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ABSTRACT Public transport is vital to people’s daily travel, and bus dispatching plays a significant role in
the public transport system. With deep learning having been widely applied and achieved great success in
many fields, bus dispatching methods based on deep learning are proposed in succession. Currently, many
bus dispatching models assume that the bus departure timetable is fixed and optimize the bus departure
timetable interval according to passenger flow. However, the bus departure timetable is variable in general,
only considering that the bus arrival time is insufficient. Targeting the above challenges, we propose a
novel dynamic bus dispatching model based on arrival time and passenger flow prediction (D-ATPF). First,
the historical origin–destination (OD) data and the transfer data are obtained by processing the bus trajectory
data and the passenger card-swiping records, and the bus arrival time is extracted by analyzing the GPS
trajectory. Second, the components of bus arrival time and passenger flow prediction based on long short-term
memory (P-LSTM) are adopted to predict the future passenger flow and bus arrival time. Finally, the genetic
algorithm-based bus dispatching model (GABD model) searches the minimum waiting time for passengers
by using stay strategy. By using data of five lines with 124 bus stations and a total of 9 02 509 records in
Guangzhou city, China, our experimental results show that: 1) the average mean absolute percentage error
(MAPE) and root mean square error (RMSE) of passenger prediction are 14% and 7.5, respectively; 2) the
averageMAPE andRMSE of bus arrival time are 7.5% and 13.5, respectively; 3) regarding the passenger flow
and arrival time prediction, the proposed D-ATPF model reduced waiting time by 829.68 min, accounting
for 25.19% of the total waiting time; and 4) compared with the real-time stay strategy, the reduced waiting
time of this method increased by 5.94%. Therefore, the D-ATPF model provided a more practical model for
buses dispatching.

INDEX TERMS Bus dispatching, LSTM, passenger flow prediction, arrive time prediction, genetic
algorithm.

I. INTRODUCTION
Public transport is one of the most important means of
transportation for people to travel in modern cities. To
improve road safety, a strong pseudonym-based authentica-
tion (SPATA) framework is used to preserve the real identity
of vehicles [1] and a novel two-layer vehicle type classifi-
cation framework based on the vehicle’s 3D parameters and
its local features is provided to control traffic and road code
violations [2]. Compared with private cars and taxis, public

The associate editor coordinating the review of this manuscript and
approving it for publication was Martin Gonzalez-Rodriguez.

transport has the advantages of low fare and large passenger
capacity. Meanwhile, traveling by public transport can effec-
tively reduce road traffic flow, alleviate traffic congestion and
air pollution. However, occasionally unbalanced passenger
distribution and small passenger demand have historically
caused low attendance rate and significant financial losses
of bus companies in some towns. Targeting these issues,
a variety of dynamic bus scheduling methods have been
proposed [34]. However, some deficiencies still exist. First,
most of the dynamic bus dispatching models are based on
fixed and predictable departure timetables, which is not the
case in all areas. Second, some research only addressed the
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frequency of bus departures according to predicted passenger
flow regardless of the time of bus arrivals, which causedwaste
of traffic resources, increased the losses of public transport
companies, and aggravated traffic congestion.

In this paper, we propose a novel bus dispatching opti-
mization model based on arrival time and passenger flow
prediction (D-ATPF model), which takes the passenger flow
and bus arrival times into account to adopt a ‘‘stay’’ strategy
at the transfer station. Stay strategy is a widely used dynamic
bus dispatching strategy, which incorporates travel intervals
and vehicle timetable [5], [7]–[11]. The D-ATPF model:
a) extracts card-swiping records from smart IC cards, cap-
tures the bus-travel trajectory from smart terminal devices
installed on buses, and obtains bus station and line-vector
data; b) utilizes the methods of station matching applied to
the destination and transfer station speculation to infer the
passenger flow and bus arrival time from the extracted data;
c) adopts a Long Short-Term Memory (LSTM) neural net-
work to predict the bus arrival time and passenger flow in the
future (P-LSTM), which outperforms SVR, DBN-SVR and
ARIMA approach in predicting events with relatively long
intervals and delays in time series, such as passenger flow
and arrival time prediction [12]; d) establishes the objective
function of minimizing passenger waiting time based on the
staying strategy of travel intervals by treating stay time as
a decision variable, and seeks the optimal solution of the
objective function using a genetic algorithm (GABD).

