
Received July 3, 2019, accepted July 28, 2019, date of publication August 2, 2019, date of current version August 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2932909

Research on Optimization Methods of ELM
Classification Algorithm for Hyperspectral
Remote Sensing Images
FANG HUANG 1, JUN LU1, JIAN TAO2, LI LI1, XICHENG TAN3, AND PENG LIU 4
1School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
2Texas Engineering Experiment Station, High Performance Research Computing, and Texas A&M Institute of Data Science, Texas A&M University, College
Station, TX 77843, USA
3School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
4Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China

Corresponding authors: Fang Huang (fang.percy.huang@gmail.com) and Peng Liu (liupeng202303@aircas.ac.cn)

This work was supported mainly in part by the National Key Research and Development Program of China under Grant 2018YFC1505205,
in part by the Hubei Provincial Key Laboratory of Intelligent Geo-Information Processing (China University of Geosciences) under Grant
KLIGIP-2017A06, Grant KLIGIP-2017A07, and Grant KLIGIP-2017A09, in part by the Shanghai Aerospace Science and Technology
Innovation Fund under Grant SAST2016006, and in part by the Beijing Key Laboratory of Urban Spatial Information Engineering under
Grant 2017209.

ABSTRACT In land-use classification of hyperspectral remote sensing (RS) images, traditional classifica-
tion methods often experience large amount of datasets and low efficiency. To solve these problems, a fast
machine-learning method, the extreme learning machine (ELM) algorithm, was introduced. However, basic
use of the ELMusually encounters problems of unstable classification results and low classification accuracy.
Hence, in this paper, optimization methods for ELM-based RS image classification were mainly discussed
and applied to solve the bottleneck problems. From the three perspectives of ensemble learning, making
full use of image texture features, and deep learning, three classification optimization methods have been
designed and implemented. The results show that: 1) To some extent, all the three methods can achieve a bal-
ance between classification accuracy and efficiency, i.e., they can maintain the advantage of ELM algorithm
in classification efficiency and speed while have better classification accuracy; 2) The image texture feature
optimizationmethod (LBP-KELM) solves the problem of unsatisfactory classification results experienced by
the ensemble learning optimization method (Ensemble-ELM) and further improves classification accuracy.
However, the classification results are sensitive to the type of dataset; and 3) Fortunately, the optimization
method combined with deep learning (CNN-ELM) can meet the application needs of multiple datasets.
Furthermore, it can also further improve classification accuracy.

INDEX TERMS Hyperspectral remote sensing, ELM algorithm, ensemble learning, texture features, deep
learning.

I. INTRODUCTION
The use of remote sensing (RS) images for land-use cov-
erage classification is an important part of obtaining land-
cover information and is also a key topic in current land-use/
land-cover change research. In recent years, due to their
advantages such as multiple bands, high-resolution, and
rich information, hyperspectral RS images have been incor-
porated into land-use classification and have become a
research hotspot in the RS field [1]–[7]. However, the mas-
sive and high-dimensional features of hyperspectral RS data

The associate editor coordinating the review of this manuscript and
approving it for publication was Zijian Zhang.

have also posed great challenges to RS image classification
research. When traditional classification methods, e.g., iter-
ative self-organizing data analysis techniques (ISODATA),
artificial neural networks (ANN), and support vector
machines (SVM), are used in hyperspectral RS classification
applications, they are likely to involve excessive process-
ing data scale, high computational complexity, and vulner-
ability to local minima. In particular, these methods also
have lower classification efficiency and speed, which means
that they have difficulty in meeting the needs of current
applications [8]–[14].

Consequently, some researchers are studying hyperspectral
RS classification problems using novel theory and method,
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e.g., multivariate statistics or deep learning methods etc.
Especially, Borhani and Ghassemian proposed a new con-
cept of spectral-spatial kernel-based multivariate analysis
based on the statistical principle of multivariate statistics,
KMVSSA, for dimensionality reduction, feature selection
and classification on hyperspectral remotely sensed datasets.
They states that the proposed KMVSSA framework is to
expose the inherent structure and meaning revealed within
spectral and spatial features through various statistical meth-
ods. Through the systemically experiments with other state
of the art classification methods, it show that the KMVSSA
framework can greatly improves the classification accura-
cies with hyperspectral RS images [15]. Nowadays, more
and more researchers are studying these problems using
deep learning methods. For example, Wang et al. introduced
a hybrid of principle component analysis (PCA), guided
filtering, and deep learning architecture for hyperspectral
RS data classification. In this approach, both spatial and
spectral features are efficiently explored to construct fea-
ture vectors. The proposed method promotes hyperspec-
tral data classification accuracy by introducing filtering of
local pixel information and using multiple features for deep
feature learning [16]. In another study, Liu et al. investi-
gated sparse auto-encoders (SAE) and SVM to examine their
sensitivity. Then they conducted a systematic comparative
evaluation [17]. The extreme learning machine (ELM) is a
rapidmachine-learning algorithm proposed byHuang (2006).
It exhibits high learning speed, high efficiency, and good
generalization performance when dealing with large-scale
data [18], [19]. Therefore, it can be foreseen that using the
ELM algorithm for hyperspectral RS image classification
will effectively overcome the bottlenecks facing the field.

From literatures review, it found that in recent years,
the ELM algorithm has begun to be applied to land-use
classification with hyperspectral RS images. This method has
achieved good results in this context because it has many
advantages such as fast processing speed and good general-
ization performance. However, relevant studies are still in the
initial stage, and more efforts are needed to exploit ELM’s
potential fully. Based on the respective advantages of ELM
algorithms and hyperspectral RS images, it is suitable to pro-
pose further performance optimization work for ELM-based
classification of hyperspectral RS images. Such improvement
and optimization methods have much room for development
in this area. To realize this potential, in this study, land-use
optimization methods for hyperspectral RS imagery based on
the ELM algorithm have been fully developed and used based
on three aspects: (1) The leading-edge theory of ensemble
learning; (2) Exploring the rich spatial texture features of
hyperspectral imagery; and (3) Deep learning technology.

(1) In order to solve the problem of instability of classifi-
cation results in ELM algorithm in RS image classification,
we design and implement a new ELM RS image classifica-
tion method based on ensemble learning, and carry out the
ELM RS image classification process (i.e., Ensemble-ELM).
Improvement and optimization were achieved by modifying

the ELM-based classifier to enhance the robustness of the
algorithm. We combined the voting method and maximum
probability method, so that the classification results are more
accurate. The experimental results show that the method
effectively solves the instability of ELM classification, and
the classification results are also improved. However, there
are still rooms for further improvement as there are still many
pitting points in the classification map.

(2) To overcome the defects mentioned in (1) above, and
to further improve the classification results and the classifica-
tion accuracy, this research considers and utilizes the rich spa-
tial texture features of the images, and designs the local binary
pattern (LBP) based kernel ELM (KELM), i.e., LBP-KELM
RS image classification method [20]. Firstly, the minimum
noise fraction (MNF) is used to reduce the dimension of
the band. Then the LBP operator is used to extract the
rich texture features of the RS image, and finally the radial
basis function is used as the kernel function to construct the
KELM classifier. In the specific implementation process of
the LBP-KELM method, it is very important to study the
influence of the setting of each parameter on the classifi-
cation result. The optimal value of each parameter is deter-
mined by several experiments for classification, and good
results are obtained. The disadvantage of this method is
that the classification results are more sensitive to the data
set type.

