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ABSTRACT Object tracking based on deep learning is a hot topic in computer visionwithmany applications.
Due to high computation and memory costs, it is difficult to deploy convolutional neural networks (CNNs)
for object tracking on embedded systems with limited hardware resources. This paper uses the Siamese
network to construct the backbone of our tracker. The convolution layers used to extract features often have
the highest costs, so more improvements should be focused on them to make the tracking more efficient.
In this paper, the standard convolution is optimized by the separable convolution, which mainly includes a
depthwise convolution and a pointwise convolution. To further reduce the calculation, filters in the depthwise
convolution layer are pruned with filters variance. As there are different weight distributions in convolution
layers, the filter pruning is guided by a hyper-parameter designed. With the improvements, the number of
parameters is decreased to 13% of the original network and the computation is reduced to 23%. On the
NVIDIA Jetson TX2, the tracking speed increased to 3.65 times on the CPU and 2.08 times on the GPU,
without significant degradation of tracking performance in VOT benchmark.

INDEX TERMS Object tracking, deep learning, separable convolution, filter pruning.

I. INTRODUCTION
Visual object tracking tasks predict the object region in the
subsequent frames when its size and position are given in
the first video frame. Visual object tracking is a hot field in
computer vision. It has a wide range of applications, such as
video surveillance, human-computer interaction, unmanned
vehicle driving and so on. Object tracking is a challenging
task because the object itself and the tracking scenes often
are very complex and change frequently.

Visual object tracking methods can be classified into two
categories: methods based on generative models and methods
based on discriminant models. The methods based on genera-
tive models suggest that tracking is a process of object match-
ing, which locates the region with the best matching or the
smallest reconstruction error, i.e. the largest posterior prob-
ability region, as the object region prediction [1]–[3]. The
methods based on discriminant models consider tracking as
a binary classification. By classifying the object boundary in
the background, object and background are identified. Since
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they can distinguish background and object more signifi-
cantly, the discriminant models are more robust and thus
have gradually dominated the object tracking research field.
The methods based on discriminant models mainly include
correlation filtering algorithm and deep learning algorithm
in recent years. The correlation filtering algorithm finds the
maximum response region by comparing the signals similar-
ity, then determines the object location, such as MOSSE [4],
KCF [5], C-COT [6], ECO [7].

Before the emergence of deep learning, the discriminant
model mainly used hand-crafted features. There are two
deficiencies in this way. Firstly, with the increasing sam-
ples in tracking data sets, the hand-crafted features in the
early tracking algorithm are too simple to satisfy the sample
diversity. Secondly, in traditional tracking algorithms, feature
extraction and classification are two independent and unre-
lated parts, which can’t be optimized end-to-end. Therefore,
the classification results can’t be used to evaluate the perfor-
mance of the feature extraction.

With the widespread application of deep learning in com-
puter vision, it has achieved excellent performance in such
fields as classification, detection, semantics segmentation and
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so on. Many algorithms use CNN to extract features or train
the tracking network end-to-end directly. As CNNs have
significant advantages, the traditional tracking methods, such
as C-COT and ECO, also use deep learning to extract
features. For example, ECO algorithm based on deep learning
improves accuracy by 16% and robustness by 33% compared
with that based on hand-crafted features (HOG and Color
Names).

Although CNN has excellent performance in computer
vision, it has millions of parameters and billions of calcu-
lations. Tracking algorithms based on the deep neural net-
work are all very slow due to the tremendous amount of
computation. So, the greatest challenge of tracking algorithm
based on deep neural network is to reduce its computation.
In real scenarios, deep learning-based tracking algorithms
often run on terminals with limited storage and computation.
Optimizing these algorithms is necessary.

Convolution layers in deep neural networks usually extract
the features of the object region and each video frame. This
process incurs most of the parameters and calculations in
tracking networks. Therefore, we should make convolution
layers more efficient.

In this paper, we propose an approach to significantly
reduce the computation of the tracking algorithm based on a
deep neural network. The standard convolution is optimized
by a separable convolution in the object tracking network.
There may be redundant filters in convolution. To further
reduce the network computation, a filter pruning scheme is
proposed based on the analysis of filters variance.

The contributions of this paper are as follows:

• The separable convolution is used to optimize the tradi-
tional convolution. With this improvement, the number
of parameters is decreased to 17% of the original net-
work and the computation is decreased to 28%.

• Filters are pruned in depthwise convolution layer. The
parameters and calculations in the network are further
reduced. The parameter size is decreased to 13% and the
computation is reduced to 23%.

