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ABSTRACT The presence of transmitter and receiver location uncertainties has been known to remarkably
deteriorate the target localization accuracy in multi-static passive radar (MPR) system. This paper explores
the use of calibration targets, the positions and velocities of which are known to the MPR system, to counter
the loss in target localization accuracy arising from the transmitter/receiver location uncertainties. We firstly
evaluate the Cramér-Rao lower bound (CRLB) for bistatic range (BR) and bistatic range rate (BRR)-based
target localization in the presence of calibration targets, which analytically indicates the potential of
calibration targets in enhancing localization accuracy. After that, a novel closed-form solution is proposed for
target localization using the BR andBRRmeasurements from the unknown target as well as the additional BR
and BRR measurements from the calibration targets. The proposed solution includes two processing steps,
referred to as calibration step and localization step respectively. The calibration step is devoted to refine
the inaccurate transmitter and receiver locations using the BR and BRR measurements from the calibration
targets, and then the localization step is devoted to determine the target position and velocity based on the
refined transmitter/receiver locations and the BR/BRRmeasurements from the unknown target. The accuracy
of proposed solution is shown analytically to accomplish the CRLB under sufficiently small BR/BRR
measurement noises and transmitter/receiver location errors. Simulation results verify the effectiveness and
superiority of the proposed solution over existing algorithms.

INDEX TERMS Calibration target, transmitter and receiver location uncertainty, multistatic passive radar,
bistatic range, bistatic range rate, Cramér-Rao lower bound.

I. INTRODUCTION
With no dedicated transmitter, passive radar detects and
tracks potential targets by processing reflections from
non-cooperative transmitters in the environment, such as
commercial broadcast/communication transmission [1] and
non-cooperative radar emitters [2]. This special working prin-
ciple gives passive radar many obvious advantages including
lower-cost, lower-power, and more covert surveillance capa-
bility compared to active radar technology [3]. In the last
decade, passive radar technology has received continuously
growing attention from the research community due to its
potential applications in homeland security, coastal surveil-
lance, early warning system for vehicle detection, and so on.

The associate editor coordinating the review of this article and approving
it for publication was Jaime Lloret.

A passive radar receiver generally employs two receiving
channels, termed as reference channel and surveillance chan-
nel respectively. The reference channel is used to sense the
direct path signal from the transmitter, and the surveillance
channel is used to capture the potential target echoes [4]. Sub-
sequently, by performing the delay-Doppler cross-correlation
between the direct path signal and the target echo signal,
the time delay (TD) and Doppler shift (DS) can be mea-
sured [5], which hold information on the target position and
velocity. By combining the passive radar geometry config-
uration, the TD can be directly translated into the bistatic
range (BR) which is defined as the sum of transmitter-target
and target-receiver ranges [6], and the DS can be trans-
lated into the bistatic range rate (BRR). For multistatic pas-
sive radar (MPR), if enough BR and BRR measurements
corresponding to the multiple transmitter-receiver pairs are
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available, the target position and velocity can be estimated
by solving the set of nonlinear BR and BRR measurement
equations. Nevertheless, due to the nonlinear relationships
between the BR/BRR measurements and the desired target
location parameters, BR-and-BRR-based target localization
problem is potentially challenging.

In recent years, several efficient algorithms have been pro-
posed for this challenging problem. Taking inspiration from
the well-known two-step weighted least squares (2WLS) idea
of Ho and Xu [7], Du and Wei [8] explored an efficient
closed-form solution for the estimation of the target position
and velocity in a noncoherent distributed MIMO radar using
the BR and BRR measurements. By dividing these measure-
ments into several groups according to different transmit-
ters or receivers and then applying two-step weighted least
squares minimization on each group, several independent
estimates of target position and velocity are produced, which
are subsequently merged to form the final estimate. However,
this method could only obtain a suboptimal estimate of target
position and velocity if the measurement noises from differ-
ent groups are correlated. To this end, Yang and Chun [9]
introduced an improved 2WLS framework without grouping
and merging for moving target localization in noncoherent
MIMO radar systems. It requires one transmitter or receiver
as the reference, and translates the BR and BRR measure-
ments into the RD and RRD ones. However, this method suf-
fers from a loss in the localization accuracy, since translating
the BR and BRR measurements into the RD and RRD ones
results in a loss of measurement equations. By introducing
multiple auxiliary variables, Zhao et al. develop a novel
algebraic solution for target position and velocity estimation
in [10], where the first WLS step linearizes the BR and BRR
measurement equations by introducing multiple auxiliary
variables and produces a rough estimate using WLS mini-
mization, then the second step explores the relation between
the auxiliary variables and the target location parameters to
refine the estimate. This method requires neither grouping
and merging nor translating the BR and BRR measurements
into the RD and RRD ones, and is proven analytically and
numerically to reach the Cramér-Rao lower bound (CRLB)
accuracy.

Nevertheless, the above studies are based on the assump-
tion that the transmitter and receiver location parameters are
known perfectly, which is not realistic. In practice, the trans-
mitter and receiver location parameters, in both positions
and velocities, will inevitably have errors, which are also
known as location uncertainties. The transmitter and receiver
location errors often cannot be ignored, when for example
the transmitters and/or receivers are mounted on the moving
platforms [11], [12], again for example the employed trans-
mitters are highly non-cooperative hostile radar radiation
whose location parameters could only be roughly measured
by electronic support measures (ESM) receivers [13], [14].
The recent work of Zhao et al. [15] explored the effect of the
transmitter and receiver location errors on the target localiza-
tion accuracy at the CRLB level, and then design a solution

that takes the transmitter and receiver location error into
account to reduce the target localization error. By using the
statistical distributions of the transmitter and receiver location
errors, this method is shown analytically and numerically to
accomplish the CRLB accuracy under some mild approxi-
mations. Nevertheless, this method does not fundamentally
reduce the performance loss caused by the transmitter and
receiver location error, that is, its localization accuracy is still
substantially lower than that when the transmitter and receiver
location errors are absent.