(3) In order to improve the classification accuracy andmeet
the classification requirements of various data sets (existed
problem in LBP-KELM), this research takes advantage of
deep learning to optimize the ELM RS image classification,
and designs a classification model that combines convolu-
tional neural networks (CNN) and ELM (i.e., CNN-ELM).
The convolution and subsampling layers are alternately con-
nected to construct the depth feature extraction layer, and
the ELM is used to construct the classification layer. Our
implementation is based on the current popular deep learning
framework Keras.1 The experimental results demonstrate the
advantages of the method in classification accuracy.

In summary, this research will be helpful to provide future
researchers with comprehensive analyses of land-use classi-
fication using hyperspectral RS images.

The paper is organized as follows. Section 2 discusses the
related works of the improvement and optimization measures
used with ELM for hyperspectral RS image classification.
Section 3 gives a brief introduction to the principles and pro-
cess of the ELM algorithm-based classification methodology.
Section 4 concentrates mainly on the design and implementa-
tion of the proposed ELM-based land-use cover classification
optimization methods for hyperspectral RS images from the
aspects of ensemble learning, making full use of image tex-
ture features, and deep learning. Section 5 presents various
experiments performed to verify the accuracy and perfor-
mance of the three optimization methods on different hyper-
spectral RS datasets and discusses the experimental results.

1https://keras.io/
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Finally, Section 6 draws some conclusions and points out
future research directions.

II. RELATED WORKS OF ELM ALGORITHM
In recent years, ELM has been used increasingly for hyper-
spectral RS image classification. This method can effectively
solve the problems of complex computations and excessive
processing data scale caused by the multi-spectral nature of
hyperspectral RS data, thus making RS image classification
more efficient. Pal used the basic ELMdirectly for land-cover
classification of hyperspectral RS images and compared the
classification results obtained with those from a backpropa-
gation (BP) neural network. The results show that ELM can
achieve the same classification accuracy as a BP neural net-
work, but with much higher classification speed [21]. How-
ever, it still encounters problems such as algorithm instability,
lack of robustness, and low classification accuracy [22]. As a
result, it is not satisfactory to use the basic ELM algorithm
directly for RS image classification.

Therefore, researchers have taken various perspectives and
combined various leading-edge technologies to improve and
optimize the ELM classification method. These measures
intend to improve classification accuracy while ensuring
ELM’s advantages in classification efficiency, thus making
the ELM classification method more extensively applicable.

On the one hand, to improve the instability of the clas-
sification results caused by the input weights of the ELM
algorithm and its random hidden-layer bias assignments,
researchers mostly use ensemble learning ideas to optimize
the ELM-based RS image classification method to enhance
the robustness of the algorithm. The reason for this is that
ensemble learning offers characteristics like generalization
and stability, which should be useful for integration with
unstable ELM classifiers. For example, Samat et al. proposed
two ELM RS image classification methods based on ensem-
ble learning in 2014 [22]. They integrated the ELM-based
classifiers using commonly used ensemble learning methods,
Bagging and AdaBoost. A comparison of this method using
ELM and SVM with experiments on multiple hyperspectral
RS images shows that applying ensemble learning to ELM
classification can compensate for the deficiencies of random
input weight generation in the ELM algorithm and enhance
algorithm robustness. Therefore, this method achieves better
classification accuracy (over 3% better) than ELM, which
is equivalent to the SVM method. Although the improve-
ment is not obvious, the classification speed of the combined
approach still maintains the ELM algorithm’s significant
advantages in classification efficiency, which are far beyond
those of the SVM method. Han et al. also used the ensemble
learning idea to optimize the ELM classificationmethod [23].
They integrated multiple ELM classifiers and used a simple
voting method to vote on the prediction category of each
classifier to obtain the final classification result. With exper-
iments on Zhalong Wetland and Haicheng City RS images,
they showed that the overall classification accuracy for the
two regions was improved by 5.1% and 9.3%, respectively,

compared to the ELM method. Clearly, the overall classifi-
cation accuracy gain from adopting the ensemble learning
optimization method can improve classification accuracy
and effectiveness [23]. The preceding discussion has shown
that existing studies of optimizing ELM classification using
ensemble learning simply combines commonly used ensem-
ble learning algorithms directly with ELM. As a result, clas-
sification effectiveness is not much improved. In addition,
to alleviate the instability of ELM classification results, some
researchers have also proposed new image classification
methods based on KELM, i.e., replacing the hidden layer
of ELM with a kernel function so that the input weights do
not need to be randomly generated. These methods not only
enhance the stability of the classification results, but also have
lower computational complexity [24]–[27].

On the other hand, RS images contain abundant spatial
information such as spatial neighborhood features and texture
features. Tomake full use of this abundant spatial information
to improve ELM classification results, Lv et al. proposed
an RS classification method based on hierarchical local-
receptive-field ELM (HL-ELM), which fully considered the
local spatial characteristics of RS data and used a multi-layer
ELM structure. By comparing the experiments using SVM,
basic ELM, and other methods, the classification results of
the proposed method were found to be optimal while still
maintaining the classification speed advantage of the ELM
algorithm [28]. Cao et al. used a circular belief propagation
algorithm to calculate the spatial correlation between pixels
for classification and thus improved ELM classification per-
formance with RS images [29]. Chen et al. used Gabor filters
to capture certain physical structures, such as directional
information, in RS images to extract useful spatial features for
classification. Experiments showed that classification accu-
racy was greatly improved and that the classification results
were very satisfactory [24]. Li et al. extracted texture features
such as edges and corners of RS images for ELM classifi-
cation and successfully obtained better classification results
than traditional methods [20].

In recent years, some researchers have tried to combine
deep learning with ELM for RS image classification. In their
studies, they used deep learning algorithms to extract depth
features from images to obtain more accurate classification
results. For instance, Lv et al. proposed an in-depth ELM
model. The improved model was divided into two main
phases: (1) An ELM-based automatic encoder for feature
extraction, and (2) An ELM classifier. Through comparative
experiments with basic ELM, SVM, and other classifica-
tion methods, this method can accurately extract the spatial
distribution of RS images and greatly improve classifica-
tion accuracy [30]. Lv et al. also used deep learning to
extract the depth features of RS images and combined it
with ensemble learning to optimize the ELM classification
algorithm, thus achieving better classification results [31].
However, at present, sufficient relevant research is still lack-
ing to optimize ELM classification of RS images with deep
learning. With the rapid development of deep learning theory,
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major breakthroughs are expected in this area in the next
few years.

III. PRINCIPLE OF THE ELM ALGORITHM AND THE
ELM-BASED CLASSIFICATION PROCESS
A. BASIC PRINCIPLE OF THE ELM ALGORITHM
The ELM algorithm was built upon the basic model of the
single-hidden-layer feedforward neural network (SLFN). The
following description covers the network structure and work-
ing principles of the SLFN.

FIGURE 1. Network structure of an SLFN.