• We propose a hyperparameter α, which can help us
prune the unimportant filters. We sort the filters accord-
ing to their variance in each convolutional layer. The
cumulative variance of pruned filters should be less than
the total variance multiplied with α, instead of a fixed
percentage.

Although our approach implemented is based on the
SiameseFC tracking network, we mainly focus on acceler-
ating the convolution layers for feature extraction. In theory,
the separable convolution and filter pruning in this paper can
also be applied to other deep tracking networks where real-
time performance is critical.

The remainder of this paper is organized as follows.
In section II, we introduce related works. In section III,
we describe how our approach makes the tracking network
more efficient in details. Section IV shows the experiment
results. Section V summarizes the paper.

II. RELATED WORK
A. OBJECT TRACKING METHOD BASED ON DEEP
LEARNING
Deep learning-based tracking algorithms have developed
rapidly since 2013. In recent years, they have gradually sur-
passed the traditional methods in accuracy and robustness.
With deep learning, the tracking network can be trained end-
to-end and can extract the features from labeled data sets.
Now visual object tracking algorithms based on deep learning
have become a mainstream of tracking algorithms.

MDNet[8] is a multi-domain learning framework based
on CNN, which separates domain-independent information
from domain-specific information to obtain effective fea-
ture representation. It uses offline training and bounding-box
regression for object region prediction. Its large computa-
tion costs have severely affected its application. Faster algo-
rithms have been proposed, such as GOTURN [9], however,
GOTURN only runs on a high-performance GPU at the
expense of accuracy. The fully convolution Siamese networks
for object tracking (SiameseFC) [10] is a typical network
that applies Siamese CNNwith end-to-end training. Based on
SiameseFC network, many algorithms, such as CFNet [11],
PTAV [12], Siam RPN [13], SA-Siam [14], FPSN-MOT [15]
have been derived and achieved good performance.

B. ACCELERATING CNN METHODS
Although the deep learning method improves the accuracy
and robustness in tracking, it is hard to be deployed on mobile
devices. At present, there are many methods to reduce the
number of parameters and accelerate the calculation. Among
them, the convolution decomposition is an effective method.
Following these ideas, several more compact network archi-
tectures have emerged in the industry. SqueezeNet [16] con-
structs the fire module in the network to reduce parameters.
Xception[17] network effectively compresses the featuremap
channels by 1 × 1 convolution. MobileNet [18] decompose
a standard layer into a depthwise convolution and a channel
convolution. To further reduce calculation, ShuffleNet [19]
remove the channel convolutions by channels shuffling to
integrate information among channels.

In addition, pruning can be used to simplify networks
for trained models. Pruning includes structured pruning and
unstructured pruning, according to the pruning granularity.
Unstructured pruning mainly prunes the single weight or the
single vector in filters. Although unstructured pruning can
effectively reduce the parameters and produce a sparse
network model, it does not directly reduce calculation.
Accelerating the neural network with unstructured pruning
must be supported by special libraries. Structured pruning
deletes filters or feature maps according to a specific crite-
rion, which directly reduces the filters or feature maps related
to matrix multiplication. It does not require special libraries.

There have been many discussions on the criteria of filter
pruning or feature map pruning. Li et al. [20] evaluate the
absolute weights of filters in a network, concluding that the
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FIGURE 1. Outline of our network architecture.

filter with smaller values should be pruned first. This method
only evaluates the absolute value of the weights in the filter.
In fact, filters with a large fixed absolute value still maybe
can’t extract important information. Han et al. [21] use itera-
tive validation to determine which weights have more impact
on the loss function. Weights with smaller impact should be
pruned first. Molchanov et al. [22] use the first order Taylor
expansion to evaluate the importance of filters in iterative
training. Hu et al. [23] propose the Average Percentage of
Zeros (APoZ) in the activation layer to determine which
feature map is significant. The pruning methods [21]–[23]
require many iterations in the training process to determine
the importance of a filter or feature map, which is very
time-consuming.

III. OUR APPROACH
In this section, we first illustrate the basic structure of our
tracking algorithm. Then, we describe ourmethod tomake the
tracker more efficient. The standard convolutions in the two
CNN branch are optimized with the separable convolution
and the network is composed of new convolutions trained
from scratch. To further reduce computation, filters in the
depthwise convolution layer are pruned in trained models.
After filter pruning, retraining is used to ensure network
performance.

