-SU can achieve
better performance than the original EP with fewer iterations.
Same as [32], the original EP detector almost converges after
6∼8 iterations. However, the proposed EP-SU detector and
Sorting EP-SU detector converges with only 3∼4 iterations,
which means the proposed method only needs about half
iterations to reach convergence. With a half value of L,
the complexity of EP detector is reduced a half. The perfor-
mance of EP-SU detector in the former two iterations out-
performs the original EP detector evidently. This is because
the AJPoD of transmitted symbols updates LNt times in
EP-SU detector while it only updates L times in the original
EP detector. Moreover, the batch updating of AJPoD causes
the performance loss for the original EP detector. The sorting
EP-SU detector improves the performance after all detectors
converging. It verifies that the sorting updating scheme is as
effective as expected.

Another conclusion is that the sorting updating scheme
improves the robustness of EP-SU detector. The performance
of EP-SU detector is unstable. This is because that the more
reliable symbols are updated preferentially in a better condi-
tion or the less reliable symbols are updated preferentially
in a worse condition. In both conditions, their reliability
(low or high) is spread to other symbols when the AJPoD
is updated, which causes a corresponding (worse or better)
performance. In the worst case, the SER performance of the
EP-SU detector may be worse than the original EP detector
(This can be found in the next section). However, whatever
the condition is, the SER performance of sorting EP-SU
detector is always better than the other two (the original EP
detector and EP-SU detector).

D. SPHERE SEARCH AIDED
Asmentioned before, to get the mean u∗(l)i and variance σ ∗2(l)i
of replacement distribution, the original EP detector must

calculate the value of probability density of approximated
Gaussian distribution for every sample of constellation point
of every transmitted symbol. The marginal cavity distribution
p̂\i(l)(xi|y) ∼ CN (xi :m

(l)
i , ε

2(l)
i ), then the values of probabil-

ity density of transmitted symbol xi are:

p(xi = θk ) =
1√

2πε2(l)i

exp

(
−
1
2

(θk − m
(l)
i )2

ε
2(l)
i

)
, (26)

where θk ∈ 2, k = 1, 2, . . . ,M are constellation samples.
And then it uses p(xi = θk ) to calculate u∗(l)i and σ ∗2(l)i :

u∗(l)i =

M∑
k=1

p(xi = θk ) · θk , (27)

σ
∗2(l)
i =

M∑
k=1

p(xi = θk ) ·
(
θk − u

∗(l)
i

)2
. (28)

From (26) to (28), there includes exp, subtraction and
multiplication operations LNtM times. Especially the exp
operations has higher complexity in numerical calculation
than the others [45]. To decrease the number of operations,
we utilize the feature of EP algorithm and adopt SSA scheme
to reduce the search space of solution.

FIGURE 7. SSA scheme with 16-QAM for EP detector reduces the search
space of solution.

EP algorithm converges fast, so in the preprocessing of EP
detector, the AMPods of transmitted symbols can be regarded
as reliable, especially when SNR is relatively high. Thus,
these constellation points which are far from the mean of
marginal cavity distribution p̂\i(l)(xi|y) could hardly be the
estimations of transmitted symbols. As a result, we only
calculate the value of constellation samples whose Euclidean
distance are smaller than the search radius r and set the
other values to 0. Just shown as Fig.7, we only compute the
probabilities p(xi = θk ) in the dotted circle and set the others
to zeros.

Essentially, SSA scheme trades off between perfor-
mance and complexity. In general, a bigger r brings better
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performance and higher complexity while a smaller one
accompanies the worse performance and lower complexity.
However, because the AMPoDs are reliable in updating pro-
cesses, SSA scheme can keep a small value of r without
performance loss. Thus, it can obviously reduce the math-
ematical operations without performance loss, especially in
high-order modulation systems.

Concretely, we set the value of r as follows:

r = |θk − m
(l)
i | = ρε

(l)
i , (29)

where ρ is a parameter to balance the complexity and perfor-
mance. Another worthy mentioned thing, when ρ in (29) is
determined, the radius of search space depends on the value of
variance ε2(l)i of the first iteration, which is totally depended
on the adopted scheme ofMIMOdetector. Obviously, the ε2(l)i
of the original EP detector is depended on the preprocessing.
However, only the first ε2(l)1 of sorting EP-SU detector is
depended on the preprocessing, the other variances ε2(l)i,i6=1
are depended on the covariance matrix after the AJPoD is
updated i − 1 times. This means sorting EP-SU detector has
smaller radii r (lower complexity) than the original EP detec-
tor when they have the same ρ. Or, if both the two detectors
have the same size of search space, the original EP detector
will suffer more performance loss. Briefly, the SSA scheme
is more appropriate for sorting EP-SU detector.