Suppose that there is a dataset (xi, yi) , i = 1, 2 . . . ,N ,
where xi = [xi1, xi2, . . . xin]T ∈ Rn, that represents the
sample characteristics; yi = [yi1, yi2, . . . , yim]T ∈ Rm rep-
resents the labels of sample i in m categories, and yij ∈
{0, 1} , j = 1, 2, . . .m. Figure 1 shows the network structure
of an SLFN with L hidden nodes (L ≤ N ) and the activation
function g (x). The corresponding mathematical model of an
SLFN is expressed in Eq. (1).

yj =
∑L

i=1
βig (wi, bi, xi), j = 1, 2, . . .N (1)

where βi denotes the output weight of the i-th hidden layer
node to the output layer; wi and bi are randomly generated,
wi represents the input weight of the i-th node of the hidden
layer, bi represents the biases of the i-th hidden layer node;
g (wi, bi, xi) represents the activation function of the i-th node
in the hidden layer and the way to connect to the output layer.
Equation (1) can be simplified as follows:

Hβ = Y (2)

where

H = H (w1, . . . ,wL , b1, . . . , bL , x1, . . . , xN )

=

 g (w1, b1, x1) · · · g (wL , bL , x1)
... · · ·

...

g (w1, b1, xN ) · · · g (wL , bL , xN )


N×L

represents the hidden layer output matrix [32] and

β =

 β
T
1
...

βTL


L×m

, Y =

 y
T
1
...

yTN


N×m

are as defined above.
The parameters of the SLFN can be calculated using the

least-squares solution:

min‖Hβ − Y‖ (3)

In other words, ELM needs to find a set of optimal param-
eters β̂i, ŵi, b̂i, i = 1, 2 . . . ,L so that the following equation
holds:

‖H (ŵ1, . . . , ŵL , b̂1, . . . , b̂L)β̂ − Y‖

= min
β,wi,bi

‖H (ŵ1, . . . , ŵL , b̂1, . . . , b̂L)β − Y‖ (4)

The least-squares solution of this equation is:

β̂ = H+Y (5)

where H+ is the M-P generalized inverse of the
matrix H [33].

B. ELM-BASED CLASSIFICATION ALGORITHM
PROCESS AND STEPS
From the above discussion, the input weights wi and the
hidden layer biases bi are set randomly at the beginning of
the training process, and the output layer weights βi can be
obtained by the above formula β̂ = H+Y . Suppose that
the known training samples have a number of hidden layer
nodes L and an activation function g (x). Then the learning
process of the ELM neural network can be roughly described
as in Table 1.

TABLE 1. Process of ELM neural network learning algorithm.

According to Table 1, the basic ELM-based RS image
classification process can be divided into three steps: (1) the
spectral features of RS images are extracted to construct a
training sample set; (2) the ELM classifier is trained; and
(3) the unknown sample is classified and tested to output
the final prediction label of the sample. Figure 2 shows the
specific process.

In this process, the training and testing of the ELM clas-
sifier are the two most important steps. The training of ELM
obtains the output weights β. The testing of ELM classifies
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FIGURE 2. Processing flowchart of the ELM-based classification
algorithm.

the test set and obtains its prediction labels using the param-
eters determined during the training phase.

IV. OPTIMIZATION APPROACHES USING THE ELM
ALGORITHM FOR HYPERSPECTRAL RS IMAGE
CLASSIFICATION
To explore fully the high stability, high precision, and
data type adaptability of the ELM classification algorithm,
in this study, three classification optimization methods were
designed and implemented from the perspectives of ensemble
learning, making full use of image texture features, and deep
learning respectively.

A. OPTIMIZATION APPROACH 1: INTEGRATING ELM WITH
ENSEMBLE LEARNING (ENSEMBLE-ELM)
The core concept of ensemble learning is to train multiple
base classifiers and to use a certain combination strategy to
combine the output results of each base classifier to obtain the
final classification category of the sample, an approach that
can provide better performance than a single base classifier.
When ELM is applied directly to hyperspectral RS image
classification, it encounters problems such as instability and
lack of robustness. To solve such problems and improve
algorithm robustness, certain strategies must be adopted to
optimize the algorithm. Fortunately, ensemble learning has
the characteristics of strong generalization performance and
high stability. It is especially effective for unstable inte-
grated classification with weak classifiers, meaning that it
is perfectly suited for the unstable ELM algorithm. For
this reason, this study integrated ensemble learning into
the ELM algorithm (for the sake of simplicity, the combi-
nation was called Ensemble-ELM). Theoretically, the inte-
grated ELM algorithm with multiple ELM-based classifiers
would improve generalization performance and classification
accuracy.

1) OVERALL CLASSIFICATION STRATEGY AND
IMPLEMENTATION STEPS OF ENSEMBLE-ELM
Figure 3 shows the overall classification framework of
Ensemble-ELM for hyperspectral RS image classification.

Figure 3 reveals that the Ensemble-ELM classification
method consists of five steps.

(1) First, the spectral characteristics of each pixel are
extracted from the hyperspectral RS image. Because the
number of image bands is large, dimension reduction or
band selection should generally be carried out first to reduce
the influence of the noise band on the classification result.

FIGURE 3. Overall classification framework of the Ensemble-ELM method
for hyperspectral RS image classification.

Then N typical samples are selected to constitute the initial
training set D.

(2) Resampling methods are used to construct T training
sets. To do this, n (n < N ) samples are randomly extracted
from D and then put back. Thus, one training set is formed.
The total number of cycles in this operation is T .
(3) The base classifier is constructed using the ELM algo-

rithm. Then the ELM classifiers are trained with T training
sets, where the size of each training set is n, and T prediction
results are obtained.

(4) Based on the classification prediction results of the T
ELM-based classifiers, a certain strategy is used to delete
ELM-based classifiers with poor or unstable classification
results. Assuming that the number of base classifiers to be
deleted isM (T > M ≥ 1), the remaining (T −M ) classifiers
will be combined to be used as the base classifier set.

(5) For the sample dataset with unknown class labels,
the samples in the dataset are classified using the (T − M )
residual base classifiers in step (4). Thus, each sample is the
object of (T − M ) classification results. However, the final
class label of each unknown class dataset will be determined
by a combination of the voting method and the maximum
probability method.

In summary, the Ensemble-ELM algorithm proposed in
this study uses the ensemble learning concept to improve the
ELM classification method from the point of view of overall
processing, an approach that is similar to existing studies.
In particular, three detailed aspects of this overall framework
were chosen for optimization; they are marked with a red
dotted frame in Fig. 3. The following discussion will explore
the design and implementation of these specific optimization
points.

2) RESAMPLING THE TRAINING DATASET
The main step in training set resampling is to extract and put
out n (n < N ) samples randomly from the initial training set
D containing N samples to form a training set for T times
and thus construct T different training sets. The number of
iterations of T must be manually set. In this study, the value
of T circle was set to a better value through multiple experi-
ments. Such a set can achieve a balance between classification
accuracy and efficiency, which can better meet the applica-
tion’s accuracy and efficiency requirements. Figure 4 shows
a process flowchart for generating T training sets.
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FIGURE 4. Flow diagram of generating T training sets with the
resampling method.

3) DESIGN AND IMPLEMENTATION OF PRUNING THE
ELM-BASED CLASSIFIER METHOD
To optimize the performance of ELM integration classi-
fication, a method of pruning ELM-based classifiers was
designed. This method can be divided into two main steps:
(1) Unstable ELM-based classifiers are deleted, and (2) The
poorest of the remaining ELM-based classifiers is removed.

(1) Deleting unstable ELM-based classifiers. As men-
tioned above, the ELM algorithm is an unstable algorithm,
i.e., the accuracy of the classification result is extremely low,
occasionally less than 10% or 50%. Such unstable classifica-
tion results will lead to large errors in training sample classi-
fication accuracy. If unstable classification results occur in T
ELM-based classifiers during training, they will compromise
performance and accuracy during integration of the T base
classifiers. Therefore, while training the ELM-based classi-
fiers 10 times using T training sets, any ELM-based clas-
sifiers with extremely low classification accuracy should be
deleted, and the remaining ELM-based classifiers should be
combined to classify new datasets. A threshold value a must
be set for deleting an unstable ELM-based classifier. When
the classification accuracy is less than a, the ELM-based
classifier is deleted. The value of the threshold a determined
experimentally in this study was 50%.