A. OUR NETWORK ARCHITECTURE
We construct the Siamese network as network infrastructure.
Siamese network is a very typical network in deep learning.
It uses end-to-end training in neural networks, rather than
merely extracting features by CNN. Many tracking algo-
rithms based on deep learning derived from it.

As shown in Fig. 1, the Siamese network uses two CNN
branches to extract features respectively. The object region
(127×127×3) in the first frame is input into a CNN branch to
extract the object feature maps (6×6×256). The subsequent
video frames (255×255×3) are fed into another CNN branch
to get the frame feature maps (22 × 22 × 256). We locate
the object position by comparing the similarity between the
objects and the candidate region in the subsequent frames.
The yellow block marked with the symbol ‘‘ϕ’’ represents
the convolution neural network used to extract features. The
yellow block marked with the symbol ‘‘∗’’ represents features
cross-correlation.

FIGURE 2. (a) The process of standard convolution. (b) The process of
separable convolution.

The two CNN branches share the same network weights.
Because the two convolution branches account for most of
the calculations in the network, we mainly focus on the CNN
branches improvement.

B. EFFICIENT NEURAL NETWORK BASED ON SEPARABLE
CONVOLUTION
The separable convolution substitutes the standard convo-
lution in the original Siamese network, except for the first
convolution layer.

The first convolution layer in the network is not changed
to avoid loss of the receptive field. A standard convolution
becomes a block structure of depthwise Conv + BN +
ReLU + 1 × 1 pointwise Conv + BN + ReLU. Fig. 2 illus-
trates the standard convolution and separable convolution.
The BN and ReLU layers are not shown in Fig. 2. The 1× 1
pointwise convolution means the filter size is 1 × 1 in the
convolution.

As shown in Fig. 2, a separable convolution block mainly
includes a depthwise convolution and a 1 × 1 convolution.
Separable convolution ensures that features can be extracted
in both spatial and channel levels.

The dimension of traditional convolution filters is H ×
W×C (Height×Width×Channel). It is necessary to ensure
that the area features are extracted from a two-dimensional
plane (H×W size). On the other hand, other crucial features
also should be obtained from the channels. The Separable
convolution also has two stages: depthwise convolution and
pointwise convolution. As shown in Fig. 2(b), the depthwise
convolution focuses on the area information. The pointwise
convolution is mainly concerned with channel information.
To some extent, we can consider separable convolution as a
convolution matrix decomposition.

In depthwise convolution, the channel number of input
data is consistent with the number of filters. For example,
the first input channel is convoluted only with the first filter;
the second input channel is convoluted only with the second
filter, and so on. The results of each channel convolution
are independent and not cumulative. Since depthwise con-
volution confines feature information to a single channel,
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TABLE 1. Comparison of the Siamese network structures using separable convolution.

the 1×1 pointwise convolution layer is necessary to integrate
the feature maps of each channel.

For standard convolution, the computation complexity can
be estimated as

DK × DK ×M× N × DF × DF (1)

where DK is the filter size in current convolution layer. DF is
the size of the input feature map. M indicates the number of
input channels. N indicates the number of output channels.
The computation complexity in separable convolution block
is formulated as

DK × DK ×M× DF × DF+ M× N× DF × DF (2)

The production of DK ×DK×M×DF×DF is the compu-
tation complexity of depthwise convolutions which focus on
the spatial information. The production of M×N×DF ×DF
is the computation complexity of 1 × 1 pointwise convolu-
tion, which integrates multichannel information across the
M channels. A standard convolution is decomposed into a
spatial convolution and a channel convolution respectively.
It is obvious that the computation of a separable convolution
block is much less than that of standard convolution. The ratio
is shown as

DK×DK×M×DF×DF+ M×N×DF×DF
DK×DK×M×N×DF×DF

=
1
N
+

1

D2
K
(3)

For example, the size DK is 3 in our third convolution layer.
The number of parameters is 1/9 of that before optimization.
1/N is usually small and can be neglected.

With this method, the new architecture of a single branch
in Siamese networks is summarized in Table 1. The descrip-
tion of the original network is on the left. Our network
is on the right. The word ‘‘Chan’’ represents the channel
number of the output feature map. The word ‘‘map’’ repre-
sents the channel number of the input feature map. On the
right, the Con∗_1 layers are depthwise convolutions. The
number of the input channel is equal to the number of filters

FIGURE 3. Visualization of twenty filters selected randomly in Con2_1
layer. Each patch represents a filter. The number below each patch is the
variance of the weights of that filter.

in depthwise convolution. The symbol ‘‘∗’’ represents the
number from 2 to 5. The Con∗_2 layers are 1 × 1 pointwise
convolutions. The number of 1 × 1 filter channel is equal
to the input channel number in pointwise convolution. In the
proposed network architecture, the number of parameters is
decreased to 17%of the original network and the computation
is reduced to 28%.