The main contributions of this study include two aspects:
(1) a novel optimized dynamic bus dispatching model, which
combines passenger flow and bus arrival-time prediction
models based on LSTM; (2) an objective function is estab-
lished to minimize passenger waiting time, the optimal solu-
tion of this nonlinear objective function is determined by
using a genetic algorithm.

The remaining structure of this paper is as follows.
Section 2 reviews related work regarding bus dispatching.
Section 3 describes the framework, the P-LSTM model, and
the GABD model. Results of the experiments are provided in
Section 4. Conclusions are shown in Section 5.

II. LITERATURE REVIEW
A. PASSENGER FLOW AND ARRIVAL TIME PREDICTION
Currently, models to predict passenger flow and bus arrival
time are categorized into traditional, regressive, machine
learning-based, and Hybrid models.

1) TRADITIONAL MODELS
Zhang et al. searched highly correlated passenger flow pat-
terns in the historical estimations and predicted the future bus
passenger flow using an Extended Kalman Filter (EKF) [13].
Moreira-Matias et al. integrated the information of streaming
data into a histogram time series and predicted the spatial
distribution of taxi-passengers for a short-term time horizon
with a three time-series forecasting methodology [14]. The
RTIS algorithm for estimating the current and instantaneous

travel times using automatic vehicle identification (AVI) data
was proposed by Tam et al. [15].

2) REGRESSIVE MODELS
Chen et al. [16] analyzed a time series of historical data to
predict the passenger flow of the Line 16 Lingang Avenue
Station using an ARIMA model, based on judging and iden-
tifying the parameters with full or partial autocorrelation.
Ma et al. [17] proposed a short-term bus passenger demand
prediction method using an interactive multiple model-based
pattern hybrid (IMMPH). Suwardo et al. [18] proposed an
Autoregressive Integrated Moving Average (ARIMA) to pre-
dict bus travel time using travel time series data.

3) MACHINE LEARNING-BASED MODELS
Yang et al. [19] proposed a prediction model of bus arrival
times based on a Support Vector Machine with a genetic
algorithm (GA-SVM) in Shenyang. A passenger-flow predic-
tion model based on a spatial weighted least-squares support
vector machine (SW+LS+SVM) was used to predict passen-
gers of urban rail transit stations by Zhou and Zhang [20].
A short-term railway passenger demand forecasting model
based on multiple temporal unit neural network (MTUNN)
and parallel ensemble neural network (PENN) was proposed
by Tsai et al. [21].

4) HYBRID MODELS
Ding et al. provided an ARIMA-SVM model combining the
advantages of Regressive models with Machine learning-
based models to effectively predict the bus dwell time [22].
A model of mixed support vector machine (SVM) and
Kalman filtering is exploited to predict bus arrival times in
Dalian by Yu et al. [23]. Luo et al. proposed a spatiotemporal
traffic flow prediction method, which combined with KNN
and LSTM [24]. Zhang et al. provided the PSR-LSTMmodel
by the phase space reconstruction method to recover the
hidden trajectory in the passenger flow [25]. Petersen et al.
present bus travel time prediction system by using a combi-
nation of convolutional and long short-termmemory (LSTM)
layers, which leverages the non-static spatio-temporal corre-
lations of urban bus networks [26].

B. BUS DISPATCHING
The unbalanced spatial-temporal distribution of buses is
a pervasive problem. Considering the spatial dynamic of
travel demand, the spatial-temporal optimization framework
modeling the interactions of vehicles and demands have been
developed [27], [28]. In terms of bus, Luo et al. provided an
optimization model for dynamic bus dispatching to minimize
the overall waiting time of passengers in a transit system
by considering multiple types of real-time information [12].
A bus dispatching model that accounts for passenger occu-
pancy rate and the profit of public transport companies
to minimize costs has been developed by Li et al. [29].
Pang et al. designed a scheduling system of intelligent
public transport with mobile internet technology to relieve
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unbalanced spatial and temporal distributions in urban, sub-
urban, and rural areas [30]. A prediction model based on
bus arrival times with support vector machines (SVM) has
been proposed to serve bus stay dispatching by Yu et al. [7].
S. J. Berrebi et al. proposed a real-time holding mecha-
nism to minimize passenger waiting time while maintaining
the highest possible frequency on a loop-shaped route [8].
Zhang and Liu proposed an adaptive fleet size adjustment
mechanism, which adopted the doubly dynamical system
to adjust the size of the dispatched bus fleet and accom-
modate day-to-day variations of mode choices and traffic
patterns [31]. Forbes et al. introduced a software system
to dispatch buses of different types and use the simulated
annealing algorithm to improve the desirability of the total
allocation [32]. Strathman et al. designed a framework for an
assignment focuses on documenting service reliability and
passenger activity at pre-operational (baseline), initial and
full implementation period [33]. An and Zhang provided a
mixed integer programming model to improve transit service
with a minimum cost by using the Lagrangian relaxation
algorithm, which integrated a bus-holding and stop-skipping
strategy [9]. Du et al. provided a mathematical model to
maximize the average satisfaction of passengers and loading
rate and minimize the average bus departure frequency [34].
Ting and Schonfeld developed a bus-stay strategy in transfer
stations and used the initiating algorithm to seek the optimal
solution of passenger wait times [35]. The change of pas-
senger wait times in different situations was explored using
specific examples.