(2) Deleting the worst ELM classifier. After deleting unsta-
ble ELM classifiers, the next step is to find and delete the
worst ELM classifier. The theoretical basis of this opera-
tion depends on ensemble learning theory: it assumes that
the important factor in improving ensemble learning perfor-
mance is the difference between the base classifiers. When
a base classifier is deleted, the error obtained by integrating
the base classifiers is smaller than that obtained by deleting
other base classifiers. In this case, it can be concluded that
the base classifier can improve the difference in residual-
base learner integration compared with other base classifiers.
Therefore, themethod to evaluate themerits of an ELM-based

classifier is to delete one ELM-based classifier first, then
integrate the remaining ELM-based classifiers, and calculate
the error of the integrated classifiers. This error is used to
compare the advantages and disadvantages of different sets
of integrated ELM-based classifiers and to determine which
ELM-based classifier among them is the worst and should
be deleted. These steps should be repeated, deleting a differ-
ent classifier each time, until all base classifiers have been
experimentally deleted. The ELM-based classifier set with
the smallest error can then be identified.

TABLE 2. Algorithm implementation for pruning the ELM-based classifier.

Table 2 describes the specific implementation procedure
for pruning the ELM-based classifier.

4) OPTIMIZING THE COMBINATION OF ELM-BASED
CLASSIFIERS
In ensemble learning, a simple voting method is generally
used to integrate the base classifiers. In this voting method,
the final classification results for the samples are determined
by the voting of each base classifier. However, because this
simple method determines the classification result through
a ‘‘one-person-one-vote’’ rule, without considering the dif-
ferences between the various base classifiers, the integration
results are unremarkable. Therefore, to improve the accuracy
of ELM integration classifiers, this paper combines the sim-
ple voting method with the maximum probability method to
integrate the ELM classifiers, so that the twomethods provide
complementary benefits. Figure 5 describes specific steps of
this procedure.

According to Fig. 5, the main steps of this method are:
(1) First, the voting results of the T ELM-based classifiers

are evaluated using the simple voting method. If the voting
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FIGURE 5. Flowchart of ELM-based classifier integration using a simple
voting method and a maximum probability method.

result is 100%, the classification results of all the base clas-
sifiers are considered to be the same, and the samples are
directly classified into the chosen category.

(2) If the voting results are inconsistent, then the final
classification result is determined according to local confi-
dence. If only one local confidence is higher than the given
threshold c, it will be directly used as the final prediction
result. If two or more local confidences are higher than the
threshold c, or if all the local confidences are lower than c,
the global confidence level is used to determine the result.
This involves selecting the base classifier with the highest
classification accuracy among all the base classifiers as pro-
viding the final prediction category of the sample. In this
study, the value of the threshold c was determined to be 85%
after several experiments.

(3) Finally, the final integrated classification results of all
the samples are judged by combining the classification result
of the simple voting method with the classification result of
the maximum probability method.

5) ANALYSIS OF THE ENSEMBLE-ELM OPTIMIZATION
METHOD
The Ensemble-ELM optimization method proposed in this
paper can not only provide the RS image classification effi-
ciency of the ELM algorithm, but can also enhance the algo-
rithm’s robustness and improve its classification accuracy.
However, there are still many pits in the classification result
map, and the results are still not satisfactory with specific
applications. The main reason for the unsatisfactory clas-
sification results is that the traditional ELM classification
methods and the optimized method with ensemble learning,
i.e., Ensemble-ELM, both use spectral features to classify
RS images. When working with spectral features, the same
object can appear to have different spectral characteristics,
and different objects can appear to have the same spectral
characteristics. This can result in misclassifications and miss-
ing points and large quantities of ‘‘salt and pepper noise’’.
Another reason for the unsatisfactory classification result
is the low classification accuracy due to not making full
use of the rich spatial information in hyperspectral images.

Texture features are an important spatial information compo-
nent of RS images. They can effectively resolve cases that
appear to be the same object with different spectral charac-
teristics or different objects with the same spectral character-
istics and fully account for the macroscopic and microscopic
structure of RS images. Many studies have shown that using
texture feature-based classification methods can yield better
classification results. Therefore, to improve ELM classifica-
tion performance, this study fully considered the impact of
rich spatial texture features on classification and proposed a
KELM RS image classification optimization method based
on LBP texture features, which will be fully discussed in the
following section.

B. OPTIMIZATION APPROACH 2: INTEGRATING KERNEL
ELM WITH LBP TEXTURE FEATURES (LBP-KELM)
This section investigates the ELM algorithm with the LBP
texture feature method to optimize the basic ELM algorithm.
To improve the performance of the ELM algorithm, the radial
basis function (RBF) kernel function was used instead of the
activation function in the basic ELM algorithm to construct
the KELM classifier. Through this replacement, the improved
ELM algorithm does not need to randomly generate the input
weights, which can not only enhance the stability of the
classification results, but also reduce the computational com-
plexity of the algorithm. As a result, the single hidden layer
feedforward neural network does not need to update the input
weights. Here, this optimization method can be abbreviated
as the LBP-KELMmethod. Figure 6 shows a flowchart of the
LBP-KELM classification method.

FIGURE 6. Flowchart of the LBP-KELM hyperspectral RS image
classification algorithm.

Figure 6 shows that using the LBP-KELM optimization
method in hyperspectral RS image classification involves
three main steps: (1) Reduce band dimensionality; (2) Extract
spatial texture features with the LBP algorithm; and (3) Con-
struct the KELM classifier. This study has carried out
optimization corresponding to these three aspects.

1) IMPLEMENTATION OF MNF BAND DIMENSION
REDUCTION METHOD
TheMNFmethod can solve the problems of excessively large
computation requirements and low accuracy of classification
results due to redundant information interference caused by
multi-spectral images of hyperspectral RS images. The MNF
can also suppress detrimental interference with image quality
caused by noise. In fact, MNF is an improvement to the prin-
cipal component analysis (PCA) method. It uses the signal-
to-noise ratio (SNR) as an indicator to describe image quality
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and effectively separates noise from actual data. MNF is,
in principle, a principal component analysis transformation
that involves two overlapping processes. The specific steps
are as follows:

(1) Estimate the noise covariance matrix CN of the RS
image and calculate its diagonal matrix DN :

DN = UTCNU (6)

where U is an orthogonal matrix composed of eigenvectors
and DN is a diagonal matrix of CN whose eigenvalues are
arranged in descending order.

Equation (6) can be further transformed to obtain:

PTCNP = I (7)

where, in P = UD−1/2N , I is the unit matrix. Therefore, when
P is applied to the RS image data X using the transformation
Y = PX , the original image data can be mapped to a new
space through transformation. Now, the noise in the trans-
formed data not only has unit variance, but also the bands
are not related.

(2) Standard PCA transformation of noise-whitening data:

CD−adj = PTCDP (8)

where CD is the total covariance matrix of the image and
CD−adj is the transformed covariance matrix with the P trans-
formation. Hence, the diagonalized matrix DD−adj can be
expressed as follows:

DD−adj = W TCD-adjW (9)

The two steps described above yield the MNF transfor-
mation matrix TMNF = PW . Then the MNF-transformed
RS image data are arranged in descending order of SNR,
concentrating most of the information in the first few com-
ponents. As the number of bands increases, the image quality
is gradually degraded, thus suppressing the harmful impact of
noise data on RS image quality [34], [35].