Calibration technique is not a new idea. It has been widely
used in wireless sensor network self-localization [16], [17],
where each sensor emits signals to and receives signals from
other sensors, in order to estimate their locations collabo-
ratively. Hasan explores in [18] a calibration algorithm to
improve the direction finding performance using passive
sensor arrays whose manifold is only nominally known.
Ho and Yang [19], [20] apply the calibration technique to
range difference (RD)-based source localization problem,
where calibration sensors with known positions are deployed
and additional RDmeasurements from the calibration sensors
are incorporated to reduce the loss in localization accuracy
caused by the sensor position uncertainties. Li et al. [21]
further expand this idea to the RD and range difference
rate (RRD)-based source localization problem. The success-
ful application of calibration techniques in these areas sug-
gests the possibility of employing the calibration technique
in target localization for multi-static passive radar. When it
comes to the target localization in multi-static passive radar,
using ‘calibration targets’ with known locations may also
be able to mitigate the target localization performance loss
resulting from the transmitter/receiver location uncertainties.
In theory, any target appearing in the radar coverage area
and meanwhile broadcasting its locations, can be used as
a calibration target. Typically, for example, to avoid poten-
tial accidents and collisions, the commercial aircrafts will
report their locations and other information to the ground
stations and other aircrafts, through the Automatic Dependent
Surveillance Broadcast (ADS-B) system [22]. Hence, these
commercial aircrafts can be considered as off-the-shelf cali-
bration targets. If no such off-the-shelf calibration targets are
available in the radar coverage area, we can manually launch
some aircrafts with known locations as calibration targets.
However, despite the fine prospects, up to now there does
not exist any publication in the open literature that addresses
using calibration targets to refine the nominal transmitter
and receiver locations and reduce the loss in target localiza-
tion accuracy caused by the transmitter and receiver location
uncertainties for multi-static passive radar.

Motivated by these facts, in this paper, taking the trans-
mitter and receiver location uncertainties into consideration,
we explore using calibration targets to counter the loss in
BR-and-BRR-based target localization accuracy induced by
the transmitter/receiver location uncertainties. We begin our
work by deriving the CRLB for BR-and-BRR-based tar-
get localization when the BR and BRR measurements with
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respect to the calibration targets are available. The inter-
pretation on the CRLB demonstrates that the use of cali-
bration targets can potentially reduce the influence of the
transmitter/receiver location uncertainties and enhance the
target localization accuracy at the CRLB level. We then
proceed to develop a novel localization algorithm to refine
the nominal transmitter and receiver localization locations
and hence estimate the target locations with higher accuracy.
It can be divided into two processing steps, referred to as
calibration step and localization step respectively. In the cali-
bration step, the BR andBRRmeasurements from the calibra-
tion targets are exploited to refine the nominal transmitter and
receiver locations; in the localization step, the refined trans-
mitter and receiver locations and the BR/BRR measurements
from the unknown target are exploited to determine the target
position and velocity. Both processing steps are closed-form,
which brings the proposed solution computational efficiency
and high robustness. Moreover, the accuracy of proposed
solution is shown analytically to reach the CRLB under some
mild conditions. Simulations will be conducted to verify the
effectiveness and superiority of the proposed solution over
existing algorithms.
Notations:Without exception, we shall use bold lower case

letter to denote column vector and bold upper case letter to
represent matrix. Also, notations (·)o, (·)T, ‖ · ‖, (·)−1, E(·),
Op×q, Ip, 0p×1, diag(·) and tr(·), denote the true value of a
noisy or an estimated value, transpose operation, Euclidean
norm, inverse of a matrix, statistical expectation, a p-by-q
zero matrix, an p-by-p identity matrix, a p-by-1 zero vector,
a diagonal matrix and the trace of a matrix, respectively.

The rest of the study is organized as follows. Section II
describes the localization scenario in the presence of
transmitter/receiver uncertainties and calibration targets.
Section III characterizes the potential performance improve-
ment from the use of calibration targets by evaluating the
CRLBwith calibration targets. Section IV is devoted to derive
the proposed solution, and the theoretical performance analy-
sis is also given in this section. Section V presents simulation
results to evaluate the performance of the proposed solution
and compares it with existing algorithms aswell as the CRLB.
Finally, Section VI concludes the paper.

II. LOCALIZATION SCENARIO
We shall address a localization scenario as shown in
FIGURE 1, where a multistatic passive radar system with
M transmitters and N receivers is deployed to determine the
position uo = [xo, yo, zo]T and velocity u̇o = [ẋo, ẏo, żo]T

of a single moving target using the BR and BRR mea-
surements. The positions and velocities of the transmit-
ters are denoted by sot = [(sot,1)

T, (sot,2)
T, . . . , (sot,M )T]T

and ṡot = [(ṡot,1)
T, (ṡot,2)

T, . . . , (ṡot,M )T]T, where sot,m =

[xot,m, y
o
t,m, z

o
t,m]

T and ṡot,m = [ẋot,m, ẏot,m, ż
o
t,m]

T repre-
sent the position and velocity of transmitter m, m =

1, 2, . . . ,M ; The positions and velocities of the receivers
are denoted by sor = [(sor,1)

T, (sor,2)
T, . . . , (sor,N )

T]T and

FIGURE 1. A typical localization scenario of multistatic passive radar.

ṡor = [(ṡor,1)
T, (ṡor,2)

T, . . . , (ṡor,N )
T]T, where sor,n =

[xor,n, y
o
r,n, z

o
r,n]

T and ṡor,n = [ẋor,n, ẏ
o
r,n, ż

o
r,n]

T denote the posi-
tion and velocity of receiver n, n = 1, 2, . . . ,N . In this
work, the transmitter and receiver location parameters are not
known perfectly and the available versions are

st,m = sot,m +1st,m, ṡt,m = ṡot,m +1ṡt,m (1)

sr,n = sor,n +1sr,n, ṡr,n = ṡor,n +1ṡr,n (2)

where 1st,m, 1ṡt,m, 1sr,n and 1ṡr,n represent the error in
st,m, ṡt,m, sr,n and ṡr,n, respectively. For notation simplic-
ity, we stack the available transmitter and receiver loca-
tions together to form a 6(M + N )-by-1 column vector as
β = [sTt , s

T
r , ṡ

T
t , ṡ

T
r ]

T, where st = [sTt,1, s
T
t,2, . . . , s

T
t,M ]T,

sr = [sTr,1, s
T
r,2, . . . , s

T
r,N ]

T, ṡt = [ṡTt,1, ṡ
T
t,2, . . . , ṡ

T
t,M ]T and

ṡr = [ṡTr,1, ṡ
T
r,2, . . . , ṡ

T
r,N ]

T. Correspondingly, the actual trans-
mitter and receiver locations are collected in vector form as
βo
= [(sot )

T, (sor )
T, (ṡot )

T, (ṡor )
T]T and the related location

error vector is given as 1β = [1sTt ,1sTr ,1ṡTt ,1ṡTr ]
T.