In summary, two kinds of bus control decisions are applied
in recent research work, i.e., control theory and optimization.
The three main limitations of these researches work include
the following: (1) most studies only considered passenger
flow in the bus station and ignored the real-time information
such as traffic congestion, weather factors, etc.; (2) some
studies only considered simple single lines, avoiding the
transfer problem of multiple lines; (3) some studies only
increased departure frequency and ignored the prediction
of passenger flow and the arrival time of buses. Targeting
these issues, this paper introduced a dynamic bus dispatching
model considering both passenger flow and bus arrival time.

III. THE BD-PFATP MODEL
A. FRAMEWORK
The purpose of this research is to optimize bus dispatching
strategies and minimize the total waiting time of passengers
using the D-ATPF model. The framework of D-ATPF is
depicted in Fig. 1. The bus station, bus trajectory, and IC-card
records are captured to match bus stations and infer alighting
and transfer stations. The first component is the P-LSTM
model, which consists of passenger flow and arrival time
prediction. The passenger flows of the original, terminal, and
transfer stations are predicted accounting for varying loads
on holidays and different days of the week. The historical
passenger flow features and bus arrival times are estimated

FIGURE 1. The framework of the D-ATPF model.

using the historical arrival time and state information. LSTM
is adopted to complete passenger-flow forecasting and bus
arrival time prediction tasks, which performs well in dealing
with sequential data.

The second component is the GABD model, which
includes the establishment of an objective function and seek-
ing the optimum using a genetic algorithm [36]–[38]. The
P-LSTM model can predict the average arrival rate of each
station in the future, and the time interval of adjacent buses
arriving at the same station. Therefore, an objective function
is established with the stay time as the decision variable to
minimize the passenger waiting time, and the optimal solu-
tion of the objective function is determined using a genetic
algorithm, which can effectively deal with complex non-
linear functions.

The third component is the validation, feedback and adjust-
ment model (VFA model), which calculates the feedback
coefficient according to the P-LSTM prediction error and the
GABDmodel convergence efficiency. The values of feedback
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coefficients are used to judge the necessity of data updates
and LSTM model retraining and adjust the probability of
crossover and variation.

B. P-LSTM MODEL
The structure of the P-LSTMmodel has two stages, as shown
in Fig. 2. The first stage is the speculation of bus arrival times
and passenger flows at stations, which includes inferring
the number of boarding, alighting, and transferring passen-
gers along with the bus arrival interval. The second stage
is the prediction of passenger flow [39]–[43] and arrival
times [44]–[47], which predicts the arrival time, boarding,
alighting and transfer passengers using a Multilayer LSTM.

FIGURE 2. The framework of P-LSTM model.

1) BUS ARRIVAL TIME AND PASSENGER FLOW
SPECULATION
The speculation of passenger flows consists of three compo-
nents: Station matching, Inference of the Destination Station,
and Inference of the Transfer Station.

1) Station matching. A map-matching method for low-
frequency floating buses is adopted to restore the space-
time trajectory of buses [48], and an average speed
interpolation algorithm is employed to interpolate the
bus trajectories uniformly in space every second while
matching passenger instantaneous card-swiping posi-
tions to the trajectory in chronological order. Then,
the nearest station to the passenger’s instantaneous
card-swiping position is regarded as a boarding station
using a nearest-neighbor strategy.

