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ABSTRACT This paper proposes a quality recovery network (QRNet) that recovers the image quality from
distorted images and improves the classification accuracy for image classification using these recovered
images as the classifier inputs, which are optimized for image quality loss and classification loss. In certain
image classification tasks, classifiers based on deep neural networks achieve higher performance compared
to those realized by humans. However, these tasks are based on images that are not distorted. To address
distorted images, the classifier is fine-tuned with distorted images for practical applications. However, fine-
tuning is insufficient for classifying images that include multiple distortion types with severe distortions
and often requires the classifier to be retrained for adapting to distorted images, which is a time-consuming
process. Therefore, we propose QRNet that generates recovered images for input to the classifier. To address
multiple severe distortions, the proposed network is trained using multiple distortion-type images with
our proposed loss, which comprises the image quality and classification losses. Moreover, by training the
proposed network with multiple classifiers, the recovered images can be easily classified by a new classifier
that is not used for training. The new classifier can classify the recovered images without retraining for
adapting to distorted images. We evaluate our proposed network with classifiers on public datasets and
demonstrate that it improves the classification accuracy for distorted images. Moreover, the experimental
results demonstrate that our proposed network with the new classifier improves the classification accuracy.

INDEX TERMS Autoencoder, convolutional neural network, deep neural network, image quality.

I. INTRODUCTION
Image processing applications that use deep neural networks
(DNNs) achieve high performance in several tasks such as
image classification [1], [2] and semantic segmentation [3],
[4]. However, these tasks assume undistorted images as
the inputs and therefore, for training the datasets as well.
In practical applications, several distortions such as compres-
sion distortion, motion blur, and image sensor noise exist.
These distortions reduce the classification accuracy of image
classification tasks [5], [6]. Furthermore, humans continue to
outperform classifiers based on DNNs in the classification of
distorted images [7]. Thus, as the classification of distorted
images by DNNs has not yet been resolved, improving the
classification of distorted images is crucial.

One solution to address these distortions is to fine-tune
a DNN-based classifier with distorted images. Fine-tuning
is one of the best solutions because of its ease of use.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

In [8], [9], fine-tuning has shown good performance for dis-
torted images. Although fine-tuning is an effectivemethod for
classifying distorted images, the usage of fine-tuning solu-
tions is limited; for instance, fine-tuning the classifier with
distorted images is insufficient when the distortion is severe.
For adapting the classifier to distorted images, fine-tuning
often requires the classifier to be retrained. When a new
classifier structure based on the DNN emerges, the classifier
with this new structure also needs to be retrained for adapting
to distorted images. However, retraining is a time-consuming
process, and changes in the network structure occur often
because of the rapid progress of DNNs.

Conventionally, several methods have been utilized to
improve the performance for distorted images [10], [11].
However, these methods are insufficient when the distortion
is severe; in addition, they assume that the network struc-
ture does not change. When a better performing classifier
appears for a certain application, its network structure is
different. To classify the distorted images accurately, this
better-performing classifier needs to be trained with distorted
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FIGURE 1. Quality recovered image from the blurred image. Original
image (left), blurred image (center), quality recovered image (right). The
quality recovered image was reconstructed using the proposed network,
QRNet.

images to address the classifier changes. Currently, there is
no method for addressing classifier changes without training
the classifier for distorted images.

In view of the above, we propose a new convolutional neu-
ral network (CNN) named quality recovery network (QRNet)
that can recover the image quality for image classification.
Figure 1 shows an example image recovered by QRNet,
which is an encoder-decoder network. QRNet recovers the
image quality from distorted images that include multiple
distortions and various distortion intensity levels. The recov-
ered image is then used as the classifier input. By optimizing
QRNet for a classifier, QRNet can generate recovered images
that are easy to classify. To realize the optimization of QRNet
for a classifier, we propose a novel loss function for training
QRNet. This loss function is composed of two terms: quality
loss and classification loss. With the optimization of the
proposed loss function, QRNet recovers the image quality
and improves the classification accuracy by classifying the
recovered image. QRNet can be optimized for image quality
and classification accuracy.

Furthermore, we propose a quality recovery method for a
new classifier. The recovered images generated by QRNet are
input to the new classifier that is not used for training QRNet;
i.e., the recovered images are not optimized for the new
classifier. QRNet is trained with multiple classifiers except
the new classifier, and this QRNet improves the accuracy of
the new classifier.

The main contributions of this paper can be summarized as
follows:

1) Proposal of an encoder-decoder network, QRNet, with
a novel loss function that can recover the image quality
from distorted images to improve the classification
accuracy.