C. FILTER PRUNING BY VARIANCE IN NETWORK
To further reduce the computation of the tracking algorithm,
we statistically analyzed the filters. It is found that the inter-
nal weights in some trained filters may have little difference.
We suggest these filters could contribute little to features
extraction. Thus, these filters can be pruned to reduce network
size and computation further.

To give an intuition of this idea, we visualized some
filters in Fig. 3. Twenty filters were randomly selected
from the Con2_1 layer and visualized after normaliza-
tion. Each patch represents a filter. The filters are sorted
according to their variance. From Fig. 3, we find that the
first and second filters do not have a significant pattern.
They are not able to extract discriminative features from
the image. They will contribute little to the final object
tracking.

The variance of these weights can evaluate their impor-
tance. Fig. 3 also shows that the weights variance without
a significant pattern is very small, near to zero. In theory,
the larger the filter variance, the more important the filter is.
Thus, the filter with smaller variance should be pruned first.
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FIGURE 4. The filters pruning in depthwise convolution.

FIGURE 5. The variance distribution of filter among different layers.

In the separable convolution block, the filter is pruned
in the depthwise convolution, which is a DK×DK × 1× M
dimension tensor. The third dimension of the tensor is one.
It is more convenient to calculate the variance in a single
channel rather than many channels.

Fig. 4 illustrates the filter pruning process. Pruning the
pink filter with small variance in the depthwise convolution,
the input feature map for the depthwise convolution will be
removed accordingly. Moreover, in the subsequent 1 × 1
pointwise convolution, the number of channels in the 1 × 1
pointwise filters will be reduced due to the reduction of input
feature maps.

The hyper-parameter in this method is the pruning ratio,
which means how many filters should be pruned. As the
variance distribution for each convolution layer is different,
it is an inadvisable strategy to prune the whole network with
a fixed pruning ratio. To better illustrate this fact, we show
the variance distribution of filter weights after normalization
in each layer in Fig. 5.

We sort the filters in ascending order by variance in each
layer. The horizontal axis of Fig. 5 indicates the quantity
percentage of sorted filters in each layer. The vertical axis
of Fig. 5 indicates the cumulative distribution of the variance
sum in each layer. The different color lines represent different
convolution layers. Several phenomena are shown in Fig. 5.

Firstly, the filters variances vary significantly in a layer.
There is no linear relation between the filters number and
their variances sum. The top 40% filters, which are sorted in
variance ascending order, only account for about 10% of the
total variance in every layer. It shows that many filters have
small weights variance.

Secondly, there are differences in the filter variance distri-
bution among different layers. For con2_1 layer, the top 40%
filters account for 10% of its total variances. However, for
the con5_1 layer, the top 50% filters account for 10% of its

total variances. It is obvious that the con2_1 layer has more
discriminative filters than con5_1 layer has.

The variance distribution of each filter layer is different,
so it is not a good choice to use a fixed pruning ratio.
We introduce a hyper-parameter α to control the pruning
ratio. Suppose that there are n filters in a convolution layer,
we need to prune m filters. We rank n filters in ascending
order of variance. The smallest m filters should be pruned
firstly. In (4), we set a constraint that the sum of m filters

variance is not larger than
(

n∑
i=1

vari

)
× α.

m∑
i=1

vari ≤

(
n∑
i=1

vari

)
× α

0 ≤ α ≤ 1 (4)

n∑
i=1

vari is the sum of all filter variances in this layer. With

the hyper-parameter α, more filters can be pruned in more
redundant convolution layer and fewer filters can be pruned
in less redundant convolution layer.

Note: Because the variance of many filters in each layer
is small, many filters should be pruned, even if the hyper-
parameter α is small. For example, as illustrated in Fig. 5, if
the hyper-parameter α is equal to 0.10, 40% filters are pruned
in the con2_1 layer and 50% filters are pruned incon 5_1
layer.

IV. EXPERIMENT
To verify our approach, we implemented several sets of
contrasting tracking experiments. Our approach can greatly
reduce the computational complexity in the network without
significant degradation of tracking performance.