2) Destination station speculation. The existing method
cannot infer the passengers’ destination station with-
out continuous bus trip chains. Therefore, traveling in

a continuous bus-trip chain is assumed and the last
destination of the previous day is estimated to be the
same as the first station of the next day. A continuous
bus-trip chain indicates that we can only go out and
return by bus, other means of transportation are not
allowed. Therefore, the card swiping times is more than
once. There are two scenarios of destination station
speculation in continuous bus trip chains [49]. First,
if the passenger swipes their card on the same line twice
continuously, the destination of the first trip is the same
as the origin station of the second travel. Second, if the
line of continuous twice swipes is different bus lines,
according to the nearest neighbor rule, the station on
the first swipe line has the nearest distance to the second
card swipe station, which is the destination station.

3) Transfer station speculation. OD data is arranged in
chronological order before transfer station speculation.
if the time interval between first alighting and second
boarding is less than 30 min, the second trip is defined
as a transfer [50].

2) PASSENGER FLOW AND BUS ARRIVAL TIME PREDICTION
The architecture of the LSTM used in this research is shown
in Fig. 3.

FIGURE 3. The physical architecture of LSTM.

The time is divided into 17 segments on average from
6:00 am to 11:00 pm. Passenger flows for each segment is
counted as unique features. Meanwhile, the day of the week,
holiday occurrence, and weather of each time segment are
regarded as common features. The number of passengers
at the next segment is taken as the label of this segment.
Common and unique features and labels are integrated into an
array, which is imported to the input layer, and the predicted
results are output from a three-layer LSTM. Each row of
features in the input data is converted into 1× 30 dimensions
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after one hot coding. Therefore, the input data dimension is
n × 30, and the hidden layer contains ten neurons. Finally,
k× 1 dimensional output data represents the predicted future
k results.

The prediction of the boarding, alighting and transfer pas-
senger are described in detail as follows.

1) Prediction of boarding passenger quantity. The number
of boarding passengers at different stations in each
time segment can be obtained more accurately by the
station matching method in the previous section, which
is taken as the unique feature of prediction, and the
number of boarding passengers at the next segment is
regarded as the label of this segment. The common
features, unique features, and labels are combined into
input data, which is input to the prediction model. If the
value of the loss function is lower than a threshold
after enough training using a three-layer LSTM neural
network, the training stops and the prediction results
are output from the output layer.

2) Prediction of alighting passenger quantity. The number
of alighting passengers can be captured by destina-
tion station speculation, which is taken as the unique
feature of prediction. Similarly, this label is the num-
ber of alighting passengers at the next time segment.
Prediction results can be obtained by inputting com-
mon and unique features and labels into the prediction
model.

3) Prediction of transfer passenger quantity. The method
of transfer station speculation can effectively infer the
number of boarding passengers combined with the
time interval between the next boarding and the last
boarding, and the label is also the number of transfer
passengers at the next time segment. The future number
of transfer passengers is predicted by the model by
inputting the integrated features consisting of com-
mon features and the historical number of transfer
passengers.

4) Prediction of bus arrival time. Bus arrival and departure
time are extracted using a map-matching algorithm to
process GPS trajectory and station information. The
time interval between arrival and departure times are
captured to predict the future time interval of buses
arriving at the same stations separately. First, we trans-
late the time of arrival and departure into seconds and
arrange them in chronological order within each day.
Second, the time interval between the departure time
of the last bus k and the arrival time of the current
bus m can be calculated, denoted as Tk→m, as shown
in Fig. 4.

The time intervals of n buses at station A are defined
as Tk1→m1 ,Tk2→m2 ,Tk3→m3 ...Tkn→mn respectively. Similarly,
the time intervals at station B are defined as Tj1→i1 ,Tj2→i2 ,

Tj3→i3 ...Tjn→in . The latter time intervals are regarded as the
labels of the former features, and the historical time interval
as a unique feature. The common features, unique features,

FIGURE 4. The time intervals at different stations.

and labels are input into the prediction model. Future arrival
time is obtained after training and prediction.

C. GABD MODEL
The aim of the GABD model is to establish an objective
function to minimize the waiting time of passengers based on
a stay strategy at the transfer station, and to seek the optimal
solution of the objective function using a genetic algorithm.
The construction algorithm of GABD is shown in algorithm I.

This algorithm mainly includes establishing the objective
function and using the genetic algorithm to find the optimal
solution of the objective function.

1) OBJECTIVE FUNCTION
In this research, the stay strategy is applied to multi-line
bus dispatching, and Table 1 shows the variables used in the
objective function.

TABLE 1. The definition of variables.