2) Extension of the proposed loss to address the changes
in the network structure, and demonstration of the ease
of classification with a new classifier using the recov-
ered images generated by QRNet trained with multiple
classifiers.

This paper is organized as follows: Section II discusses
the related work. Section III presents the proposed QRNet
based on an encoder-decoder network that considers the loss
of the classifier. Section IV describes the application of
our proposed method for assessing public datasets. Finally,
Section V summarizes the paper and discusses the potential
for future developments.

II. RELATED WORK
A. DISTORTION EFFECT ON IMAGE CLASSIFICATION
Dodge and Karam [6] investigated the influence of distortion
on image classification. Their investigation demonstrated that
VGG16 [2] was more robust against distortion compared
to AlexNet [1] and GoogLeNet [12]. In the investigation,
Gaussian noise and Gaussian blur affected the classifi-
cation accuracy significantly, compared to other distor-
tions such as contrast, JPEG, and JPEG2000 compression.
Jo and Bengio [13] investigated whether neural networks
learn semantic concepts. They used Fourier filtering to con-
struct datasets and evaluated the classification errors for the
datasets. Their experiments demonstrated that the recogni-
tion accuracy deteriorated considerably when high frequency
components were removed. This result supports Dodge and
Karam’s investigation [6]. Based on these investigations,
we focus on the Gaussian noise and blur in this paper.

B. CLASSIFICATION OF DISTORTED IMAGES
There are several methods to classify distorted images [10],
[11]. Most studies on classifying distorted images are based
on [6], and our research is also inspired by this investigation.

Zhou et al. [8] examined the effect of distortion and pre-
sented the effectiveness of fine-tuning and retraining with
distorted images. They showed that retraining achieves higher
accuracy than fine-tuning. However, fine-tuning is more prac-
tical. Vasiljevic et al. [9] showed that fine-tuning with a
mixture of clean and blurred images can almost recover the
classification performance to the original classification per-
formance. Fine-tuning is an effective method for reducing
the classification error of distorted images. However, our
experiments demonstrate that fine-tuning is insufficient for
images that are severely distorted.

To improve the robustness against distorted images, cer-
tain training algorithms have been proposed. Stability train-
ing [14] is a training method that renders neural networks
more robust against distortion. This method trains the net-
work with clean and perturbed images such that the output
with clean images becomes closer to that with perturbed
images. Stability training achieves higher performance com-
pared to conventional neural networks.

For adversarial examples [15], BANG training [16] has
been proposed. Adversarial examples are important for
the security of image classification applications. To pre-
vent adversarial attacks in image classification applications,
BANG training increases the gradients of the correct samples
in a minibatch when updating the weights. It can flatten the
decision space around the correct samples for robust train-
ing of neural networks. Networks trained by the BANG are
robust against adversarial examples. Although these training
methods are useful for specific distortions, addressing severe
distortions is difficult using these methods.

DeepCorrect [10] corrects filters that degrade the perfor-
mance for distorted images and achieves higher performance
than fine-tuning. However, this correction is not applicable to
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FIGURE 2. Quality recovery network (QRNet) with a classifier. QRNet generates a recovered image that is used as the
classifier input. The classifier classifies the recovered image.

MixQualNets [11]. Yim and Sohn [17] proposed a dual chan-
nel model comprising two CNN models. One CNN model
extracts the features from the original image, whereas the
other extracts the features from a denoised image. These
features are combined and input to the fully connected layer
of the dual channel model. However, the denoising method
has a limitation; their model requires a new preprocessing
method for a new distortion.

Dodge and Karam [11] proposed MixQualNets that have
network structures that can address distortion. MixQualNets
have a clean network for original images and two expert
networks for distorted images. These two expert networks
are prepared for Gaussian noise and Gaussian blur, respec-
tively. They also include a gating network for predicting
the weights that weight the output of the clean and expert
networks. MixQualNets achieve higher performance com-
pared to a network optimized for a single distortion: they use
VGG16 [2] as the base model. The structures of the clean and
expert networks are similar to that of VGG16. To change the
base model, these network structures must be reconstructed,
and the networks must be retrained. Their model has many
parameters because MixQualNets comprise four networks.
Hence, their model is expensive, and requires considerable
memory and time for training when the network structure is
changed.