A. EXPERIMENT SETUP
In the training process, we used the ImageNet Video data
set as the training set, which contains 4000 videos. The
ImageNet Video data set has not only more samples, but also
more diversity and scenes. The similarity loss between the
prediction and ground truth is optimized by a standard SGD
algorithm in training. The parameters are initialized with
Gauss distribution, scaled according to the improved Xavier
method [24]. We implement 50 training epochs. Each epoch
contains 50,000 samples. Negative samples are chosen from
different videos, accounting for 25% of the total samples. The
minibatch size is 8. The learning rate decreases evenly from
10−2 to 10−4 according to the number of epochs.

To ensure experimental conditions consistent with the orig-
inal Siamese network, we also use the 2015 version of Visual
Object Tracking (VOT) benchmark in our experiment. VOT
data set is a tracking platform for single target. Since 2013,
VOT has become a main platform of single target tracking.
VOT dataset not only has large-scale samples but also has
a comprehensive evaluation for occlusion, deformation, illu-
mination, low resolution, motion blurring and other factors in
video tracking.
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All experiments were performed on a computer equipped
with Nvidia TITAN XP GPU. Our tracker is trained with
MatConvNet [25] in MATLAB. Since TensorFlow supports
separable convolution better, we import the trained weights
into TensorFlow for testing.

B. EVALUATION METRICS
We use the following metrics to evaluate the tracking perfor-
mance:

Accuracy – measured with the average intersection-over-
union (IoU) between the predicted bounding box and the
ground truth in a single video sequence. It takes the value
between zero and one. One means complete overlap and zero
means no intersection at all.

Failure rate – an average ratio of failed frames in each
video. With the same failed frames, the shorter the video
is, the higher the failure rate is. The failure rate is used to
measure tracking robustness. The failure is deemed to have
occurred when IoU between the estimated bounding box and
the ground truth becomes zero. If the tracking fails, the tracker
will be reinitialized after five frames in VOT. The failure of
the tracking may be due to illumination or occlusion. In such
scenarios, if the tracker is initialized immediately, it may
increase the failure probability.

Overall performance – evaluated using Expected Average
Overlap (EAO) which accounts for both accuracy and robust-
ness. EAO [26] is used to measure the expected average
IoU of the predicted region and the ground truth without
re-initialization. Since EAO comprehensively measures the
accuracy and robustness of trackers, it is the most important
indicator for evaluating trackers.

Million Paras – the number of parameters of a CNN
branch. Two CNN branches share the same parameters.

Million Mult-Adds – the total amount of calculations of
two CNN branches. As the input images size is different in
two branches, calculations of the two branches are different.

C. EXPERIMENT RESULT
To validate our approach, we have implemented the following
experiments on a variety of network architectures.

• Network based on standard convolution. We down-
load the network model from the GitHub website
https://github.com/bertinetto/siamese-fc.It is a baseline
experiment.

• Network based on the separable convolution, where the
separable convolution only replaces standard convolu-
tion. It illustrates the contribution of separable convolu-
tion to network complexity reduction.

• Network based on separable convolution and filter prun-
ing. In addition to replacing standard convolution with
separable convolution, the filter is pruned according
to hyper-parameter α = 0.01. It shows the contribu-
tion of filter pruning to network complexity reduction.
Experiments show that the hyper-parameter α is 0.01,
which can trade off the performance and computation

TABLE 2. Our tracker compared with baseline on VOT benchmark.

FIGURE 6. Our tracker compared with mainstream tracking network
based on deep learning with Nvidia TITAN XP GPU on VOT
2015 benchmark.

FIGURE 7. Our tracker compared with state-of-the-art accelerating
methods on VOT 2015 benchmark.

cost. Fig. 8 illustrates its tracking snapshots on VOT
benchmark.

• Network based on separable convolution and 10% filter
pruning at random in each convolution layer. The num-
ber of its filters pruned is the same as that of the network
with hyper-parameter α equals 0.01. It demonstrates the
effectiveness of our pruning approach.

After the filters pruning, the remaining weights in the
network are used as the initial values for retraining.
We remove the filter and related feature maps to be pruned
directly in MATLAB to avoid their forward and backward
calculation.
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FIGURE 8. Snapshots of tracker described in Section 4.3, which based on separable convolution and filter pruning hyper-parameter
α is 0.01. All sequences come from the VOT2015 benchmark: Car1, fish3, racing, singer1 and tiger. Four tracking snapshots are
evenly sampled from the video sequences, which the trackers are not re-initialized. The scenarios include camera blur (row 1),
motion change (rows 2 and 3), poor illumination (row 4), occlusion (row 5) and scale change (row 3 and 4). Our tracker withstands
the extreme scenes test. It achieves good performance without tracker reinitialization.