After we get this r in the first iteration, we use it to
determine the search space, a subset of 2 which contains

M1 elements. Ignoring the normalized factor (2πε2(l)i )
−1/2

,
we put (26) into (27) and (28) to calculate u∗(l)i and σ ∗2(l)i :

u∗(l)i =

M1∑
k=1

exp

(
−
1
2

(θk − m
(l)
i )2

ε
2(l)
i

)
· θk , (30)

σ
∗2(l)
i =

M1∑
k=1

exp

(
−
1
2

(θk − m
(l)
i )2

ε
2(l)
i

)
·

(
θk − u

∗(l)
i

)2
. (31)

Then we test the SSA scheme. We compare the perfor-
mance of sorting EP-SU detector with or without SSA under
the condition of different ρ (Actually, these different adopted
values of ρ let the exponential term in (26) is equal to 0.1,
0.01 and 0.001, respectively) and different SNR when Nt =
Nr = 20 with 16-QAM, 64-QAM and 256-QAMmodulation
in Fig.9, and the average size of search space under the
same condition in Fig.8. To ensure convergence, the detector
iterates 4 times.

From Fig.9 we know that the SER performance of detec-
tor with SSA scheme is identical with the detector without
SSA scheme when ρ is bigger than 3.0349. Actually, It is
the 3δ principle for a Gaussian distribution which says the
probability can reach 99.73% if its value is in the section
(µ − 3δ, µ + 3δ), where µ and δ are the mean and variance
of the Gaussian distribution, respectively. Thus, we can set
ρ = 3 to use SSA scheme in our proposed EP detector
without performance loss.

In Fig.8 we regard the search space of detector with-
out SSA scheme as 1. We transmit over 1 million symbols

FIGURE 8. The percentage of the average size of search space under the
condition of different SNR when Nt = Nr = 20 and 16-QAM, 64-QAM and
256-QAM modulation.

FIGURE 9. The performance of sorting EP-SU detector with or without
SSA under the condition of different ρ and different SNR when
Nt = Nr = 20 and 16-QAM, 64-QAM and 256-QAM modulation.

and calculate their average size M1 of search space in one
iteration for a single transmitted symbol. Then we get the
Percentage(%) = M1/M . We also present these results
in TABLE 1.

We can make three conclusions from TABLE 1:
1) When ρ is settled, the size of the search space becomes

smaller with the increase of SNR. This is because when
SNR increases, a lower ε(l)i makes the search radius
become smaller.

2) When SNR is settled, the size of search space changes
with the parameter ρ. However, if SNR is big enough,
the search radius in (29) is almost determined by ε(l)i
and the effect of ρ will be negligible.5 This means we

5This means ρ will not change the number of search constellations when
it varies in a range. In the extreme situations of ρ = 0 and ρ = ∞, the space
will be null space and total space whatever the value of ε(l)i is.

VOLUME 7, 2019 125233



G. Yao et al.: High-Efficiency EP Detector for High-Order Massive MIMO Systems

TABLE 1. The effect of SSA on performance and complexity in 20× 20 MIMO with different modulation order.

can set a very small value of ρ to decrease the size of
search space if the concerned SNR is big enough (such
as 26 dB for 16-QAM, 33 dB for 64-QAM, and 40 dB
for 256-QAM).

3) SSA scheme is more useful in high-order modulation.
When ρ = 3.0349 and a big enough SNR, the per-
centages of different modulation orders are 25.02%,
12.69%, and 7.40%, respectively. These percentages
have corresponding search space with the calculation
of constellation points about M1 = 4.00 in 16-QAM,
M1 = 8.12 in 64-QAM andM1 = 18.94 in 256-QAM.

The higher-efficiency EP detector improves the SER per-
formance of the original EP detector with reduced complex-
ity. In order to make the proposed high-efficiency detector
more clear, we present it as Algorithm 2.

E. COMPLEXITY ANALYSIS
We analyze the proposed high-efficiency EP detector with the
original EP detector in the aspect of complexity. Refer to the
given complexity O(LN 3

t + LNtM ) in [32], we now divide
it into three items. The first one is O(N 3

t ), the second one is
O(M ) and the last one is the product item O(L).