Hossain et al. [18] proposed a network that uses dis-
crete cosine transform (DCT) to improve the robustness
against distortion. They incorporated the proposed DCT
module into the first layer of the network, which sig-
nificantly improved the classification performance. How-
ever, as the DCT module is in the classification network,
retraining is needed for application to classification tasks.
Sun et al. [19] proposed the feature quantization method
to enhance the robustness of neural networks against image
distortion. They integrated a floor or power function into
the networks and obtained good performance for vari-
ous types of distortions. However, their method requires
the integration of the floor or power operation into the
network.

C. IMAGE TRANSFORM FOR CLASSIFICATION
Sharma et al. [20] proposed an image enhancement method
that improves the image classification performance. Filters
that enhance images were optimized with end-to-end training
for classification. Although their method achieved higher
performance compared to conventional neural networks, they
did not consider distortion.

Palacio et al. [21] proposed a method that can measure and
understand neural networks. They used an autoencoder that
was fine-tuned with a pretrained classifier whose parameters
were fixed. The pretrained classifier was trained on the Ima-
geNet [22]. They used AlexNet [1], VGG16 [2], Inception
V3 [23], and ResNet [24] as the pretrained classifiers. When
training the autoencoder, the gradients were backpropagated
from the classifier. They analyzed the reconstructed images
and found that high performing image classifiers utilized less
than 10% of the original input information. The reconstructed
images generated by their method preserved the signals that
were required for classification. Our study was inspired by
their work. We considered their transformation method effec-
tive for recovering the signals in distorted images as well.

In this paper, we propose an encoder-decoder network that
recovers the image quality for classification. Our proposed
network trained with a classifier performs well with multiple
distortion levels and distortion types. Moreover, our proposed
network trained with multiple classifiers improves the clas-
sification accuracy for a new classifier that is not used for
training the proposed network. In contrast to previous works,
our proposed network can perform well even with a new
classifier without retraining.

III. IMAGE QUALITY RECOVERY NETWORK
A. NETWORK STRUCTURE
Figure 2 depicts our proposed framework. QRNet Q has an
encoder-decoder architecture that learns the mapping from
distorted image x to recovered image x̃, Q : x → x̃.
Distorted image x is generated from original image x∗ ∈ X .
QRNet Q is trained to output the quality recovered image.
The recovered image is classified by classifier C that outputs
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the class probabilities y. QRNet learns the network parame-
ters with the image quality loss and classification loss. The
image quality loss is calculated from distorted image x and
original image x∗. The classification loss is calculated from
the class probabilities y and target labels t expressed by a one-
hot vector. QRNet recovers the image quality from various
distortions for a classifier. Most quality recovery methods
deal with a single distortion or are not optimized for the
classifier [25]–[29]; however, QRNet can deal with multiple
distortions and various distortion intensity levels. Further-
more, the recovered image generated by QRNet can be easily
classified by the classifier.

The quality recovery network structure is developed based
on encoder-decoder architectures [4], [30], [31]. We adopt
an encoder-decoder architecture similar to U-Net [31] that
has a skip connection structure for preserving image informa-
tion. Table 1 shows the structure of QRNet. QRNet consists
of 34 layers, including concatenation and dropout layers. The
network encoder has a repeated structure with two 3 × 3
convolutions and a 2 × 2 maxpooling operation. After con-
volution, we use rectified linear units (ReLU) for activation.
The convolutional filters are initialized using the He initial-
izer [32]. In contrast, the network decoder has a repeated
structure with a two-dimensional (2D) transposed convolu-
tion with stride 2, a concatenation and two 3×3 convolutions.
After convolution, we also use rectified linear units (ReLU) as
the activation function. The output of the network is activated
by the sigmoid function. The concatenation concatenates the
output of the 2D transposed convolution and the output of the
encoder convolution that has the same dimension as that of
the 2D transposed convolution. Dropout [33] is applied for
improving the generalization. To optimize the network for
a classifier, the output of QRNet is used for classification.
Furthermore, QRNet is optimized using the classification loss
of the classifier.

We used VGG16 [2] as the classifier. As VGG16 is robust
against distortion compared to the other networks such as
AlexNet [1] and GoogLeNet [12], MixQualNets [11] use
VGG16 as the base network. Hence, we also adopt VGG16 as
the classifier to evaluate the image classification accuracy.

B. OPTIMIZATION ENCODER-DECODER NETWORK WITH
SINGLE CLASSIFIER
QRNet recovers image quality from distorted images and uses
these recovered images as the classifier inputs. The recovered
images need to be easy to classify. Hence, our network is
optimized with two losses: quality loss and classification
loss. The quality loss represents the quality of the generated
image by QRNet, whereas the classification loss represents
the classification error.