As shown in Table 2, the third results achieve a good trade-
off between tracking performance and network efficiency.
The number of network parameters decreases to 13% and
the amount of computation decreases to 23%, without sig-
nificant degradation in the overall performance. The fourth
experiment shows that the random filter pruning leads to poor
performance.

To demonstrate our approach in speed, we compared
our approach with several state-of-the-art tracking networks.
We import the trained network weights into TensorFlow
platform. Compared with the SiameseFC baseline, our
tracker speed is much improved. As shown in Fig. 6, our
tracker speed almost reaches the GOTURN, which is a
very fast tracker based on deep learning. However, in terms

of accuracy, our tracker’s performance is twice that of
GOTURN. Our network has more advantages over other
methods in speed.

In addition, we demonstrate our approach on NVIDIA
Jetson TX2. NVIDIA Jetson TX2 is an embedded system-
on-module (SoM) with dual-core NVIDIA Denver2 + quad-
core ARMCortex-A57, 8GB 128-bit LPDDR4 and integrated
256-core Pascal GPU. It is ideal for intelligent edge devices
like robots, drones, smart cameras, and portable devices.
The experiment is implemented with Tensorflow platform.
In the experiment, the parameters size and the amount of
calculation are the same as on TITAN XP GPU, so the EAO
has not changed. We set the ‘‘MAX-N’’ mode in NVIDIA
Jetson TX2. As shown in Table 3, the excellent acceleration
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TABLE 3. Our tracker comparison with NVIDIA Jetson TX2 on VOT
benchmark.

TABLE 4. Performance different hyper-parameter.

performance has been achieved on the Jetson TX2. For
mobile devices with limited resources, our improvements
lead to greater acceleration ratios.

Compared with the benchmark, the computation in our
network has decreased by four times. The CPU’s accelera-
tion ratio is nearly four times. However, the speed has not
increased by four times on GPUs. Qin et al. [27] believe
the exchange frequency in memory is higher than the tra-
ditional convolution because of the depthwise convolution
kernel low reuse rate. Besides, the matrix operation in depth-
wise convolution is very small, so it is not easily fully
parallelized.

D. DIFFERENT HYPER-PARAMETER α

More experimental details can be referred to in Table 4.
We retrain the network to restores performance after pruning.
The larger the hyper-parameter α, the greater the potential
loss on the performance. We use experimental validation to
determine the hyperparameter α at present. We find that the
network can guarantee its performance when hyperparameter
α equals 0.01.
Therefore, in practical application, it is necessary to make

a trade-off between performance and efficiency. If the speed
is a priority, such as on mobile devices, which are sensitive to
network size and computational complexity, the larger α can
be chosen with more performance degradation.

E. DIFFERENT NETWORK ACCELERATION METHODS
COMPARISON
We have compared our approach with state-of-the-art accel-
erating methods, such as SqueezeNet, Xception, ShuffleNet,
MobileNet. We use a series of simplified convolution struc-
tures to transform the traditional CNN branches, which
is responsible for feature extraction. Fig. 7 shows the

performance of the networks using various acceleration
method.

The tracking based on Siamese CNN is a correlation
comparison between the object feature map and each frame
feature map. We use the maximum response area on the
feature maps to determine the object position in the video
frame. Therefore, it is better to use the same size filters in
convolution. In the SqueezeNet, Xception, and ShuffleNet,
we use different size kernel among channels in the same
convolution layer to get more scale information. It will result
in the object position change between different channels in a
convolution. This positional offset has no significant impact
on the classification network. However, in the SiameseFC
network architecture, it is possible to cause inaccurate object
position.

V. CONCLUSION
With the application of deep learning in object tracking,
the millions of parameters and huge computation in CNN are
a challenge for tracking performance. In this paper, the stan-
dard CNN network is improved by separable convolution and
filters pruning. With our approach, the number of parameters
is decreased to 13% of the original Siamese network and
the computation is reduced to 23%. On the NVIDIA Jetson
TX2, the tracking speed increased to 3.65 times on the CPU
and 2.08 times on the GPU, without significant degradation
of tracking performance in VOT benchmark. As this paper
mainly optimizes CNN of feature extraction, our approach
also can be applied to other deep learning-based tracking
algorithms. Deep learning-based tracking algorithms can be
more convenient to deploy on devices with limited resources,
such as mobile terminals.
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