2) LBP TEXTURE FEATURE EXTRACTION
The local binary pattern (LBP), proposed by Ojala et al.
in 1996, is an operator that describes the texture features of
images based on gray scales [36]. The LBP operator has been
widely used in texture classification, image recognition, and
other fields because of its advantages such as fast calculation
speed, gray scale invariance, and rotation invariance.

The basic LBP operator is a 3×3 rectangular window. The
gray value of the center pixel is used as a threshold, and
the gray values of the surrounding eight pixels are compared
with it. If the gray value of the surrounding pixels is greater
than or equal to the threshold, then the position of the pixel
is marked as 1; otherwise, it is marked as 0. Then the eight
binary values are read out in a clockwise direction from
the upper left corner of the neighborhood, forming a binary
string to represent the texture of the 3×3 rectangular window.
Figure 7 shows the generation of a 3×3 neighborhood LBP.

After band dimension reduction, LBP feature extraction
is applied to each selected single-band image after MNF

FIGURE 7. Diagram of a 3×3 neighborhood LBP computing process.

FIGURE 8. Flow diagram of LBP texture feature extraction procedure.

dimension reduction. Figure 8 shows the LBP texture feature
extraction procedure.

From Fig. 8, for a single-band image, the LBP operator of
each neighborhood window is first calculated as the texture
feature value of the central pixel, and the texture features
of all the pixels in the image are obtained by repeatedly
moving the sampling sub-window. Then the same method is
used to calculate the LBP texture features of all bands in the
hyperspectral RS images. The LBP values of all bands in the
same pixel form a set of texture features for the pixel.

3) KELM CLASSIFICATION
After the LBP texture features have been extracted, they are
used as training sample features for classification. The classi-
fier is constructed using the RBF kernel ELM (RBF-KELM)
algorithm, which uses the RBF kernel function instead of the
activation function in the basic ELM algorithm to achieve
further improvements in algorithm performance.

In the RBF-KELM algorithm, the kernel function
ϕi (·) , i = 1, 2, . . . , l is usually a Gaussian function:

ϕi (x) = ϕ (x, µi, σi) = exp

(
‖x − µi‖2

σi

)
(10)

where µi = (µi1, . . . , µin)
T is the center of the i-th core and

σi is the extended width. Table 3 describes the RBF-KELM
algorithm.
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TABLE 3. ELM neural network learning algorithm.

4) ANALYSIS OF THE LBP-KELM OPTIMIZATION METHOD
According to experiments, the LBP-KELM method can
resolve classification instances where different objects appear
to have the same spectrum or the same object appears to
have different spectra, which makes the classification effect
more prominent than with Ensemble-ELM. However, this
method is sensitive to different datasets. To overcome this
shortcoming, the following ELM optimization algorithm was
developed.

C. DESIGN AND IMPLEMENTATION OF CNN-BASED ELM
CLASSIFICATION OPTIMIZATION METHOD (CNN-ELM)
1) OVERALL STRATEGY AND STEPS OF CNN-ELM-BASED
CLASSIFICATION
In 1962, Hubel and Wiesel discovered that their unique local
interconnect network structure can effectively reduce the
complexity of the feedback neural network when studying
the local sensitive and directional selection of neurons in
the cat’s cortex, and then proposed a convolutional neural
network (CNN for short) [37]. In 2006, Hinton made CNN
awaken again and made great progress [38]. Subsequently,
more researchers have improved the network. Among them,
it is worth noting that a classic CNN architecture proposed
by Krizhevsky et al., who showed a significant improvement
in performance compared to the method before the image
classification task. The overall architecture of their approach,
AlexNet [39] (also known as ImageNet), is similar to LeNet-5
but has a deeper structure. Nowadays, CNN has become one
of the research hotspots in many scientific fields, especially
in the field of pattern classification.

There are many variants of the CNN architecture, but their
basic structures are very similar. The basic architecture of
CNN usually consists of three layers, a convolutional layer,
a pooled layer, and a fully connected layer (as illustrated
with the upper blue box in Fig. 9) [40]. The convolution
layer is designed to learn the characteristic representation of
the input. Each convolutional layer is usually followed by
a subsampling layer. The subsampling layer is also called
the pooling layer, and the pooling layer aims to achieve
spatial invariance by reducing the resolution of the feature
map. The lower network layer of the CNN is composed of
a convolutional layer and a subsampling layer alternately,
and the upper layer is a classification layer, usually called
fully connected layer. The input of the classification layer
is a feature image obtained by extracting features from the
convolution layer and the subsampling layer, and then the

FIGURE 9. Framework and flowchart of RS image classification based on
the CNN-ELM-based model.

input image is classified by an algorithm such as Softmax
regression or SVM.

Therefore, to improve classification accuracy and meet the
classification requirements of various datasets, this study has
made full use of the advantages of CNN and ELMby combin-
ing the two to construct a hyperspectral RS image classifica-
tion method. The optimization focus of this method is mainly
to add the depth feature extraction layer to the original ELM
classification method. In this optimization method, the depth
features of RS images are extracted by alternately connecting
the convolutional layer and the subsampling layer in CNN.
The fully connected layer in the CNN is replaced with the
ELM classifier (as illustrated with red box in Fig. 9). By such
optimization, the number of network parameters is greatly
reduced, which significantly improves calculation efficiency.
Figure 9 presents a summary flowchart of themodel proposed
in this paper.

Figure 9 shows that the processing flow of the classifica-
tion framework includes three main steps:

(1) RS image preprocessing. When the number of RS
image bands is large, to reduce computational complexity,
the image is first subjected to PCA dimensionality reduction
to obtain the m-dimensional features of the image. Because
the CNN input data are a two-dimensional images, the output
results, such as the prediction category, are directly produced
by operating on the input images. For the RS image, it is
necessary to predict the feature type of each pixel. To meet
this requirement, sample windows are opened with the cur-
rent pixel as the center. In these windows, the m-dimensional
features of the pixel are respectively expanded by the N×N
neighborhood, and then all the pixels are represented in image
form as an input to the CNN.

(2) Feature extraction. The depth features of the RS image
are extracted by alternately connecting to the convolutional
layer and the sub-sampling layer of the CNN. Adding the
depth feature extraction layer is the main optimization part
of the original ELM classification method. The design of the
feature extraction layer of this part will be highlighted in
Subsection 2).

(3) Classification. The ELM algorithm is used as the clas-
sifier, and the features extracted by the CNN are input as
sample features. The output weights are obtained through
a large number of sample training calculations, the images
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corresponding to each pixel are classified, and the classifica-
tion categories are predicted. The use of ELM for classifica-
tion requires manual setting of the number of hidden layer
nodes L. Currently, there is no given standard for the value
of L, which depends on the specific situation. This study has
obtained good-quality values of L in classifying the Indian
Pines and PaviaU datasets using ELM in several experiments.