The quality of the recovered image is expressed as the
error between the original and recovered images. We use the
L1 distance as the quality loss because it encourages less
blurring:

Lq = Ex∗,x[||x∗ − Q(x)||1] (1)
= Ex∗,x̃[||x∗ − x̃||1]. (2)

TABLE 1. QRNet structure.

It is expected that images with less blur will have better
accuracy.

The classification loss represents the classification error
that is generally expressed by the softmax cross entropy.
In this study, we assume that classifier C classifies input
recovered image x̃ as class k using a CNN architecture such
as VGG16. Therefore, we also assume that C includes the
softmax layer for classification. The softmax cross entropy is
calculated by the classifier. We use the softmax cross entropy
as the classification loss:

Lr = −
K∑
k=1

tk log yk (3)

tk is the binary label of target class k . yk is the probability of
target class k . K is the number of classes. When minibatch
learning is used, equation (3) is expanded based on the mini-
batch size.

For CNN optimization, we use the Adam optimizer [34].
For learning the parameters of the quality recovery net-
work, we propose two learning methods. One method fixes
the parameters of the classifier trained with the original
images, while the other simultaneously learns the parame-
ters of QRNet and the classifier trained with the original
images. When the parameters of the classifier are fixed,
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FIGURE 3. Multiple quality recovery network (MQRNet) with classifiers. MQRNet learns the network parameters with the
classification losses of multiple classifiers. After learning, MQRNet generates the recovery images for the other classifiers
that are not used during training.

the classifier trained with the original images is only used to
obtain the classification loss for backpropagation. We train
QRNet alone. When the parameters of the classifier trained
with the original images are not fixed, the parameters of
QRNet are trained using the image quality loss and classi-
fication loss of the classifier that is simultaneously trained;
i.e., the classifier trained with the original images is trained
using distorted images with QRNet. In this case, QRNet and
the classifier are optimized in an end-to-end manner. We use
the pretrained VGG16, trained using the ImageNet [22],
as the classifier. Most of the parameters of VGG16 are fixed
and used for classification. However, the three fully con-
nected layers before the softmax layer are fine-tuned to adapt
to distorted images. We train the parameters of QRNet and
the fully connected layers of VGG16.

Finally, the proposed method minimizes the following
equation:

Losssingle = Lq + λLr , (4)

where λ is a hyper parameter.

C. OPTIMIZATION WITH MULTIPLE CLASSIFIERS
When there is a new classifier structure, the classifier with
this new structure needs to be trained with distorted images
for adapting it to such images. However, adapting the new
classifier to distorted images is time-consuming. If QRNet
is applied to the new classifier, the training time can be
considerably reduced. To apply QRNet to the new classifier,
we propose a loss for training the network with multiple
classifiers. By learning the parameters of QRNet with the
losses of multiple classifiers, we expect the proposed method
to perform well, even for a classifier that has not been

learned. Figure 3 depicts the framework for training with
multiple classifiers. In this case, QRNet is trained with multi-
ple classifiers, C1 and C2. The classification loss is obtained
from each classifier output, y(1) and y(2). When QRNet is
trained with two classifiers, it requires two softmax cross
entropies for optimizing the network parameters. The class
probabilities of each classifier y(1), y(2) and the target labels t,
as represented in equation (3), are used for calculating the
classification loss for learning the parameters of QRNet.
QRNet with multiple classifiers has the same architecture as
that with a single classifier. We propose a loss function as
follows:

Lossmulti = Lq +
M∑
i

λiLCi , (5)

where λi is a hyper parameter. LCi is the classification loss of
classifier Ci. M is the number of classifiers.
In this paper, QRNet is trained with two classifiers for

application to a new classifier that has not been used to train
the QRNet. We call QRNet trained with multiple classifiers a
multiple QRNet (MQRNet). ThisMQRNet is evaluated using
a new classifier that is not used for training MQRNet. We use
VGG16 [2] and Inception V3 [23] for training MQRNet,
and use ResNet [24] as the new classifier for evaluating the
classification accuracy.