Mathematically, we arrive at

β = βo
+1β (3)

where the transmitter and receiver location error vector1β is
assumed follow a Gaussian distribution with zero mean and
covariance Qβ .
The true range and range rate between transmitter m and

the target are respectively equal to

Rot,m = ||u
o
− sot,m|| (4)

Ṙot,m =
(uo − sot,m)

T(u̇o − ṡot,m)

||uo − sot,m||
(5)

The true range and range rate between the target and receiver
n are respectively equal to

Ror,n = ||u
o
− sor,n|| (6)

Ṙor,n =
(uo − sor,n)

T(u̇o − ṡor,n)

||uo − sor,n||
(7)
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By definition, the noise-free BR and BRR for the pair of
transmitter m and receiver n are respectively expressed as

rom,n = Rot,m + R
o
r,n (8)

ṙom,n = Ṙot,m + Ṙ
o
r,n (9)

Due to measurement noises, the noise-free BRs the BRRs are
not available, and the available versions are

rm,n = rom,n +1rm,n (10)

ṙm,n = ṙom,n +1ṙm,n (11)

where 1rm,n and 1ṙm,n represent the BR and BRR
measurement noises. For the set of M transmitters and
N receivers, (10) and (11) can be cast into two
MN-by-1 column vectors as follows:

r = ro +1r (12)

ṙ = ṙo +1ṙ (13)

where r= [rT1 ,r
T
2 , . . . ,r

T
M ]T with rm= [rm,1,rm,2, . . . ,rm,N ]T,

m = 1, 2, . . . ,M , denotes the vector of measured
BRs; ro = [(ro1)

T, (ro2)
T, . . . , (roM )T]T with rom =

[rom,1, r
o
m,2, . . . , r

o
m,N ]

T, m = 1, 2, . . . ,M , denotes the
vector of true BRs; 1r = [1rT1 ,1rT2 , . . . ,1rTM ]T with
1rm = [1rm,1,1rm,2, . . . ,1rm,N ]T, m = 1, 2, . . . ,M ,
denotes the vector of BR measurement noises; ṙ =

[ṙT1 , ṙ
T
2 , . . . , ṙ

T
M ]T with ṙm = [ṙm,1, ṙm,2, . . . , ṙm,N ]T,

m = 1, 2, . . . ,M , denotes the vector of measured
BRRs; ṙo = [(ṙo1)

T, (ṙo2)
T, . . . , (ṙoM )T]T with ṙom =

[ṙom,1, ṙ
o
m,2, . . . , ṙ

o
m,N ]

T, m = 1, 2, . . . ,M , denotes the vector
of true BRRs; 1ṙ = [1ṙT1 ,1ṙT2 , . . . ,1ṙTM ]T with 1ṙm =
[1ṙm,1,1ṙm,2, . . . ,1ṙm,N ]T, m = 1, 2, . . . ,M , denotes the
vector of BRR measurement noises.

Collecting the two sets of equations in (12) and (13), yields
the total equation set in a 2MN-by-1 column vector form as

α = αo +1α (14)

where α = [rT, ṙT]T, αo = [(ro)T, (ṙo)T]T, 1α =

[1rT,1ṙT]T. Without loss of generality, the measurement
noise vector 1α is modeled as a zero-mean Gaussian vector
with covariance matrix Qα .

Different from the localization scenarios in [8]–[10], [15],
the localization scenario presented in FIGURE 1 involves
K calibration targets, and the BRs/BRRs with respect
to these calibration targets are also measured in order
to alleviate the transmitter/receiver location uncertain-
ties and enhance the target localization accuracy. The
positions and velocities of these calibration targets are
denoted by co = [(co1)

T, (co2)
T, . . . , (coK )

T]T and ċo =
[(ċo1)

T, (ċo2)
T, . . . , (ċoK )

T]T, where cok = [xoc,k , y
o
c,k , z

o
c,k ]

T and
ċok = [ẋoc,k , ẏ

o
c,k , ż

o
c,k ]

T represent the position and velocity of
calibration target k , k = 1, 2, . . . ,K ; Similarly, in this study,
the positions and velocities of the calibration targets are not
known perfectly, and the nominal positions and velocities,
denoted by ck = [xc,k , yc,k , zc,k ]T and ċk = [ẋc,k , ẏc,k , żc,k ]T

respectively, are

ck = cok +1ck (15)

ċk = ċok +1ċk (16)

where 1ck and 1ċk represent the position error in ck and
velocity error in ċk , respectively. For the set of K calibration
targets, we collect (15) and (16) into a 6K -by-1 column
vector as

γ = γ o
+1γ (17)

where γ = [cT, ċT]T with c = [cT1 , c
T
2 , . . . , c

T
K ]

T and
ċ = [ċT1 , ċ

T
2 , . . . , ċ

T
K ]

T represent the vector of nomi-
nal calibration target locations, γ o

= [(co)T, (ċo)T]T

with co = [(co1)
T, (co2)

T, . . . , (coK )
T]T and ċo =

[(ċo1)
T, (ċo2)

T, . . . , (ċoK )
T]T represent the vector of actual cal-

ibration target locations, 1γ = [1cT,1ċT]T with 1c =
[1cT1 ,1cT2 , . . . ,1cTK ]

T and 1ċ = [1ċT1 ,1ċT2 , . . . ,1ċTK ]
T

represent the vector of calibration target location errors.
Without loss of generality, 1γ is assumed to be a zero-mean
Gaussian random vector with covariance matrix Qγ .