Based on the above notations, the variation of passenger
waiting time can be divided into the following four parts.

1) Reduced time at transfer stations. Some passengers
caught up with the bus m and didn’t have to wait for the
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Algorithm 1 Construction Algorithm of Genetic Algorithm-
Based Bus Dispatching

Input: staying time set: T= {t1, t2, t3...tn}.
Output: reduced_maximum_time
1: function Build_GABD (T)
2: create Tmax = f(t1, t2, t3, ...t50)
3: population_size=50, generations=1000,

chrom_length=500, pc=0.6,
4: pm=0.01, genetic_population= NULL, population=

NULL
5: for each i in population _size do
6: for each bus_code in

length_of_bus_staying_time_set do
7: add randint to genetic_population
8: end for
9: end for
10: for each step in generations do
11: value=genetic_population∗(2∗∗(length−1− k))
12: dec= tmin+value∗(tmax − tmin)/

(2∗∗ (chrom_length) − 1)
13: for each i in population_size do
14: if reduced _time> reduced_ maximum _time then
15: reduced_ maximum _time = reduced _time
16: end if
17: if probability_c<pc then
18: crossover
19: end if
20: if probability_m< pm then
21: mutation
22: end if
23: end for
24: end for
25: return reduced_ maximum _time
26: end function

bus m + 1 at the transfer station due to bus detention.
Therefore, they saved waiting time, which is denoted
as S1, which is calculated by the following formula.

S1 = N hu+
m,n,1 × T

′

m+1→m,n,1 (1)

and the number of these passengers N hu+
m,n,1 is defined

as:

N hu+
m,n,1=T

holding
k,nL ,1,m×Rk,nL ,1,i+

∑
n′,1′

∑
i

N transfering
i,nL ,1′→nL ,1′

(2)

The average arrival rate of the station k within time
fragment i is defined as:

Rk,nL ,1,i = Nk,nL ,1,i ×
1
T

(3)

2) Reduced waiting time for the downstream station.
Similarly, some passengers took the bus m and didn’t
have to wait for the bus m+1. Therefore, the saved time

S2 is shown by the following calculation equation.

S2 =
∑
k ′
Rk ′,n,1,i × T

holding
k,nL ,1,m × T

′′

k ′,m+1→m,n,1 (4)

and T ′′ indicates the driving time interval between bus
m+1 and bus m, the calculation equation is as follows,

T ′′k ′,m+1→m,n,1

= T ′k ′,m+1→m,n,1 − H (t)− T holdingk,nL ,1,m (5)

H (t)

=

(
Rk ′ ,nL ,1,i + Rk,nL ,1,i

)
×δ×T holdingk,nL ,1,m×

−
u (6)

Assume that only when the alighting time is longer
than the boarding time, the subsequent buses will not
be affected. Therefore, we define

δ =

{
1 T uk ′,n,1 ≥ T

d
k ′,n,1

0 T uk ′,n,1 ≥ T
d
k ′,n,1

(7)

the extra stay time can be calculated by the formula
below.

h(t) = Rk ′ ,nL ,1,i × T
holding
k,nL ,1,m ×

−
u (8)

3) Increased waiting time at transfer stations. Some pas-
sengers did not get off at transfer stations. Therefore,
their waiting time increased due to the stay strategy of
bus m at the transfer station, which is denoted as A1 the
calculating equation is as follows.

A1 = Nk,n,1,m−1→m × T
holding
k,nL ,1,m (9)

In this formula, Nk,n,1,m−1→m denotes the number of
passengers did not get off on the bus m at the transfer
station k .

4) Increased waiting time for the downstream station.
Similarly, some passengers had to wait for bus m due to
miss bus m−1 at the downstream station k ′′. Therefore,
their increased waiting time A2 is calculated as follows.