D. TRAINING WITH DISTORTED IMAGES
In image classification, there are multiple distortions and
various distortion intensity levels, and dealing with them
is important for maintaining the classification accuracy.
To address multiple distortions and various distortion inten-
sity levels, we train QRNet with multiple distorted images.
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Algorithm 1 Training With Distorted Images
Input: bx∗ ∈ X , bt ∈ T ,Q,C

for all bx∗ ∈ X do
Select distortion d randomly from D.
Select parameter p randomly from Pd .
bx← G(bx∗ , d, p)
bxtrain ← concatenate(bx∗ , bx)
bxtarget ← concatenate(bx∗ , bx∗ )
Lq← D(Q(bxtrain ), bxtarget )
bttarget ← concatenate(bt , bt)
Lr ← S(C(bxtrain ), bttarget )
Q← BackProp(Lq,Lr ,C)

end for

Initially, QRNet is pretrained with the original images that
are not distorted. It is then trained with the original and
multiple distorted images. During training, we use a batch
that contains an equal number of original and distorted
images.

Algorithm 1 shows the training procedure for multiple
distortions when fixing the classifier parameters. Batch bx∗
is first extracted from original images X . Distortion d ∈ D
is then randomly added to bx∗ .D is the set of distortion types
including Gaussian noise and blur. The distortion parameter
p ∈ Pd is also selected randomly. Pd is the set of distortion
parameters for distortion d . When Gaussian noise is selected,
p is the mean and standard deviation pair. In this paper,
p is selected among five distortion levels for each distortion.
In each batch, the distortion is randomly selected. A distorted
batch bx is generated by a distorted image generator G. The
inputs for batch training bxtrain are generated by concatenating
the original batch bx∗ and distorted batch bx. The target
images bxtarget for reconstruction are generated by concate-
nating the target images of the original and distorted batches.
QRNet is trained using the concatenated batches bxtrain , bxtarget
by backpropagation with the proposed image quality loss.
To obtain the image quality loss Lq, D calculates the loss
between the recovered images Q(bxtrain ) and bxtarget based on
equation (2). The target labels of batch bt ∈ T corresponding
to bx∗ are also concatenated. T is a set of target labels. The
concatenated target labels bttarget are used for calculating the
classification error with classifier C , and the gradients are
backpropagated based on the classification loss. To obtain
the classification loss Lr , S calculates the loss between the
recovered images C(bxtrain ) and bttarget based on equation (3).
Finally, QRNet Q is updated using backpropagation with
losses Lq and Lr . The classification loss Lr is backpropagated
from classifier C to QRNet Q.
By randomly selecting the distortion type and parameter,

QRNet is trained robustly against distortion. Furthermore,
using the original and distorted images simultaneously as
a batch, it is possible to realize distortion restoration with-
out degrading the reconstruction performance of the original
image.

IV. RESULTS
A. DATASETS AND PARAMETERS
The proposed method is evaluated using the Caltech101 [35]
and Caltech256 [36]. We randomly split the data as 80% for
training and 20% for testing. We use 20% of the training data
for validation. We divide the data into these datasets once.

In this paper, we consider two distortion types, Gaussian
noise and Gaussian blur. These distortions severely affect
CNNs [5]. We add random Gaussian noise to each pixel. The
standard deviation of the Gaussian noise σn ranges between
(0, 100]. The standard deviation of the Gaussian blur σb
ranges between (0, 10]. The kernel size of the Gaussian blur is
defined as four times minus one of σb. For evaluation, we set
the parameters at five levels. For the Gaussian noise, we use
{20, 40, 60, 80, 100} as σn. For the Gaussian blur, we use
{2, 4, 6, 8, 10} as σb. Therefore, the kernel size of Gaussian
blur is {7, 15, 23, 31, 39}.

In this paper, we use Adam [34] to optimize the networks.
We set the learning rate as 0.001, dropout rate as 0.2, batch
size as 32, and the maximum number of epochs as 200. In
each epoch, we use all the training data with distortions and
use early stopping when the validation loss has not been
updated after five epochs.

In equation (4), we evaluated different λ values {0.1, 0.01,
0.001} on the validation data; however, we obtained similar
results. Hence, λ = 0.01 is used in equation (4). In equa-
tion (5), we apply VGG16 and Inception V3 as classifiers
with MQRNet to learn the parameters. We use the same value
for λ1 and λ2 as λ. λ1 for VGG16 is set to 0.01. λ2 for
Inception V3 is also set to 0.01.