For the first item O(N 3
t ) caused by matrix inversion,

we handle it with successive updating scheme. We transform
it into iterative vector multiplication. Actually its complexity
is still O(N 3

t ) (The complexity of a column vector times a
row vector is N 2

t , and it executes Nt times in an iteration).
However, the practical complexity of Nt times of vector
multiplication is definitely less than matrix inversion. To dif-
ferentiate them, we use a factor α1. Then the complexity of
EP-SU becomes O(Nt × α1 N 2

t ). If the matrix inversion is
calculated with the Gaussian elimination method, we can get
the value of α1 = 0.25 (When computing a N-order matrix
invesion, the number of multipilication operations for Gaus-
sian elimination method and iterative vector multiplication
are 4N 3 and N 3, respectively). Then we know that successive
updating scheme reduces about 75% of the complexity of
matrix inversion.

For the second item O(M ) caused by the search space,
the joint scheme of successive updating, sorting updating and
sphere search aided solves it easily. Considering the SER
performance is lower than 1× 10−3 (This means a relatively

Algorithm 2 High-Efficiency EP Detector

1: Inputs: y,H, σ 2
n ;

2: Initialization:λ(0)i = E−1s , γ
(0)
i = 0, β = 0.2,L, τ =

1× 10−7, ρ;
3: Preprocessing: Calculate covariance matrix and means

vector as (12) and (13);
4: for l=1:L do
5: Ascending sort the variances of AMPoDs; 0.5,0.5,0.5

//sorting updating
6: for i=1:Nt do
7: Choose the i-th transmitted symbol;
8: Calculate the parameters of cavity marginal dis-

tribution as (15) and (16);
9: Determine the search radius as (29) and find the
M1; 0.5,0.5,0.5 //sphere search aided

10: Calculate the parameters of replacement distribu-
tion as (30) and (31);

11: Update the parameters of approximated marginal
prior distributions as (19) and (20);

12: Update the covariance matrix of AJPoD as (24);
0.5,0.5,0.5 //successive updating

13: Update the next element of mean vector as (25);
14: end for
15: end for
16: Outputs: x̂i = arg min

xi∈2

∣∣xi − u(l)(i)
∣∣

high SNR), the complexity becomes O(α2M ), where α2 is
equal to 25.02% in 16-QAM, 12.69% in 64-QAM and 7.40%
in 256-QAM.

For the third product item O(L) caused by iterations,
the joint scheme of successive updating and sorting updating
can solve it, too. The sorting EP-SU detectors can converge
with only half iterations of the original EP detector. That is,
the joint scheme changes the product itemO(L) intoO(α3L),
where α3 = 0.5. This change can reduce half of the whole
complexity.

The proposed scheme will bring extra complexity when
sorting for the variances and computing the sphere space.
For sorting, the extra complexity is O(LN 2

t ). The other one
is O(NtM ) (The sphere space is settled in the first iteration).
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What is worthy mentioned, the extra complexity O(NtM )
only contains the operation of comparison between the Euclid
distance, while the abridged complexity contains all the oper-
ations in (30) and (31). Comparing to O(LN 3

t + LNtM ),
the extra complexity is negligible to the entirety.

It seems that the successive updating of the proposed
scheme would cause higher delay and reduces the processing
efficiency of the hardware systems. However, the processing
unit for every received symbol in each iteration is the same,
then in a hardware system, we can adopt pipeline architecture
to guarantee the processing efficiency.

To sum up, if we take the complexity of preprocessing into
account, the complexity of original EP should be O(N 3

t +

LN 3
t + LNtM ), while the complexity of high-efficiency EP

detector isO(N 3
t +α3α1LN

3
t +α3α2LNtM ). Thus, the higher-

efficiency EP detector can significantly reduce the complex-
ity of the original EP detector. Comparing to the complexity
O(N 3

t +N
2
t ), the complexity of the high-efficiency EP detec-

tor with L=4 is only about 1.5 times than MMSE detector.