The true range and range rate between transmitter m and
calibration target k are respectively equal to

Roc,k,t,m = ||c
o
k − sot,m|| (18)

Ṙoc,k,t,m =
(cok − sot,m)

T(ċok − ṡot,m)

||cok − sot,m||
(19)

The true range and range rate between calibration target k and
receiver n are respectively equal to

Roc,k,r,n = ||c
o
k − sor,n|| (20)

Ṙoc,k,r,n =
(cok − sor,n)

T(ċok − ṡor,n)

||cok − sor,n||
(21)

The noise-free BR and BRR with respect to calibration tar-
get k , transmitter m and receiver n are respectively given by

roc,k,m,n = Roc,k,t,m + R
o
c,k,r,n (22)

ṙoc,k,m,n = Ṙoc,k,t,m + Ṙ
o
c,k,r,n (23)

In the presence of measurement noises, the corresponding BR
and BRR measurements can be modeled as

rc,k,m,n = roc,k,m,n +1rc,k,m,n (24)

ṙc,k,m,n = ṙoc,k,m,n +1ṙc,k,m,n (25)

where 1rc,k,m,n and 1ṙc,k,m,n are the BR and BRR mea-
surement noises. With respect to the K calibration targets,
M transmitters and N receivers, we can collect (24) and (25)
into two KMN-by-1 column vectors as

rc = roc +1rc (26)

ṙc = ṙoc +1ṙc (27)

where rc = [rTc,1, r
T
c,2, . . . , r

T
c,K ]

T with rc,k = [rTc,k,1, r
T
c,k,2,

. . . , rTc,k,M ]T and rc,k,m = [rc,k,m,1, rc,k,m,2, . . . , rc,k,m,N ]T

denotes the vector of measured BRs from the calibration
targets; roc = [(roc,1)

T, (roc,2)
T, . . . , (roc,K )

T]T with roc,k =
[(roc,k,1)

T, (roc,k,2)
T, . . . , (roc,k,M )T]T and roc,k,m = [roc,k,m,1,

roc,k,m,2, . . . , r
o
c,k,m,N ]

T denotes the vector of true BRs from
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the calibration targets; 1rc = [1rTc,1,1rTc,2, . . . ,1rTc,K ]
T

with 1rc,k = [1rTc,k,1,1rTc,k,2, . . . , 1rTc,k,M ]T and
1rc,k,m = [1rc,k,m,1,1rc,k,m,2, . . . ,1rc,k,m,N ]T denotes
the corresponding BR measurement noise vector; ṙc =
[ṙTc,1, ṙ

T
c,2, . . . , ṙ

T
c,K ]

T with ṙc,k = [ṙTc,k,1, ṙ
T
c,k,2, . . . , ṙ

T
c,k,M ]T

and ṙc,k,m = [ṙc,k,m,1, ṙc,k,m,2, . . . , ṙc,k,m,N ]T denotes
the vector of measured BRRs from the calibration tar-
gets; ṙoc = [(ṙoc,1)

T, (ṙoc,2)
T, . . . , (ṙoc,K )

T]T with ṙoc,k =
[(ṙoc,k,1)

T, (ṙoc,k,2)
T, . . . , (ṙoc,k,M )T]T and ṙoc,k,m =

[ṙoc,k,m,1, ṙ
o
c,k,m,2, . . . , ṙ

o
c,k,m,N ]

T denotes the vector of true
BRRs from the calibration targets;1ṙc = [1ṙTc,1,1ṙTc,2, . . . ,
1ṙTc,K ]

T with 1ṙc,k = [1ṙTc,k,1,1ṙTc,k,2, . . . ,1ṙTc,k,M ]T and
1ṙc,k,m = [1ṙc,k,m,1,1ṙc,k,m,2, . . . ,1ṙc,k,m,N ]T denotes
the corresponding BRR measurement noise vector.
Putting the two sets of equations in (26) and (27) together,

yields the total equation set in a 2KMN-by-1 column vector
form as

αc = α
o
c +1αc (28)

where αc = [rTc , ṙ
T
c ]

T, αoc = [(roc)
T, (ṙoc)

T]T, 1αc =
[1rTc ,1ṙTc ]

T. The total measurement noise vector 1αc is
modeled as a zero-mean Gaussian vector with covariance
matrix Qαc.
In this study, we shall estimate the target location vector

θo = [(uo)T, (u̇o)T]T as accurately as possible using the BR
and BRR measurement vector α from the unknown target
together with the noisy transmitter and receiver location vec-
tor β. Different from existing studies, the calibration targets
with nominal location vector γ and the corresponding BR
and BRR vector αc are also employed to improve the target
localization accuracy.

III. ANALYSIS OF CRLB WITH CALIBRATION TARGETS
We shall first characterize the best achievable localization
accuracy with the use of calibration targets by establishing
the CRLB for the target location estimation. In addition to
the BR and BRR measurement noises, the presence of errors
in the transmitter/receiver/calibration target locations are also
included. The localization accuracy improvement brought by
the use of calibration targets will be characterized through the
comparison between the CRLB with the calibration targets
and the one without.

The deterministic unknowns for the CRLB evaluation,
including the unknown target location θo, the actual transmit-
ter and receiver location vector βo and the actual calibration
target location vector γ o, are cast into a 6(M + N + K+1)-
by-1 column vector as ϕo

= [(θo)T, (βo)T, (γ o)T]T. The
observations for the CRLB evaluation, including the BR and
BRRmeasurement vector α from the unknown target, the BR
and BRRmeasurement vector αc from the calibration targets,
the nominal transmitter and receiver location vector β and
the nominal calibration target location vector γ , are cast into
a (2MN + 2MNK + 6M + 6N + 6K )-by-1 column vector
as z = [αT,αTc ,β

T, γ T]T. From the error assumptions given
in Section II, the joint probability density function (pdf) of z

given ϕo is readily shown to be

p(z|ϕo)

= p(α|θo,βo) · p(αc|βo, γ o) · p(β|βo) · p(γ |γ o)

= κ · exp
[
−
1
2
(α − αo)TQ−1α (α − αo)

−
1
2
(β−βo)TQ−1β (β−βo)−

1
2
(β − βo)TQ−1β (β − βo)

−
1
2
(γ − γ o)TQ−1γ (γ − γ o)

]
(29)

where κ is constant independent of the unknowns. By defini-
tion, the 6(M + N + K + 1)-by-6(M + N + K + 1) Fisher
information matrix is structured as

FIM(ϕo) , E
[
∂ ln p(z|ϕo)