B. PERFORMANCE FOR DISTORTED IMAGES
1) RECOVERY PERFORMANCE FOR DISTORTED IMAGES
Table 2 shows the performance comparison with respect to
distortion restoration in terms of the classification accuracy
on the Caltech datasets. ‘‘VGG16’’ indicates the classifica-
tion accuracy of VGG16 trained with the original images that
classifies distorted images without reconstruction. A recon-
struction network (RecNet) is used for comparison. ‘‘RecNet
(single)+VGG16’’ and ‘‘RecNet (multiple)+VGG16’’ indi-
cate the classification accuracy of VGG16 trained with the
original images that classifies the recovered images recon-
structed by RecNets. ‘‘RecNet (single)’’ and ‘‘RecNet (mul-
tiple)’’, which have the same structure as QRNet, are used
as the reconstruction networks and trained in two ways.
‘‘RecNet (single)’’ is trained with single distortion images.
Two RecNets are trained for two distortion types, respec-
tively. ‘‘RecNet (multiple)’’ is trainedwithmultiple distortion
images. We train RecNet using a procedure similar to that
mentioned in Section III-D. ‘‘RecNet (single)’’ is trained with
one distortion type and various distortion intensity levels that
are selected randomly in each batch. ‘‘RecNet (multiple)’’
is trained with two distortion types and various distortion
intensity levels that are selected randomly in each batch.
These RecNets are trained with the L1 distance alone, and do
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TABLE 2. Recovery performance for distorted images.

FIGURE 4. Recovery performance at each distortion level on the Caltech101 dataset.

not apply the classification error for learning the parameters.
‘‘QRNet+VGG16’’ indicates the classification accuracy of
VGG16 trained with the original images that classifies the
recovered images reconstructed by QRNet. QRNet is trained
using the procedure mentioned in Section III-D.

We recover the images from the distorted images using
RecNets and QRNet. The recovered images are then clas-
sified by VGG16 trained with the original images. The
result of VGG16 for distorted images is poor. With Gaussian
blur, in particular, the accuracy of the original VGG16 is
0.259 for the Caltech101. After recovering the images using
QRNet, the accuracy is 0.705, as indicated in Table 2;
the accuracy improves by 0.446 compared to that of
VGG16 without reconstruction. The results of RecNets also
show improvements in the accuracy. However, for the Cal-
tech256, the results of RecNet trained with multiple distor-
tions tend to be less accurate compared to those of RecNet
trained with a single distortion. The accuracy achieved by
QRNet is higher than those of RecNets. Thus, QRNet with
our proposed loss function can generate images that improve
the image classification accuracy. In addition, QRNet can
recover the image quality frommultiple distortions regardless
of the dataset.

In our experiments, we used a GeForce GTX TITAN X
to evaluate our model. QRNet with VGG16 takes 167 s per
epoch for training on the Caltech101 dataset. This includes
the time required to add distortions. In addition, QRNet with
VGG16 takes 8.29 ms per image to classify a distorted image.

TABLE 3. Performance of small QRNet on the Caltech101 dataset.

In our environment, VGG16 takes 5.51 ms per image to
classify a distorted image. Although QRNet requires more
time for inference than VGG16, it significantly improves
accuracy for distorted images.

Figure 4 shows the recovery performance at each distor-
tion level on the Caltech101 dataset. Although the accuracy
of VGG16 with RecNet trained with multiple distortions is
lower than that of VGG16 with RecNet trained with a sin-
gle distortion at high distortion levels, the former maintains
the accuracy. The accuracy of VGG16 with RecNet trained
with a single distortion is low compared to that of QRNet
trained with multiple distortions at high distortion levels.
Thus, QRNet is robust against multiple distortions at high
distortion levels.

To evaluate the depth of the network, we constructed a
small QRNet. Table 3 shows the accuracy of small QRNet.
As mentioned in Section III-A, QRNet has two 3 × 3 con-
volutions on the encoder and decoder sides. We changed the
two 3×3 convolutions to one 3×3 convolution. This QRNet
has a smaller structure than the proposed QRNet. We call
this small QRNet. Small QRNet is slightly less accurate than
the proposed QRNet. This indicates that the depth of the
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TABLE 4. Performance of QRNet with end-to-end learning.

FIGURE 5. Performance of the end-to-end framework on the Caltech101 dataset.

network could be reduce. However, the proposed QRNet is
more accurate. Hence, in practice, it would be desirable to
adjust the network structure in terms of speed and memory.

2) PERFORMANCE WITH END-TO-END LEARNING
Table 4 lists the performance of QRNet with the fine-tuning
framework and the proposed end-to-end learning frame-
work. We compare the performance of the fine-tuned classi-
fiers and the classifier trained with end-to-end learning for
distorted images. ‘‘Fine-tuned VGG16 (single)’’ indicates
VGG16 trained with single distortion images. ‘‘Fine-tuned
VGG16 (multiple)’’ indicates VGG16 trained with multi-
ple distortion images. These VGG16s are fine-tuned with
a batch that concatenates the original and distorted images.
‘‘QRNet + VGG16 (end-to-end)’’ indicates QRNet with
VGG16. QRNet is trained by fine-tuning VGG16 simulta-
neously. The performance of the fine-tuned classifier with a
single distortion is not always better than that with multiple
distortions. In most cases, the performance of the fine-tuned
classifier with multiple distortions is better compared to that
with a single distortion.