2) DESIGN OF THE DEPTH FEATURE EXTRACTION LAYER
The depth feature extraction layer of the CNN-ELM method
is constructed by alternately connecting two convolutional
layers and two sub-sampling layers of CNN on the basis of
removing the fully linked layer of CNN (as illustrated with
the upper blue box in Fig. 9). The first layer of the feature
extraction layer is the convolution layer,C1. Each convolution
kernel acts on the receptive field of the input image, carries
out convolution operations on the image, and then obtains
the M characteristic graph by nonlinear transformation of
the activation function. M is not only the number of feature
graphs, but also the number of convolution kernels, and it
is set in the experiment according to specific conditions.
Assuming that the size of the input image is s0×s0, the size of
each characteristic graph is s1×s1, and the convolution kernel
size is s2× s2, meaning that the relationship s1 = s0− s2+ 1
is satisfied. In general, the formula for extracting feature
maps is:

x1j = σ
(
w1
j ∗ x + b

1
j

)
, j = 1, 2, . . . ,M (11)

where x is the input image, ∗ represents the convolution oper-
ation,w1

j , b
1
j are the parameter and bias of the j-th convolution

kernel, and x1j is the j-th characteristic graph.M is the number
of characteristic graphs, and σ (·) is the activation function in
the convolution layer. In this study, the activation function
used was a linear rectification function, ReLU: σ (x) =
max(0, x).
A sub-sampling layer, S2, is tightly connected to the con-

volution layer, and its characteristic nucleus size is set to
2× 2. In the sub-sampling layer, the size of the feature graph
remains the same, i.e., M , but the size of each feature graph
output from the layer is reduced to s3×s3, where s3 = [s1/2].
The output of the S2 layer can be expressed as:

x2j = σ
(
w2
j down

(
x1j
)
+ b2j

)
(12)

where w2
j represents the parameters of the S2 layer, b2j points

to the offset of the S2 layer, and down (·) means the down
sampling method. In this study, the selected method was
maximum pooling.

The construction process and principle of the second con-
volution layer C3 and the sub-sampling layer S4 are similar
to those described above.

All the weight values of the depth feature extraction layer
are trained by the original CNN through the backpropagation
algorithm. When the network structure converges, the weight
value of the network is determined. The specific training
process is as follows:

(1) The weights and biases of the networks are generated
randomly.

(2) Sample x is input; after calculations by the four network
layers C1, S2, C3, and S4, the classification prediction result
y is finally obtained.

(3) Gradient descent training is carried out between the
predicted class result y and the error of the true category
label t , i.e., E , to adjust the network parameters. The adjust-
ment formula is:

E =
1
2
‖t − y‖22 (13)

(4) Repeat steps 2 and 3 until the network converges.

3) IMPLEMENTATION OF CNN-ELM MODEL ON KERAS
The important contribution of this research is to implement
the designed CNN-ELM classification model in the Keras
framework. Compared with other deep learning frameworks
such as TensorFlow and Theano, less code is needed to con-
struct the model in Keras, and it presents a simpler structure
to facilitate building the model quickly. At the same time, this
framework provides enhancedmodel usability and extensibil-
ity, which will be beneficial to the combination of ELM and
deep learning in the future.

TABLE 4. Pseudocode for implementing the CNN-ELM model.

The implementation of the CNN-ELM network model on
Keras mainly included building the CNN model to obtain
the feature extraction layer parameters, constructing the CNN
intermediate layer output model to obtain the depth charac-
teristics of the RS image, and constructing the ELM classi-
fication model. Table 4 gives a concrete implementation in
pseudocode.

VOLUME 7, 2019 108079



F. Huang et al.: Research on Optimization Methods of ELM Classification Algorithm for Hyperspectral RS Images

4) ANALYSIS OF THE CNN-KELM OPTIMIZATION METHOD
From the experiments described below, this study found that
the CNN-ELM method has advantages such as higher preci-
sion and lower sensitivity to dataset type.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section describes the verification through experiments of
the effectiveness of three kinds of classification optimization
methods for RS images: Ensemble-ELM, LBP-KELM, and
CNN-ELM.

A. INTRODUCTION TO THE EXPERIMENTAL DATASETS
To verify various performance indices such as classification
accuracy, efficiency, and robustness for the proposed opti-
mization algorithms, this study selected the following three
kinds of hyperspectral datasets as experimental data.

1) INDIAN PINES
Indian Pines is a dataset collected by airborne visible infrared
imaging spectrometer (AVIRIS) over a test area in Indiana,
U.S.A., with a spatial resolution of around 20 m. The size of
the image was 145×145 pixels, and it contained 224 spectral
bands. In the experiment, the noise band, which was affected
by air water absorption, was removed, and the tests were
performedwith the remaining 200 bands. The image included
16 farm objects, with two-thirds covered by crops and one-
third by forest or other perennial plants. In total, the dataset
contained 10,249 sample points with labels. Table 5 gives the
number of different names and corresponding sample points.
Figure 10 shows the false color and ground-truth data.

TABLE 5. Indian Pines farm objects and corresponding number of sample
points.

2) PAVIAU
The PaviaU data were collected using reflective optics system
imaging spectrometer (ROSIS) sensors over the University of
Pavia in northern Italy, with a spatial resolution of 1.3 m.

FIGURE 10. Indian Pines false color map and ground-truth data graph:
(a) false color map; (b) ground-truth data graph.

TABLE 6. PaviaU farm objects and corresponding number of sample
points.

FIGURE 11. PaviaU false color map and ground-truth data graph: (a) false
color map; (b) ground-truth data graph.

Each image had a total of 103 spectral bands, and the image
size was 610×610 pixels. Some samples did not contain any
information and were removed before analysis. The resulting
image size was 610×340 pixels. The image included nine
farm objects. The number of sample points with category
labels was 42,776. Table 6 presents the number of different
names and corresponding sample points. PaviaU’s false color
map and its ground-truth data are shown in Fig. 11.

3) SALINAS
Salinas is a high-resolution spectral dataset collected by the
AVIRIS spectrometer over the Salinas Valley in the United
States, with a spatial resolution of 3.7m. The size of the image
was 512×217 pixels, and it contained 224 bands. In this
experiment, 20 noise bands (108–112, 154–167, 224) were
removed, and the remaining 204 bands were used for classifi-
cation experiments. The image contained 16 farm objects and
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TABLE 7. Salinas farm objects and corresponding number of sample
points.

FIGURE 12. Salinas false color map and ground-truth data graph: (a) false
color map; (b) ground-truth data graph.

a total of 54,129 sample points with categorymarkers. Table 7
presents the number of different names and corresponding
sample points, and Fig. 12 shows the false color map and
corresponding ground-truth data.

B. EXPERIMENTAL DESIGN AND RESULTS
The following experiments were performed using the three
optimization algorithms (Ensemble-ELM, LBP-KELM, and
CNN-ELM) with the same three datasets described above.

1) EXPERIMENTAL DESIGN AND RESULTS FOR
ENSEMBLE-ELM METHOD
The experimental platform was a computer configured with
an Intelr Pentiumr CPU G620 @ 2.6 GHz, 4 GB memory,
and equipped with MATLAB 2010 (R2010b).

(1) Indian Pines. In the ELM classification algorithm,
the number of neurons L in the hidden layer must be set
before classification, and therefore this study first obtained
the relationship between the value of L and the ELM algo-
rithm classification result and determined an optimal value
for subsequent classification experiments. In the Indian Pines
experiment, 40% of the samples were randomly selected as
training data, and the remaining 60% were used for testing.

TABLE 8. Indian pines experiments: Relationship between L, the number
of neurons in the hidden layers, and ELM classification results.

TABLE 9. Indian pines experiments: Comparison of classification results
with the ELM and Ensemble-ELM algorithms (classification accuracy %).

The activation function was sigmoid. Table 8 presents the
experimental results of ELM RS image classification with
different numbers of hidden layer nodes; the results are
obtained from the average of 10 identical experiments.