∂ϕo

(
∂ ln p(z|ϕo)

∂ϕo

)]

=

 X Y O6×6

YT Z RT

O6×6 R P

 (30)

where the blocks X, Y, Z, R and P are

X =
(
∂αo

∂θo

)T

Q−1α

(
∂αo

∂θo

)
(31)

Y =
(
∂αo

∂θo

)T

Q−1α

(
∂αo

∂βo

)
(32)

Z = Q−1β +
(
∂αo

∂βo

)T

Q−1α

(
∂αo

∂βo

)
+

(
∂αoc
∂βo

)T

Q−1αc

(
∂αoc
∂βo

)
(33)

R =
(
∂αoc
∂γ o

)T

Q−1αc

(
∂αoc
∂βo

)
(34)

P = Q−1γ +
(
∂αoc
∂γ o

)T

Q−1αc

(
∂αoc
∂γ o

)
(35)

The explicit expressions for the partial derivatives ∂αo
/
∂θo,

∂αo
/
∂βo, ∂αoc

/
∂βo and ∂αoc

/
∂γ o are detailed in Appendix.

Form (30), it follows that the CRLB of ϕo, denoted
by CRLBc(ϕo), can be obtained as FIM(ϕo)−1. However,
we are only interested in the bound on the target loca-
tion parameters θo, given by the upper left 6-by-6 block
of FIM(ϕo)−1. This block, denoted by CRLBc(θo), can be
obtained from a matrix of this form by exploiting the par-
titioned matrix inversion formula and the matrix inversion
lemma [23], as

CRLBc(θo) = X−1 + X−1Y(Z− YTX−1Y

− RTP−1R)−1YTX−1 (36)

Next, we shall characterize localization accuracy improve-
ment brought by the use of calibration targets through the
comparison between the CRLB with the calibration targets
and the one without. For this purpose, the CRLB of θo with
transmitter/receiver location uncertainties but without cali-
bration derived in [15], denoted by CRLBs(θo), is presented
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below

CRLBs(uo)=X−1+X−1Y(
_

Z−YTX−1Y)−1YTX−1 (37)

where
_

Z = Q−1β + (∂αo
/
∂βo)TQ−1α (∂αo

/
∂βo). It may

be interesting to note, that there are structural similarities
between the two CRLBs in (36) and (37). To illustrate, let
us define Z̆ = Z − RTP−1R. By exploiting the expressions
of Z, R and P in (33)-(35), invoking the matrix inversion
lemma [23] to the term (∂αoc/∂β

o)TQ−1αc (∂α
o
c/∂β

o) −
RTP−1R and then simplifying, we can rewrite Z̆ as

Z̆ = Q−1β +
(
∂αo

∂βo

)T

Q−1α

(
∂αo

∂βo

)
+

(
∂αoc
∂βo

)T
(
Qαc+

(
∂αoc
∂γ o

)
Qγ

(
∂αoc
∂γ o

)T
)−1 (

∂αoc
∂βo

)
(38)

Plugging Z̆ into (36) yields an equivalent representation of
CRLBc(θo) as

CRLBc(θo)=X−1+X−1Y(Z̆− YTX−1Y)−1YTX−1 (39)

Now, the two CRLBs in (37) and (39) are evidently identical
in structure, except that Z̆ is substituted by

_

Z. This implies,
as could be expected, the use of calibration targets intro-
duces an additional component in the big matrix within the
parentheses as

Z̃ = Z̆−
_

Z

=

(
∂αoc
∂βo

)T

Q−1αc

(
∂αoc
∂βo

)
− RTP−1R

=

(
∂αoc
∂βo

)T
(
Qαc +

(
∂αoc
∂γ o

)
Qγ

(
∂αoc
∂γ o

)T
)−1

×

(
∂αoc
∂βo

)
(40)

Rearranging (Z̆ −YTX−1Y)−1 in (39) as ((
_

Z−YTX−1Y)+
Z̃)−1 and invoking the matrix inversion lemma [23] to the
term ((

_

Z − YTX−1Y) + Z̃)−1, we have after tedious mathe-
matical manipulations,

CRLBs(θo)− CRLBc(θo) = X−1Y0YTX−1 (41)

where 0 = H−1ϒ(I + ϒTH−1ϒ)−1ϒTH−1, H =

Z̆ − YTX−1Y, and ϒ = (∂αoc
/
∂βo)TLαc with

Lαc being the Cholesky decomposition of (Qαc +
(∂αoc

/
∂γ o)Qγ (∂αoc

/
∂γ o)T)−1, i.e., LαcLT

αc = (Qαc +
(∂αoc

/
∂γ o)Qγ (∂αoc

/
∂γ o)T)−1. As evident from the struc-

tural form of (41), the right side is just the performance
enhancement from the use of calibration targets. It is positive
semi-definite (PSD) since it has a symmetric structure andϒT

is not full column rank. Even if the nominal locations of cali-
bration targets and the correspondingBR/BRRmeasurements
are very erroneous, (41) can still remain PSD. In theory, only
in the edge case when (Qαc+ (∂αoc

/
∂γ o)Qγ (∂αoc

/
∂γ o)T)−1

tends to zero and then Lαc → O and ϒ → O, the perfor-
mance enhancement in (41) would tend to zero. However,
this edge case hardly exists in reality. Hence, mathematically,
we have

CRLBs(θo) ≥ CRLBc(θo) (42)

The matrix inequalityA ≥ B implies thatA−B is PSD, from
which tr(CRLBs(θo)) ≥ tr(CRLBc(θo)) can be inferred.
In a physical sense, the trace of CRLBc(θo) and CRLBs(θo)
respectively denotes the minimum possible mean-square
localization error for the unknown target with and without
using calibration targets. Hence, it can be concluded that
using calibration targets brings potential enhancement to the
target localization accuracy, at least at the CRLB level.

FIGURE 2. MPR localization scenario geometry for simulation.

TABLE 1. Positions (in meters) and velocities (in meters/second) of the
transmitters, receivers and calibration targets.