For both datasets, QRNet with end-to-end learning per-
forms well for blurred images in particular. Although blur
has a strong influence on the CNNs [6], QRNet can recover
the image quality for image classification and improve the
accuracy. In our proposed loss function, the classification
error is backpropagated from the classifier, which is effective
in recovering signals that enable better image classification.

In end-to-end learning, QRNet with a VGG16 that is able
to be fine-tuned takes almost the same time for training and
inference as QRNet with a VGG16 that has fixed parameters,
as mentioned in Section IV-B1.

Figure 5 shows the performance of the end-to-end frame-
work for the Caltech101 at each distortion level. The accu-
racies of the fine-tuned classifiers (‘‘FT VGG16’’) with a
single distortion and multiple distortions are better compared
to the model trained with the original images alone. However,
their accuracies are lower than that of QRNet with end-to-
end learning at high distortion levels. The accuracy of QRNet
with end-to-end learning is good for both Gaussian noise and
Gaussian blurred images. Thus, our proposed method with
end-to-end learning is more effective than the fine-tuning
method.

C. ROBUSTNESS AGAINST CLASSIFIER CHANGE
We evaluate the robustness of the proposed method against
classifier changes. We train MQRNet with VGG16 and the
Inception V3, as per equation (5). MQRnet is trained using
the proposed loss composed of multiple terms: the quality
loss and classification losses of the classifiers (VGG16 and
inception V3). MQRNet recovers image quality from dis-
torted images, and the recovered images are input to an
evaluation network for classification. We use ResNet as the
evaluation network; it was trained using the original images.

Figure 6 shows the performance of MQRNet for the
Caltech101 dataset. ‘‘ResNet’’ indicates the performance of
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FIGURE 6. Performance of Multiple QRNet at each distortion level on the Caltech101 dataset.

FIGURE 7. Relationship between the image quality metrics and QRNet performance at each distortion level on the
Caltech101 dataset: (a) Relationship between the PSNR and accuracy for Gaussian noise images, (b) Relationship between
the SSIM and accuracy for Gaussian noise images, (c) Relationship between the PSNR and accuracy for Gaussian blurred
images, and (d) Relationship between the SSIM and accuracy for Gaussian blurred images.

ResNet whose input is the original image. ‘‘QRNet+ResNet’’
indicates the performance of ResNet whose input is the recov-
ered image reconstructed by QRNet. QRNet is trained with
VGG16 alone. ‘‘MQRNet+ResNet’’ indicates the perfor-
mance of ResNet whose input is the recovered image recon-
structed by MQRNet. MQRNet is trained with VGG16 and
Inception V3. Figure 6 (a) shows the results for Gaussian

noise images, whereas Figure 6 (b) shows the results for
Gaussian blurred images. For both distortions, MQRNet per-
forms well at high distortion levels. Although QRNet is
trainedwithVGG16 alone, it is effective for network changes.
The performance of ResNet is poor for severe distortion. The
performance of ResNet whose input is the recovered image
by QRNet is significantly better than that of ResNet whose
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FIGURE 8. Samples of the quality recovered images from the distorted images. The quality recovered images are reconstructed using the proposed
network, QRNet.

input is the original image. Furthermore, the performance of
ResNet whose input is the recovered image by MQRNet is
better than that of ResNet whose input is the recovered image
by QRNet. As MQRNet is trained with multiple classifiers,
it maintains the accuracy even with classifier changes. In
addition, ResNet is not fine-tuned for distorted images. This
means that MQRNet requires no time for training a classifier
with distorted images.

D. RELATIONSHIP BETWEEN THE IMAGE QUALITY AND
CLASSIFICATION ACCURACY
Although Gaussian noise and Gaussian blur reduce the
classification accuracy, it is not clear how they actually
affect CNNs. Images can be analyzed using the image
quality metrics. Humans can easily classify objects if the
image quality is high. Therefore, we measure the relation-
ship between the image quality metrics and classification
accuracy. Recently, a no-reference image quality metric
based on CNN was proposed [37]. This metric repre-
sents the subjective image quality. However, the accuracy
of this metric depends on training datasets, and we can
use original images to calculate full-reference image qual-
ity metrics. Full-reference image quality metrics have a
high correlation with the subjective image quality. Hence,

we use the peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) [38] as the image quality
metrics.