A2=
∑
k

Rk,n2,1,i×T
′

k ′,m→m−1,n2,1×T
hoding
k,n2,1,m

(10)

Therefore, the objective function for minimizing passenger
waiting time is established as follows:

ymax

(
T holdingk,nL ,1,m

)
= S1 + S2 − A1 − A2 (11)

To avoid congestions at the bus station, we give the follow-
ing constraints:

0 ≤ T holdingk,nL ,1,m ≤ 120 (s) (12)

2) GENETIC ALGORITHM
Genetic algorithms are computational optimization models
by simulating the natural evolution process, which continu-
ously searches and updates the optimal solution after repeated
iterations and calculating the value of the fitness function.
More optimal configurations survive to the next ‘‘genera-
tion’’. This algorithm is effective in solving nonlinear mul-
tivariate, and the optimal solution is arrived in short times,

106458 VOLUME 7, 2019



Z. Huang et al.: Novel Bus-Dispatching Model Based on Passenger Flow and Arrival Time Prediction

which is adopted in path planning problems, and bus schedul-
ing problems [51]–[54]. In this research, a genetic algorithm
is adopted to seek the minimum waiting time. The genetic
algorithm workflow is shown in Fig. 5. A ‘‘gene’’ represents
a bus staying time at the transfer station, and the staying time
is encoded to binary codes with length 10.

FIGURE 5. The genetic algorithm workflow.

There are three steps as follows.

1) Coding strategy. The stay time is regarded as the deci-
sion variable of dynamic dispatching. Suppose that the
variable t ′′ indicates the stay time of the bus m at the
transfer station, which must satisfy the constraints of
equation (12), and n indicates the number of buses.
Then, the stay time is encoded with a decimal coding,
as follows: [

t ′1, t
′

2, t
′

3 . . . t
′
m . . . t

′
n
]

(13)

2) Survival of the fittest. In this paper, a roulette method
is adopted to select a suitable parental chromosome for
breeding the next generation from the group. To ensure
that the best gene can be saved to the next generation
and avoid the degradation of the performance of the
genetic algorithm, this paper adopts a strategy select-
ing the best parental chromosome (the minimum total
waiting time of passengers), and automatically copying
the fittest to the next generation.

3) Convergence condition. The simple single point
crossover and simple Mutation methods are used for
genetic operations. Crossover indicates interchanging
genes (bus staying time) with probabilistic pc and
remains elite individuals (best staying time). Mutation
represents mutating individual genes (bus staying time)
with probability pm, and obtain the best staying time.
If the obtained result satisfies the convergence con-
dition or reaches the maximum number of genera-
tions, or reaches the number of preselected settings,
it will terminate the iterations. Otherwise, it will
return to the survival of the fittest and continue to
search.

D. VFA MODEL
This model is used to adjust the prediction effect and con-
vergence efficiency. The evaluation criteria of this model
include two parameters: Err and Eff. The Err is the error of
prediction and the Eff is the maximum deviation of each of
the 100 consecutive best values from the previous one, and
the computational equation of deviation are shown in (14).

D = max
s∑

z=1

|vbest,z−1 − vz|
vbest,z−1

(14)

vbest,z−1 indicates the z − 1th best value, vz represents the
zth best value. Meanwhile, the thresholds of Err and Eff can
be defined by the user and be adjusted according to different
requirements. In this paper, we set thresholds of Err and Eff to
0.2 and 0.05 according to the long-term transportation opera-
tion experience of the Guangzhou transportation department.

Err < 0.2 (15)

Eff < 0.05 (16)

IV. EXPERIMENT AND RESULTS
A D-ATPF model has been developed to conduct the exper-
iments in this research, in which the bus station and line
vector data, bus trajectory data, and smart IC-card transaction
records data of Guangzhou city is used.

A. DATA DESCRIPTION
The dataset used in this research covered 27 days from
April 24 to May 20, 2018 in Guangzhou city, China, which
contains three vacation days and six weekend days. Yile
Village Station is selected as the transfer station to adopt
the stay strategy, which is the intersection station of the five
lines. The reason why choose the five lines is that these
five lines have the characteristics: large passenger flow, great
changes during peak and off-peak period, passing through
schools, crossing each other and more attention from the
relevant government departments. The bus station and line-
vector data, bus trajectory data, and smart IC-card transaction
record data are included. More details about the dataset are
listed in Table 2.

1) Bus station and line vector data: The data are collected
from the BaiduMap through Open API, which contains
station id, name, latitude and longitude, and line label.
The line-vector data captures the detailed geographic
information of 5 lines with 124 bus stations. Each pair
of lines includes two directions: the forward and reverse
direction, as shown in Fig. 6.

2) Bus trajectory data: The data was collected by the GPS
terminal devices installed on buses and sampled at low
frequency every 60 seconds. The trajectory information
includes the bus plate number, time of data acquisition,
instantaneous speed, direction, latitude, and longitude.

3) Smart IC-card transaction records: The data includes
passenger’s anonymized ID, time of card swipe, travel
mode, bus IDs, consumer prices and other information,
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TABLE 2. A summary of experiment data.