V. PERFORMANCE ANALYSIS
In the previous section, we propose the high-efficiency EP
detector with the joint scheme of successive updating, sort-
ing updating and sphere search aided. We also discuss the
complexity of the proposed EP detector and verify its high-
efficiency. In this section, we are going to compare the per-
formance of different detectors by simulation results. The
performance of detectors is presented in terms of symbols
error rate (SER) as a function of SNR. In the simulation sys-
tem,we use the samemodels in other parts except for different
MIMO detectors in MIMO detection. To focus on MIMO
symbols detection and eliminate the impact of the channel
code, we adopt the system without channel code.6 Just like
Fig.1, we transmit full streams in sending side, so we only
consider the scenarios withNt ≤ Nr . We directly compare the
outputs x̂ of MIMO detectors with the transmitted symbols x
and then get the SER. For each antenna scale or modulation,
we pay close attention to where SER is around 1× 10−4 and
we transmit at least 5 million symbols in all scenarios.

We compare SER performances of the following 4 kinds
of MIMO detectors. The linear MMSE detector is a kind of
linear detectors and it’s adopted in many practical systems
such as LTE system. The original EP detector is the object to
optimize. The EP-SU detector is our former work in [42] and
it is not ideal. The high-efficiency EP detector is proposed in
this paper. The comparison of the original EP detector with
some other MIMO detectors can be found in [32]. Combining
with the conclusion of convergence in the previous section,
we give the SER performance of the original EP detector with
1, 2, 4 and 6 iterations, while EP-SU and high-efficiency EP
detectors with 1, 2 and 4 iterations. These iterations ensure all
iterative detectors almost converge, which means their SER
performance will nearly no longer change with the increase

6Our former work consider a system with convolution code, the details
can be found in [42].

of iterations. For simplicity, we denote the performance
curves for different detectors by ‘‘MMSE’’, ‘‘Original EP’’,
‘‘EP-SU’’ and ‘‘HE EP’’, respectively. As the mentioned 3δ
principle, the parameter ρ of high-efficiency EP detector is
set as ρ = 3.

FIGURE 10. SER performance of different β and τ for the scenario
of 16-QAM modulation.

To determine the parameters β and τ , we simulate some
different conditions. The result is shown in Fig.10. Obviously,
the criterion of minimum SER, which means relative optimal
performance, can help us to determine that β = 0.2 and
τ ∈ (10−7, 10−3). To be consistent with [32] and [39],
we adopt τ = 5 × 10−7. The conditions of simulation are
listed as TABLE 2.

TABLE 2. simulation conditions.

At first, we consider the scenarios where Nt = Nr and the
modulations are 16-QAM. The simulation results of different
antenna scales are shown from Fig.11 to Fig.14.

We can make some similar conclusions from these
4 figures. The iterative EP detectors are much better than
linear MMSE detector on SER performance for the case
Nt = Nr . The SER performance of EP-SU detector could
be unstable, which means its SER performance may be bet-
ter or worse than the original EP detector for some cases. This
is because the updating order of transmitted symbols is uncer-
tain. When the symbols with higher reliability are updated
preferentially (just like high-efficiency EP detector does),
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FIGURE 11. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 16 and
16-QAM modulation.

FIGURE 12. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 32 and
16-QAM modulation.

it has better performance. Besides, if all the symbols are reli-
able, such as for the case of high SNR, EP-SU detector is also
excellent. Thus, as high-efficiency EP detector is always bet-
ter than EP-SU detector, it has strong robustness. Comparing
to the original EP detector, high-efficiency EP detector needs
fewer iterations to reach the same SER performance, or it has
better SER performance with the same iterations. When both
of them converge (original EP with L=6, and high-efficiency
EP with L=4), the high-efficiency EP detector can improve
the original EP detector about 0.5 dB in SER performance
under different antennas scales. What is worthy mentioned is
that the improvement of performance scales with the number
of antennas.7

7In our title we use the word ‘‘massive’’, but for MIMO scale, both Nt =
Nr = 16 and Nt = Nr = 32 cannot be regarded as massive. However, since
we get similar results in different scales, and the proposed detector is better
in bigger scales, it’s reasonable to say the proposed detector is appropriate
for massive MIMO system.

FIGURE 13. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 64 and
16-QAM modulation.

FIGURE 14. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 100 and
16-QAM modulation.

We also consider the other two scenarios. The first one is
the antenna scales with Nt < Nr , and the second one is the
high-order modulation.