Table 8 shows that the classification accuracy increased
with the number L of hidden-layer neurons by using ELM
to classify the objects in the Indian Pines dataset. However,
increasing trend slowed down with further increases in L, and
in the L = 5000 case, it basically achieved a stable value.
In subsequent experiments, L was set to 5000. After several
experiments, the number of base classifiers in the Ensemble-
ELM algorithm in this experiment was set to 10. Table 9 lists
the results of Indian Pines feature classification using the

VOLUME 7, 2019 108081



F. Huang et al.: Research on Optimization Methods of ELM Classification Algorithm for Hyperspectral RS Images

FIGURE 13. Classification results of the Indian Pines dataset with ELM
and Ensemble-ELM: (a) ELM (71.73%); (b) Ensemble-ELM (84.17%).

TABLE 10. Indian pines experiments: Comparison of classification results
with the ELM, Ensemble-ELM, and SVM algorithms.

TABLE 11. PaviaU experiments: Relationship between L, the number of
nodes in hidden layers, and ELM classification results.

ELM and Ensemble-ELM algorithms. Figure 13 shows the
experimental results of classifying all the labeled samples of
the Indian Pines dataset with the two algorithms.

In the case of a small sample set, a small number of samples
from each category were selected as training samples, and the
remaining samples were tested. Table 10 shows the results of
the comparison between SVM, ELM, and Ensemble-ELM.

(2) PaviaU. In the PaviaU experiment, the number of
hidden layer nodes L was also determined first by experi-
ments. A certain proportion of samples in each category were
randomly selected as training samples, and the remaining
samples were used for testing. Table 11 shows the number
of training and test samples. The activation function of the
ELM algorithm was sigmoid. Depending on the number of
hidden layer nodes L, the experimental results of the ELM
classification were different, as shown in Table 11.

The analysis showed that when using ELM to classify
the objects in the PaviaU case, the classification accuracy
increased as the number of neurons in the hidden layer
increased, but the ascending trend was very gentle, and the
classification accuracy decreased at L = 1000 and then rose
again at L = 2000. Essentially, the classification accuracy
had achieved a stable value. The drop in classification accu-
racy at L = 1000 was caused by one experiment with a

classification accuracy of only 10%, which was caused by the
instability of the ELM algorithm itself.

In this experiment, L was set to 2000 and the number of
base classifiers of the Ensemble-ELM algorithm to 5.

Table 12 shows the experimental results of classifying the
PaviaU dataset using both ELM and Ensemble-ELM algo-
rithms. Figure 14 shows the classification results with the
ELM and Ensemble-ELM algorithms for all tagged samples
in PaviaU.

TABLE 12. PaviaU experiments: Comparison of classification results with
the ELM and Ensemble-ELM algorithms (classification accuracy %).

FIGURE 14. Classification results for the PaviaU dataset with ELM and
Ensemble-ELM: (a) ELM (76.69%); (b) Ensemble-ELM (86.76%).

From each category, 30 samples were selected as training
samples, with the rest used as test samples. Table 13 presents
a comparison of the results using the SVM, ELM, and
Ensemble-ELM algorithms.

(3) Salinas. In the Salinas experiment, the number of ELM
hidden layer nodes L used in this experiment was determined
experimentally by considering classification efficiency and
accuracy. In the comparative experiment with ELM and
Ensemble-ELM, 3% of the samples in each category were
randomly selected as training samples, and the rest were used
for testing. The activation function of the ELM algorithm
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TABLE 13. PaviaU experiments: Comparison of classification results with
the ELM, Ensemble-ELM, and SVM algorithms.

TABLE 14. Salinas experiments: Comparison of classification results with
the ELM and Ensemble-ELM algorithms (classification accuracy %).

was sigmoid, and the number of hidden layer nodes was
set to 1000 (After the value of L reaching to 1000, the
AA value of this method is getting smaller and the training
time is significant increasing. Because the curve trend of the
relationship between the number of neurons in the hidden
layers with the classification results is exactly the same as that
in the foregoing two experiments. For the space limitation,
the corresponding data are note provided here). The num-
ber of base classifiers in the Ensemble-ELM algorithm was
set to 20.

Table 14 shows the classification results for the Salinas
features using the ELM and Ensemble-ELM algorithms.
Figure 15 presents a graphical representation of the classi-
fication of all labeled samples in Salinas by the ELM and
Ensemble-ELM algorithms.

From each category, 0.5% of the samples were selected
as training samples, with the rest used as test samples. The
number of hidden layer neurons L was set to 2000. Using the
SVM, ELM, and Ensemble-ELM algorithms, the results were
as shown in Table 15.

FIGURE 15. Classification results for the Salinas dataset with ELM and
Ensemble-ELM: (a) ELM (84.36%); (b) Ensemble-ELM (88.46%).

TABLE 15. Salinas experiments: Comparison of classification results with
the ELM, Ensemble-ELM, and SVM algorithms.

FIGURE 16. Effect of size and number of bands in the LBP shifting
window on the classification accuracy of the PaviaU dataset.

2) EXPERIMENT DESIGN AND RESULTS
FOR THE LBP-KELM METHOD
The experimental platform and the software and hardware
configuration were identical to those in Subsection V.B.1).
In this experiment, several parameters had to be adjusted
manually: the number of bands K after MNF dimension
reduction, parameters (m, r) for calculating LBP, the size of
the shifting window (p×p), and the number of nuclei l in the
RBF-KELM algorithm. The number of RBF-KELMnuclei in
this experiment was set to 5. For other parameters, the PaviaU
data were taken as an example to introduce the process of
adjusting and determining parameter value.When (m, r) were
fixed as (8, 2), the classification precision was affected by the
LBP shifting window size (p× p) and the number of bands k
(see Fig. 16). It is clear from Fig. 16 that when the number of
bands k > 6 and the window size is 21×21, the classification
accuracy reaches the maximum value. It can be concluded
that when the number of bands k = 10 and the window size is
21×21, the relationship between LBP-KELM classification
accuracy and the parameters of the LBP operator (m, r) is
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TABLE 16. Overall classification accuracy of the PaviaU dataset using the
LBP-KELM algorithm with different parameters (m, r) (%).

TABLE 17. Optimal parameter values in the classification experiments.

FIGURE 17. Classification results for the Indian Pines dataset with KELM,
SVM, and LBP-KELM: (a) KELM (79.09%); (b) SVM (81.43%);
(c) LBP-KELM (98.48%).

as shown in Table 16. The classification accuracy is highest
when (m, r)= (6, 3).Whenm ≥ 6, the classification accuracy
tends to stabilize and is no longer sensitive to different R
values. Because adjacent pixels in space likely belong to
the same category, R should be set to a smaller value. The
features of LBP have M × (m− 1) + 3 dimensions. The
larger the value of M , the higher will be the computational
complexity. Therefore, considering classification precision
and computational complexity, in the PaviaU case, (m, r) =
(6, 3) gave the best results.

In the classification experiments with the Indian Pines
and Salinas datasets, the parameter tuning process of the
LBP-KELM algorithm was the same as with PaviaU. In the
classification experiments, the final set of optimal parameter
values were as shown in Table 17.

(1) Indian Pines. The experiment randomly selected some
samples in each category as training samples, and the remain-
ing samples were used to test classification accuracy. The
parameter settings are shown in Table 17. Table 18 presents
a list of test set experimental results after classification of
Indian Pines features by KELM, SVM, and LBP-KELM.
Figure 17 presents a graphical representation of the classifi-
cation of all the Indian Pines labeled samples by the three
methods.