Example 1: In order to verify the above analysis of the
CRLB, a numerical example using the localization geome-
try given in FIGURE 2, was performed. The MPR system
equipped with M = 3 transmitters, N = 4 receivers
and K = 5 calibration targets, is deployed to determine
the unknown target position uo = [50000, 5000, 500]Tm
and velocity u̇o = [300, 300, 100]Tm/s using BR and
BRR measurements. The positions and velocities of the
transmitters/receivers/calibration targets are tabulated in
TABLE 1. The noise covariance matrix of the BR and
BRR measurements from the unknown target is Qα =
diag{σ 2

α IMN , 0.01σ
2
α IMN }, where σα reflects BR and BRR
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measurement noise level; The covariance matrix of the
transmitter/receiver location error is given as Qβ =

diag{σ 2
β I3(M+N ), 0.01σ 2

β I3(M+N )} where σβ reflects the

transmitter/receiver location uncertainty level; The covari-
ance matrix of calibration target location error is Qγ =
diag{σ 2

γ I3K , 0.01σ
2
γ I3K } where σγ reflects the calibration

target location error level; The covariance matrix of the
calibration BR and BR measurement noise is Qαc =
diag{σ 2

αcIKMN , 0.01σ
2
αcIKMN } where σαc = σα reflects the

calibration BR and BRRmeasurement noise level. The differ-
ence between the target localization CRLB with and without
the use of calibration targets is illustrated in FIGURE 3.

FIGURE 3. Comparison of the CRLBs with and without using calibration
targets: (a-1) position CRLB versus BR measurement noise level σα ;
(a-2) velocity CRLB versus BR measurement noise level σα ; (b-1) position
CRLB versus transmitter and receiver location uncertainty level σβ ;
(b-2) velocity CRLB versus transmitter and receiver location uncertainty
level σβ ; (c-1) position CRLB versus calibration target location error
level σγ ; (c-2) velocity CRLB versus calibration target location
error level σγ .

FIGURE 3(a) plots the traces of CRLBc(θo) and
CRLBs(θo) as σα increases from 10−1m to 103m while the
transmitter/receiver location uncertainty level and calibration
target location error level are fixed at σβ = 50m and σγ =
10m respectively. It can be observed from FIGURE 3(a) that
the CRLB with calibration targets is generally below the
one without, which coincides with the analytical conclusion

given in (42). However, in the edge case where the BR and
BRR measurement noise is very large, two CRLBs would
tend to be the same. This is because in this case, the BR
and BRR measurement noise dominates and the effect of
transmitter/receiver location uncertainties on the localization
accuracy is relatively small. FIGURE 3(b) depicts the traces
of CRLBc(θo) and CRLBs(θo) as the transmitter/receiver
location uncertainty level σβ increases while the BR/BRR
measurement noise level and calibration target location error
level are fixed at σα = 10m and σγ = 10m respectively.
As σβ increases, the CRLB without calibration targets devi-
ates farther and farther away from the case with calibration
targets. At a transmitter/receiver location uncertainty level of
σβ = 100m which is not rare in practice, the improvement
in CRLB from the use of calibration targets is thousands of
metres for target position uo and tens of metres per second
for target velocity u̇o. This illustrates the significance of
using calibration targets to improve the localization accuracy.
The CRLB curves versus the calibration target location error
level σγ are plotted in FIGURE 3(c) where the BR/BRR
measurement noise level and the transmitter/receiver loca-
tion uncertainty level are fixed at σα = 10m and σβ =
50m respectively. Interestingly, the trend of CRLB curves
implies that, even when the calibration target location error
is extremely large, the CRLB with calibration targets are
still remarkably below the one without. This justifies again
the analysis under (41), and similar results have also been
mentioned in previous studies on source localization and
sensor network localization issues [16]–[21]. Generally, from
FIGURE 3(a), (b) and (c), the use of calibration targets indeed
brings a significant improvement in the localization accuracy
in the normal case, at least at the CRLB level.

IV. PROPOSED LOCALIZATION ALGORITHM
The potential of calibration targets in improving localization
accuracy has been shown in Section III through the analysis
of the CRLB. In what follows, so as to fulfill this potential,
we will proceed to design a novel closed-form localization
algorithm for the aforementioned practical localization sce-
nario. After that, a theoretical analysis will be performed to
show that the proposed algorithm achieves the CRLB when
satisfying some mild conditions.

A. ALGORITHM DEVELOPMENT
The proposed solution mainly includes two processing steps,
referred to as calibration step and localization step respec-
tively. The calibration step is devoted to refine the inaccurate
transmitter and receiver locations, and then the localization
step is devoted to estimate the target position and velocity.

1) CALIBRATION STEP
To make use of the BR measurements from the calibration
targets, the calibration step starts by rearranging (24) as

rc,k,m,n − ‖cok − sot,m‖ − ‖c
o
k − sor,n‖ = 1rc,k,m,n (43)
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Since only the erroneous versions of cok , s
o
t,m and sor,n are

available, we plug cok = ck − 1ck , sot,m = st,m − 1st,m
and sor,n = sr,n − 1sr,n into (43), and then expand it around
erroneous values ck , st,m and sr,n to the linear error terms as

rc,k,m,n − r̂c,k,m,n − ρTc,k,t,m1st,m − ρTc,k,r,n1sr,n
' −(ρc,k,t,m + ρc,k,r,n)

T1ck +1rc,k,m,n (44)

where

r̂c,k,m,n = ‖ck − st,m‖ + ‖ck − sr,n‖ (45)

ρc,k,t,m =
ck − st,m
‖ck − st,m‖

(46)

ρc,k,r,n =
ck − sr,n
‖ck − sr,n‖

(47)

Stacking (44) for all the k ,m and n, yields a set ofKMN linear
equations that can be written in matrix form as

h0t −
[
G0t,OKMN×3(M+N )

]
1β = 1h0t (48)

where h0t is a KMN-by-1 column vector and G0t is a
KMN-by-3(M + N ) matrix with their elements given by

[h0t](k−1)MN+(m−1)N+n,1= rc,k,m,n − r̂c,k,m,n,

[G0t](k−1)MN+(m−1)N+n,3m−2:3m= ρTc,k,t,m,

[G0t](k−1)MN+(m−1)N+n,3M+3n−2:3M+3n= ρTc,k,r,n, (49)

for k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N , and
zeros elsewhere. The error vector 1h0t can be expressed in a
compact form as

1h0t = [C,OKMN×3K ]1γ +1rc (50)

where C is a KMN-by-3K matrix and its elements are given
by [C](k−1)MN+(m−1)N+n,3k−2:3k = −(ρc,k,t,m+ρc,k,r,n)

T for
k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N , and
zeros elsewhere.