FIGURE 6. The bus line structure.

and a total of 902,509 smart IC-card transaction records
from 6:00 am to 11:00 pm.

B. SPECULATION OF BUS ARRIVAL TIME AND
PASSENGER FLOW RESULTS
The passenger flow and arrival time distributions are obtained
using station matching as well as the inference of board-
ing and transfer stations. Fig. 7 depicts the passenger flow
distribution from 6:00 am to 11:00 pm. During the period
from 7:00 am to 9:00 am, and from 5:30 pm to 7:30 pm,
the number of passengers boarding and alighting is the largest
in a given day. The number of boarding passengers is larger
than the number of alighting passengers before 15:00, and
the alighting passenger quantity is larger than the boarding
passenger quantity.

Fig. 8 illustrates the distribution of passenger arrival rate in
17-time segments. The passenger arrival rate in peak periods
is higher than off-peak periods. Fig. 9 illustrates the daily pas-
senger transfers from April 24th to May 20th. The April 29th,
30th and 1th are holidays, and the weekends include May 5th,
6th, 12th, 13th, 19th and 20th, the transfer passengers are
the minimum on weekends and holidays. Fig. 10 shows
boarding passenger and alighting passenger distribution from

FIGURE 7. The average daily passenger distribution.

FIGURE 8. The daily arrival rate distribution.

April 24th to May 20th on the No. 14 bus. The boarding
passengers and alighting passengers are the minimum on
weekends and holidays.

The number of boarding, alighting and transfer passengers’
statistics from Fig. 7 to Fig. 10 are used as inputs for the
P-LSTM model to predict the future passenger flow and
eventually used in the bus-dispatching model.

C. PREDICTION RESULTS
In our predictive model, 80% of the data in the dataset is used
for training; the remaining 20% of the data is used for testing.
The parametric adjustment process includes four steps [55]:
1) setting an acceptable predicting results, 2) preliminarily
setting our parameter values based on previous researches,
training and observing the loss changes, then, determining the
range of each parameter, 3) adjusting parameters by control
variable method; 4) iterating and training until loss drops,
finally, showing a stabilized trend, then, saving this param-
eter. The training parameters are shown in Table 3.

In the prediction process, the mean absolute percentage
error (MAPE) and root mean square error (RMSE) are used
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FIGURE 9. The total passenger transfer distribution.

TABLE 3. The detailed parameter setting of LSTM model.

as indicators to measure the performance of the prediction
model. The calculation formulae of MAPE and RMSE are
given in equations (17) and (18), respectively.

MAPE =
1
n

n∑
i=1

|xh(i)− x̃h(i)|
xh(i)

× 100% (17)

RMSE =

√√√√√ n∑
i=1
|xh(i)− x̃h(i)|

2

n
(18)

In the formulae, xh(i) represents the true hourly passenger
numbers obtained from the IC card record, x ′′ indicates the
predicted average hourly passenger numbers based on our
proposed model, and i denotes sequence number of the time
segment.

1) PASSENGER PREDICTION
In this research, four stations across five lines are selected to
exhibit typical passenger flow prediction results.

Table 4 shows the RMSE and MAPE of boarding and
alighting passenger prediction on the four stations (results of
all 21 stations are attached in appendix). The lowest MAPE
and RMSE are 8.9% and 1.43 respectively; the highestMAPE
and RMSE are 22.6% and 22.16 respectively; The average
MAPE and RMSE is 13.4% and 7.52 respectively.

TABLE 4. Passenger flow prediction results of the four stations.

The predicted and real-time passenger flows of the four
stations are shown in Fig. 11. The red curve represents
the real-time passenger flow, and the blue curve indicates the
predicted passenger flow. The prediction results show that the
distribution characteristics of the passengers vary fromweek-
ends to non-weekends at different stations, which are close to
the real ones. At the same time, through comparative analysis,
we can conclude that the passenger flow of the workday
fluctuates considerably from 7:00 am to 9:00 am and 5:30 pm
to 7:00 pm, and the weekend fluctuations are relatively small.

FIGURE 10. The total boarding passenger and alighting distribution.
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FIGURE 11. Distributions of real-time and predicted passenger flow.

Therefore, through passenger prediction, we can keep track of
future passenger flows at all stations.

In this article, only the transfer at Yile Village station
is considered. Therefore, the RMSE and MAPE of transfer
passenger prediction are 15% and 1.66.