Figure 7 shows the relationship between the image quality
metrics and the classification accuracy. The classification
accuracy of each line is the classification result with the
same classifier. Figures 7 (a) and 7 (b) show the relationship
between the image qualitymetrics and the classification accu-
racy for Gaussian noise images on the Caltech101 dataset.
VGG16 whose parameters are learned from the origi-
nal images is used as the classifier. ‘‘QRNet+VGG16’’
indicates the classification result with reconstruction by the
proposed QRNet. ‘‘RecNet+VGG16’’ indicates the classi-
fication result with reconstruction by RecNet. ‘‘VGG16’’
indicates the classification result without reconstruction. The
accuracy of the classifier that classifies the recovered images
generated by QRNet is higher than that of the classifier
without reconstruction even if the PSNR is low. Therefore,
QRNet recovers image quality and accuracy simultaneously.
In Figure 7 (a), the relationship between the PSNR and
classification accuracy is not linear. The relationship between
the PSNR and classification accuracy is different for each
classifier. This shows that the PSNR is not correctly mapped
to the classification accuracy. In addition, the quality of the
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TABLE 5. Performance of QRNet in recovering the image quality on the
Caltech101 dataset.

recovered images generated by QRNet and RecNet has a
similar relationship between the image quality and classifi-
cation accuracy in terms of the SSIM. However, the rela-
tionship between the SSIM and the classification accuracy
of VGG16 without reconstruction is different from this rela-
tionship. Thus, the SSIM is also not correctly mapped to the
classification accuracy.

Figures 7 (c) and 7 (d) show the relationship between
image quality metrics and classification accuracy for Gaus-
sian blurred images on the Caltech101 dataset. Gaussian
blur affects the classification accuracy more than Gaussian
noise. However, VGG16 with QRNet maintains higher accu-
racy compared to VGG16 without reconstruction even when
the image quality is low. Furthermore, VGG16 with QRNet
maintains higher accuracy compared to VGG16 with RecNet
whose accuracy is degraded by low image quality. This shows
that QRNet is robust with respect to the image quality in
terms of the classification accuracy. With the same image
quality as that of the recovered images generated by QRNet,
the recovered images generated by RecNet are classified
with low classification accuracy for Gaussian blurred images.
Therefore, the image quality metrics are also not correctly
mapped to the classification accuracy for Gaussian blurred
images.

Table 5 shows the image quality metrics of the dis-
torted images and the recovered images generated by
QRNet. For Gaussian noise, QRNet improves the image
quality considerably by appropriately removing noise. In
addition, for Gaussian blur, QRNet improves the image
quality. However, the degree of improvement is less
compared to that of Gaussian noise. With Gaussian blur,
it is difficult to recover the image quality. However, QRNet
recovers image quality suitably for classifying blurred
images.

Figure 8 shows samples of the recovered images byQRNet.
Gaussian noise is removed, and the images are smoother than
the distorted images. The edges of the object that are impor-
tant for classification remain clear. For Gaussian blur, QRNet
recovers the edges of the objects. The edges of the recovered
images generated by QRNet are enhanced compared to those
of the distorted images. Thus, QRNet performs denoising,
and recovers the image quality without losing the information
for classification. Moreover, QRNet enhances the signals
such that the edges considered important for classification
remain clear.

V. CONCLUSION
We have proposed QRNet that recovers the image quality for
image classification and have demonstrated that the proposed
QRNet improves the image classification accuracy by clas-
sifying these recovered images using the Caltech database.
QRNet is trainedwith the proposed loss function that includes
two terms: image quality loss and classification loss. The
parameters of QRNet are optimized with these losses, and
QRNet recovers the image quality of distorted images for
image classification. Using these recovered images for clas-
sification, the classification accuracy is improved. Moreover,
QRNet trained with multiple classification losses from mul-
tiple classifiers can improve the accuracy of a new classifier
that is not used for training QRNet. By learning from the
losses of multiple classifiers, our model improves the perfor-
mance for a new classifier.

In this paper, we focused on the image classification
task. However, by backpropagating the recognition loss to
QRNet, our method can be easily extended to other tasks
such as object detection [39], semantic segmentation [31],
and instance segmentation [40]. Furthermore, by including
adversarial examples for training, there is the possibility of
preventing adversarial attacks to realize secure image clas-
sification applications. Because an index that represents the
image quality of the classifier is necessary, we intend to
investigate the image quality metric in our future study.
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