Fig.15 and Fig.16 present the SER performances of differ-
ent MIMO detector with 16-QAM modulation for the sce-
nario Nt = 20,Nr = 40 and Nt = 20,Nr = 80, respectively.
As the number of receiving antennas is twice or four times
the sending antennas, the diversity gain of the MIMO system
will play an important role. In Fig.15, EP detectors outper-
form MMSE detector less than 2 dB. The high-efficiency EP
detector only has a little advantage on convergence than the
original EP detector, and they almost have the same SER
performance after converging. It becomes clearer in Fig.16.
The distinction among EP detectors is negligible. Iterative
processes are unnecessary because the iterative EP detectors
need only one iteration to converge. Since the diversity gain
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FIGURE 15. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = 20,Nr = 40
and 16-QAM modulation.

FIGURE 16. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = 20,Nr = 80
and 16-QAM modulation.

makes a huge difference, the MMSE detector only loses
0.5 dB in SER performance than EP detectors.

Considering the multi-users MIMO system with perfect
power control where each user has a single antenna (every
user transmits an independent stream) and the base station
has hundreds of antennas, the uplink transmission can be
regarded as the scenarios Nt ≤ Nr . Thus, when the number
of active users is small or the system load is light (Nt � Nr ),
the diversity gain ensures the linear MMSE detector work
well with low complexity and the EP detectors nearly have
no advantage. However, when the MIMO system suffers
from heavy load (a common scenario in modern wireless
communication system), EP detectors show a great advantage
over the MMSE detector and the proposed high-efficiency
EP detector can further improve the SER performance of the
original EP detector with below 12.5% (α1 = 0.25, α3 = 0.5)
of its complexity.

FIGURE 17. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 32 and
64-QAM modulation.

FIGURE 18. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 32 and
256-QAM modulation.

The SER performance of different detectors for the
other two high-order modulations scenarios are given by
Fig.17 and Fig.18. These two figures indicate that the SER
performance of the MMSE detector becomes worse with the
increasing of modulation orders. The iterative detectors show
a great advantage on high-order modulations. We can find
that the EP-SU detector is worse than the original EP detec-
tor. This is because when modulation order becomes high,
the gap of energy between different constellation points also
becomes large. For example, the highest energy of 16-QAM
is 18 (±3± 3i) while the highest energy of 256-QAM is 450
(±15 ± 15i), and both of their lowest energy is 2 (±1 ± 1i).
Thus, when the noise works on different transmitted symbols,
the reliability of symbols with low energy becomes very low
and the EP-SU will propagate it to other symbols. So sorting
updating scheme becomes indispensable when modulation
order is high. After both the high-efficiency and original
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detectors converge, although the difference of SER perfor-
mance between them still exists, it’s not as evident as in
16-QAMmodulation. Surely, when they have the same itera-
tions, the high-efficiency EP detector evidently outperforms
the original EP detector and we have verified the advantage of
complexity become greater with modulation order increases
in the previous section.

We have assumed the received side obtain the perfect CSI.
Actually, in a practical system, the CSI will be imperfect for
the receivers and they get CSI through channel estimation.
We take the estimation error into consideration and give
the SER performance for different detectors in the scenario
with imperfect CSI in Fig.19. The Channel Estimation error
in Fig.19 is obtained by MMSE estimation as [39], where
δh = 10log10

(
‖Vec(H )− Vec(Ĥ )‖2/‖Vec(H )‖2

)
, where Ĥ

represents the estimation value of real channel response.
Results show HE EP detector is still the optimum for the
imperfect CSI scenario.

FIGURE 19. SER performance of MMSE, original EP, EP-SU, HE EP
detectors with different iterations for the scenario of Nt = Nr = 40 and
16-QAM modulation with imperfect CSI.

In this section, we verified the SER performance of the pro-
posed high-efficiency EP detector. Simulation results show it
outperforms the original EP andMMSE detectors in different
high-order massive MIMO scenarios.

VI. CONCLUSION
The low complexity and high-performance symbols detectors
for high-order massive MIMO systems are enormous chal-
lenges. To solve this, we proposed a high-efficiency EP detec-
tor in this paper. The high-efficiency EP detector is based on
the expectation propagation algorithm and adopts the joint
scheme of successive updating, sorting updating and sphere
search aided. Comparing to the original EP detector, the high-
efficiency detector avoids the matrix inversion and reduces
the size of the search space in each iteration, and it acceler-
ates the convergence. Thus it reduces a lot of the complexity
of the original EP detector, and the advantage of complexity
scales with the number of antennas and modulation orders,
which means our detector is more appropriate for high-order

massive MIMO systems. Moreover, the proposed high-
efficiency EP detector outperforms the original EP detector
in different high-order massive MIMO scenarios.
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