2) BUS ARRIVAL TIME PREDICTION
Bus arrival time prediction results at four stations are shown
in Table 5 (results of all 21 stations are attached in appendix).
The lowestMAPE and RMSE are 4.7% and 10.5 respectively;
the highest MAPE and RMSE are 12.6% and 16.9 respec-
tively; The average MAPE and RMSE is 7.5% and 13.5
respectively.

TABLE 5. Arrival time prediction results of the four stations.

The real-time and predicted arrival time are shown
in Fig. 12, including one working day and two days at the
weekend. The blue curve represents the predicted arrival
time, and the red curve indicates the real-time arrival time,
they have similar trends, which shows that the predicted
arrival time can better depict the real arrival time changes.
As shown in Fig. 13, compared with weekends and non-
weekends, the average weekends waiting time is longer than
non-weekends. Meanwhile, peak waiting time is longer than
the off-peak waiting time. Therefore, by predicting the future
arrival time of buses, a lot of arrival time information is
extracted at different stations in advance, and it provided
convenience for subsequent bus dispatching.

FIGURE 12. Distributions of real-time and predicted arrival time.

FIGURE 13. Arrival time distributions of Sun Yat-sen UNIVersity Station.

D. GABD BUS DISPATCHING
After predicting the passenger flow and bus arrival time
through the P-LSTM model, we took out 50 buses as a
group from real-time data and predicted data, respectively,
and encoded the chromosome with a length of 500 using a
10-bit binary encoding. According to the survey, the aver-
age boarding time for each person is 4 seconds, and the
average alighting time is 2 seconds. During the experiment,
the crossover probability is 0.6, the mutation probability
is 0.01, and the number of iterations is 1000, the parameters
used in the experiment is shown in Table 6.

TABLE 6. The detailed parameter setting of genetic algorithm.

The experimental results are shown in Fig. 14 and Fig. 15,
which represent the iteration results of predicted and real-
time data, respectively. We have done 9 experiments in suc-
cessionwith the same parameters, represented by nine curves.
As can be seen from these curves in Fig. 14 and Fig. 15,
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FIGURE 14. Test results of genetic algorithm with prediction data.

FIGURE 15. Test results of genetic algorithm with real-time data.

the waiting time converges after 500 iterations. The aver-
age convergence value of predicted and real-time data are
829.68 minutes and 783.19 minutes, which indicates that the
stay strategy based on passenger flow and bus arrival time
prediction is better than the stay strategy based on real-time
passenger flow and bus arrival time, and the reduced time is
increased by 5.94%.

The experimental results show that the D-ATPF model can
accurately predict the passenger flow of all stations on the
bus line and the arrival time of different buses using the
LSTM network, which allows us to effectively use the pre-
dicted information to dispatch buses in advance. Meanwhile,
the stay strategy based on passenger flow and bus arrival time
prediction outperforms the real-time-based stay strategy. The
D-ATPF model significantly reduces passenger waiting time
and provides an effective tool for the stay strategy dispatching
at transfer stations.

V. CONCLUSION
This article has presented a novel bus dispatching model
based on dynamic arrival times and passenger flow predic-
tions. By predicting future passenger flow and bus arrival
times, future passenger flow and bus arrival time information
was extracted to plan bus dispatching in advance. Two bene-
fits are manifested in this work. Firstly, the presented method
ensures that more passengers can catch up with stranded
buses at transfer and subsequent stations, thus reducing their
waiting time. Secondly, a bus stay strategy is proposed for
transfer stations to avoid long delays waiting for other buses.
In this way, the total waiting time of passengers is minimized.
Then, the optimal solution of the nonlinear function is found
using a genetic algorithm. From the experimental results,
the D-ATPF model significantly reduces the waiting time
for passengers. Compared with the stay strategy of real-time
data, the reduced waiting time of this method is increased
by 5.94%. However, the limitation is that 1) bus capacity
spillovers rarely occur during the limited detention time.
Therefore, bus capacity is not considered, which is one of the
limitations of this method. 2) this method requires massive
computing resources due to a large amount of data. 3) The
current model does not include the dynamic of bus speed,
which also provides great potential to improve bus operation.

Our future work includes adjusting the speed of the bus,
reducing the stay time in the transfer stations and consider-
ing the capacity of buses. Meanwhile, we will add a road
traffic accident prediction model to provide the necessary
emergency strategy for our scheduling strategy.
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