Tomake use of the BRRmeasurements, we take the deriva-
tive of (44) with respect to time as

ṙc,k,m,n − ˆ̇rc,k,m,n − ρ̇Tc,k,t,m1st,m
− ρTc,k,t,m1ṡt,m − ρ̇Tc,k,r,n1sr,n − ρTc,k,r,n1ṡr,n

' −(ρ̇c,k,t,m + ρ̇c,k,r,n)
T1ck − (ρc,k,t,m + ρc,k,r,n)

T1ċk
+1ṙc,k,m,n (51)

where

ˆ̇rc,k,m,n = ρTc,k,t,m(ċk − ṡt,m)+ ρTc,k,r,n(ċk − ṡr,n) (52)

ρ̇c,k,t,m =
(ċk − ṡt,m)− ρTc,k,t,m(ċk − ṡt,m)ρc,k,t,m

‖ck − st,m‖
(53)

ρ̇c,k,r,n =
(ċk − ṡr,n)− ρTc,k,r,n(ċk − ṡr,n)ρc,k,r,n

‖ck − sr,n‖
(54)

Collecting (51) for all the k , m and n, produces a set of KMN
linear equations that can be arranged in matrix form as

h0f − [G0f,G0t]1β = 1h0f (55)

where h0f is a KMN-by-1 column vector, G0f is a
KMN-by-6(M + N ) matrix, and their elements are given by

[h0f](k−1)MN+(m−1)N+n,1= ṙc,k,m,n−ˆ̇rc,k,m,n,

[G0f](k−1)MN+(m−1)N+n,3m−2:3m= ρ̇Tc,k,t,m,

[G0f](k−1)MN+(m−1)N+n,3M+3n−2:3M+3n= ρ̇Tc,k,r,n, (56)

for k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N ,
and zeros elsewhere. Furthermore, error vector 1h0f can be
expressed in a compact form as

1h0f = [Ċ,C]1γ +1ṙc (57)

where Ċ is aKMN-by-3K matrix with its elements given by
[Ċ](k−1)MN+(m−1)N+n,3k−2:3k = −(ρ̇c,k,t,m + ρ̇c,k,r,n)

T for
k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N , and
zeros elsewhere.

Putting the two sets of equations in (50) and (57) together,
yields the total equation set as

h0 −G01β = 1h0 (58)

where

h0 =
[
h0t
h0f

]
, G0 =

[
G0t OKMN×3(M+N )
G0f G0t

]
(59)

The error vector 1h0 is given by

1h0 =
[
C OKMN×3K

Ċ C

]
1γ +

[
1ṙc
1ṙc

]
= C11γ +1αc (60)

In (58), 1β reflects the difference between the true trans-
mitter/receiver locations and the erroneous versions. In order
to refine the transmitter and receiver locations, 1β shall be
estimated as accurately as possible. Recall that1β is a zero-
mean Gaussian distributed random vector with covariance
matrix Qβ . According to the Bayesian Gauss-Markov theo-
rem [25], the linear minimum mean square error (LMMSE)
estimator for the given model in (58) is

1β̂ =
(
Q−1β +GT

0 (C1QγC
T
1 +Qαc)

−1G0

)−1
×GT

0 (C1QγC
T
1 +Qαc)

−1h0 (61)

From Bayesian Gauss-Markov theorem [25], in order to
perfectly determine 1β and completely remove the trans-
mitter/receiver location uncertainties, the number of transmit-
ters, receivers and calibration targets should satisfy MNK ≥
3(M+N ) (meanwhile the calibration BR/BRRmeasurements
and the calibration target locations are noise free, i.e. Qαc
and Qγ tends to zero). However, we don’t have to com-
pletely remove the transmitter/receiver location errors. When
the number of transmitters, receivers and calibration targets
does not satisfy MNK ≥ 3(M + N ) (and the calibration
BR/BRRmeasurements and the calibration targets are noisy),
the transmitter/receiver location error vector 1β can still be
estimated approximately and the transmitter/receiver loca-
tion uncertainties can be partially removed. This is reflected
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in the formula of LMMSE estimator given in (61), where
(Q−1β + GT

0 (C1QγC
T
1 + Qαc)−1G0) is invertible and 1β

can be estimated to partially calibrate the inaccurate trans-
mitter/receiver locations even when there is only K =1 cal-
ibration target. That is to say, the calibration step has no
additional request on the number of transmitters, receivers
and calibration targets.

Under the assumption that the noise in C1 and G0 is
sufficiently small to be ignored, the covariance matrix of1β̂
can be approximated by

cov(1β−1β̂)=
(
Q−1β +G

T
0 (C1QγC

T
1+Qαc)

−1G0

)−1
(62)

Using the estimate of1β in (61), we can refine the transmitter
and receiver locations as

β̂ = β −1β̂ (63)

Utilizing the fact β = βo
+ 1β, we can rewrite β̂ in (63)

as β̂ = βo
+ 1β − 1β̂. Hence, the refined estimate of

transmitter/receiver locations β̂ has a covariance matrix iden-
tical with (62). Forming the inverse of cov(1β − 1β̂) and
then comparing it with Q−1β , we have cov(1β − 1β̂)−1 −
Q−1β = GT

0 (C1QγC
T
1 +Qαc)−1G0. Because GT

0 (C1QγC
T
1 +

Qαc)−1G0 has a symmetric structure and G0 is not full col-
umn rank, we infer that cov(1β−1β̂)−1 ≥ Q−1β . According

to the PSD matrix property [24], cov(1β − 1β̂)−1 ≥ Q−1β
is equivalent to Qβ ≥ cov(1β − 1β̂). That is, the refined
transmitter and receiver locations perform leastwise as well
as, if not better than, the original ones, in terms of target
localization accuracy.

2) LOCALIZATION STEP
In the localization step, the refined transmitter and receiver
locations from the calibration step and the BR/BRRmeasure-
ments from the unknown target will be employed to deter-
mine the target position uo and velocity u̇o. The processing
in this step is basically the same as that in [15], expect that the
transmitter and receiver location vector and the correspond-
ing covariance matrix are replaced by β̂ and cov(β̂ − 1β̂)
respectively. For completeness, the basic processing involved
in this stage is briefly presented below, and the readers are
referred to [15] for further details.