(2) PaviaU. This experiment randomly selected some sam-
ples in each category as training samples, and the remaining
samples were used to test classification accuracy. Table 19
gives a list of test set experimental results fromKELM, SVM,

TABLE 18. Indian pines experiments: Comparison of classification results
with the KELM, SVM, and LBP-KELM algorithms (%).

TABLE 19. PaviaU experiments: Comparison of classification results with
the KELM, SVM, and LBP-KELM algorithms (%).

and LBP-KELM classification of PaviaU features. Figure 18
provides a graphical representation of the classification of all
PaviaU labeled samples by the three methods.

(3) Salinas. This experiment randomly selected 1% of
the samples in each category as training samples, and the
remaining samples were used to test classification accu-
racy. Table 20 gives a list of test set experimental results
after classification of Salinas features by KELM, SVM, and
LBP-KELM. Figure 19 provides a graphical representation of
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FIGURE 18. Classification results of the PaviaU dataset with KELM, SVM,
and LBP-KELM:(a) KELM (88.29%); (b) SVM (87.22%);
(c) LBP-KELM (90.94%).

the classification of all labeled samples in the Salinas dataset
by the three methods.

3) EXPERIMENTAL DESIGN AND RESULTS FOR CNN-ELM
METHOD
This experimental platform was a computer configured with
an Intelr CoreTM i7-6498DU@ 2.50 GHz, 8 GB memory,
and the operating system is Ubuntu equipped with Keras
package. Due to the fact the different experimental platforms
have different experimental environments, the comparison
of the training time and test time in this experiment has no
comparability and are unnecessary. Therefore, the following
experiments are primarily intended to present the comparison
of the classification accuracy. Table 21 lists the parameters of
the CNN-ELM classification method, where the loss function
is categorical_crossentropy.

(1) Indian Pines. In the Indian Pines experiment, as in
the experiment described in Subsection V.B.1), 40% of the
samples were randomly selected as training samples, and
the remaining 60% were used for testing. Table 22 shows
the experimental results of the classification of Indian Pines
RS images by the ELM and CNN-ELM algorithms. Figure 20
provides a graphical representation of the classification of all
labeled samples in the Indian Pines RS images by the two
algorithms.

TABLE 20. Salinas experiments: Comparison of classification results with
the KELM, SVM, and LBP-KELM algorithms (%).

FIGURE 19. Classification results of the Salinas dataset with KELM, SVM,
and LBP-KELM: (a) KELM (88.46%); (b) SVM (89.64%);
(c) LBP-KELM (97.12%).

(2) PaviaU. In the PaviaU experiment, 5% of the samples
in each class were randomly selected as training samples, and
the rest were used for testing. Table 23 shows the test sample
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TABLE 21. Parameter settings for CNN-ELM.

TABLE 22. Indian pines experiments: Comparison of classification results
with the ELM and CNN-ELM algorithms (%).

FIGURE 20. Classification results of the Salinas dataset with ELM and
CNN-ELM: (a) ELM (71.73%); (b) CNN-ELM (96.08%).

classification results. Figure 21 shows the classification effect
of ELM and CNN-ELM algorithms on all labeled samples in
the PaviaU images.

(3) Salinas. In the Salinas experiment, 3% of the samples
were randomly selected as training samples, and the rest were
used for testing. Table 24 shows the test sample classification
results. Figure 22 shows the classification effect of the ELM
and CNN-ELM algorithms on all labeled samples in the
Salinas images.

TABLE 23. PaviaU experiments: Comparison of classification results with
the ELM and CNN-ELM algorithms (%).

FIGURE 21. Classification results of the PaviaU dataset with ELM and
CNN-ELM: (a) ELM (79.05%); (b) CNN-ELM (95.74%).

FIGURE 22. Classification results of the Salinas dataset with ELM and
CNN-ELM: (a) ELM (84.36%); (b) CNN-ELM (93.48%).

C. ANALYSIS OF THE EXPERIMENTAL RESULTS
By analyzing the classification results on the three datasets
from the experiments described above, the following conclu-
sions can be drawn:

(1) The Ensemble-ELM algorithm has advantages both in
classification accuracy and efficiency. The robustness of the
algorithm is better, and the RS image classification method
based on ELM is optimized. In particular, the classification
result on the PaviaU dataset was better, with OA improved
by 19%, which was very impressive. Compared with ELM,
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TABLE 24. Salinas experiments: Comparison of classification results with
the ELM and CNN-ELM algorithms (%).

TABLE 25. Comparison of these three ELM optimization methods.

the RS image classification effect with Ensemble-ELM was
better. The number of noise points was greatly reduced, but
the effect was still not ideal. Comparedwith SVM, Ensemble-
ELM still has obvious advantages in classification speed,
which satisfies the demands of real-world applications.

(2) The LBP-KELM method makes full use of the spatial
texture characteristics of RS images, overcoming classifi-
cation issues such as different objects that appear to have
the same spectrum and the same object appearing to have
different spectra, reducing noise points in the classification
chart significantly. The image is smoother, and the opti-
mization effect is more prominent than with Ensemble-ELM.
LBP-KELM produced good results when classifying of the
Indian Pines and Salinas datasets, but the classification effect
on PaviaU was not obvious. OA was improved by only
about 2.5%; this indicates that the classification effect is eas-
ily influenced by the dataset used, which makes the method
unsuitable for classifying RS images with slender regions.

(3) The CNN-ELM method gave the ideal classification
results for the three kinds of datasets: the classification

precision was greater than 93%, which shows that CNN-ELM
has an outstanding effect on ELM-based RS image classifica-
tions and has low sensitivity to dataset characteristics, which
makes the method suitable for a variety of datasets.

Based on the above analysis, we can get a concise compari-
son to illustrate the characteristics of these three optimization
methods (Table 25).

VI. CONCLUSION AND FUTURE WORK
In this study, the ELM algorithm was used to classify hyper-
spectral RS images. The study mainly aimed to solve the
problems of the ELM algorithm in classification, such as
instability, poor robustness, and low classification accuracy,
from three aspects: integrated learning, using image texture
features, and deep learning. Three kinds of RS image clas-
sification optimization methods based on ELM have been
proposed. Among them, the Ensemble-ELM classification
method was proposed to optimize the original ELM classi-
fication algorithm to improve its robustness and classifica-
tion accuracy, but the classification effect was still not ideal
at some points in the classification diagram. To overcome
this, the second optimization method, LBP-KELM, further
improved the classification effect. Because the spatial texture
features of RS images were fully utilized, the noise points in
the classification map were significantly reduced, the edge
categories were more accurately classified, and the classi-
fication efficiency was higher than with Ensemble-ELM.
However, the disadvantage was that LBP-KELM was not
suitable for a variety of datasets. To solve this problem,
the third method, CNN-ELM, obtained ideal classification
results for the three kinds of datasets; this method had a
good classification effect and was applicable to a variety of
datasets. According to the experiments, all the three optimiza-
tion methods can achieve a balance between classification
accuracy and efficiency, i.e., they can maintain the advantage
of ELM algorithm in classification efficiency and speedwhile
have better classification accuracy. Among the threemethods,
it was the optimization method with the best overall effect.

However, there is still room for optimization in the pro-
posed methods and for further improvements to the precision
and speed of RS image classification. Such optimization
efforts include parallelization of the Ensemble-ELM method
and optimization of the stochastic parameters of the ELM
algorithm. The authors will investigate these subjects in their
future work.
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