By defining the auxiliary vector

ηo=
[
(uo)T,Rot,1,R

o
t,2, . . . ,R

o
t,M , (u̇

o)T,Ṙot,1,Ṙ
o
t,2, . . . ,Ṙ

o
t,M

]T
(64)

where Rot,1,R
o
t,2, . . . ,R

o
t,M , Ṙ

o
t,1, Ṙ

o
t,2, . . . , Ṙ

o
t,M are the intro-

duced auxiliary parameters, a pseudolinear set equations is
established from the nonlinear BR and BRR measurement
equations with respect to the unknown target,

G1η
o
= h1 +1h1 (65)

where G1 is a 2MN-by-2(M+3) matrix, h1 is a
2MN-by-1 column vector, and their elements are

[G1](m−1)N+n,1:3 = (ŝt,m − ŝr,n)T,

[G1](m−1)N+n,m+3 = rm,n,

[G1]MN+(m−1)N+n,1:3 = (ˆ̇st,m − ˆ̇sr,n)T,

[G1]MN+(m−1)N+n,m+3 = ṙm,n
[G1]MN+(m−1)N+n,M+4:M+6 = (ŝt,m − ŝr,n)T,

[G1]MN+(m−1)N+n,M+6+m = rm,n
[h1](m−1)N+n,1 = r2m,n + ŝTt,mŝt,m − ŝTr,nŝr,n,

[h1]MN+(m−1)N+n,1 = 2(rm,2ṙm,2 + ŝTt,m ˆ̇st,m

−ŝTr,2 ˆ̇sr,2), (66)

for m = 1, 2, . . . ,M , n = 1, 2, . . . ,N , and zeros elsewhere.
On the right side of (65), the error vector1h1 is defined as

1h1 = B11α + D11β (67)

where

B1=

[
B OMN×MN

Ḃ B

]
, D1=

[
D OMN×3(M+N )

Ḋ D

]
(68)

with the elements of blocks B, Ḃ, D and Ḋ given by

[B](m−1)N+n,(m−1)N+n = −2Ror,n,

[Ḃ]MN+(m−1)N+n,(m−1)N+n = −2Ṙor,n,

[D](m−1)N+n,3m−2:3m = 2(uo − ŝt,m)T,

[D](m−1)N+n,3M+3n−2:3M+3n = −2(uo − ŝr,1)T,

[Ḋ](m−1)N+n,3m−2:3m = 2(u̇o − ˆ̇st,m)T,

[Ḋ](m−1)N+n,3M+3n−2:3M+3n = −2(u̇o − ˆ̇sr,1)T, (69)

for m = 1, 2, . . . ,M , n = 1, 2, . . . ,N , and zeros elsewhere.
From (65), ηo is estimated by the WLS minimization as

η = (GT
1W1G1)−1GT

1W1h1 (70)

whereW1 is the weighting matrix computed by

W1 =

[
B1QαB

T
1 + D1cov(β̂ −1β̂)DT

1

]−1
(71)

Under the condition that the measurement noise and the
transmitter/receiver location error are sufficiently small, the
covariance matrix of η is given by

cov(η) = (GT
1W1G1)−1 (72)

Denote the estimated values of uo,Rot,1,R
o
t,2, . . . ,R

o
t,M , u̇

o,

Ṙot,1, Ṙ
o
t,2, . . . , Ṙ

o
t,M contained in η by u,Rt,1,Rt,2, . . . ,Rt,M ,

u̇, Ṙt,1, Ṙt,2, . . . , Ṙt,M respectively. By exploiting the func-
tional relationship between the auxiliary parameters and the
target location parameters, another set of linear equation is
established as

G2θ
o
= h2 +1h2 (73)

where θo = [(uo)T, (u̇o)T]T, G2 is a 2(M + 3)-by-6 mat-
rix, h2 is a 2(M +3)-by-1 column vector. The elements

VOLUME 7, 2019 118181



Y. Zhao et al.: Calibrating the Transmitter and Receiver Location Errors for Moving Target Localization in MPR

of G2 and h2 are

[G2]1:3,1:3 = I3, [G2]m+3,1:3 = 2ŝTt,m,

[G2]M+4:M+6,4:6 = I3, [G2]M+6+m,1:3 = 2ˆ̇sTt,m,

[G2]M+6+m,4:6 = 2ŝTt,m, [h2]1:3,1 = u,

[h2]m+3,1 = uTu− R2t,m + ŝTt,mŝt,m,

[h2]M+4:M+6,1 = u̇,

[h2]M+6+m,1 = 2uTu̇− 2Rt,mṘt,m + ŝTt,m ˆ̇st,m (74)

The error vector 1h2 is defined as

1h2 = B21η + D21β (75)

where

B2 =

[
B̃ O(M+3)×(M+3)
˙̃B B̃

]
,

D2 =

[
D̃ O(M+3)×2(M+N )
˙̃D D̃

]
(76)

with the elements of blocks B̃, ˙̃B, D̃ and ˙̃D given by

[B̃]1:3,1:3 = −I3, [B̃]m+3,1:3 = −2uT,

[B̃]m+3,m+3 = 2Rt,m, [ ˙̃B]m+3,1:3 = −2u̇T,

[ ˙̃B]m+3,m+3 = 2Ṙt,m,

[D̃]m+3,3m−2:3m = 2(uo − st,m)T,

[ ˙̃D]m+3,3m−2:3m = 2(u̇o − ṡt,m)T (77)

for m = 1, 2, . . . ,M , n = 1, 2, . . . ,N , and zeros elsewhere.
From (73), θo is determined by using the WLS

minimization as

θ = (GT
2W2G2)−1GT

2W2h2 (78)

whereW2 is the weighting matrix computed by

W2 =

[
B2cov(η)BT

2 + D2cov(β̂ −1β̂)DT
2

+B2(GT
1W1G1)−1GT

1W1D1cov(β̂ −1β̂)DT
2

+D2cov(β̂ −1β̂)DT
1W1G1(GT

1W1G1)−1BT
2

]−1
(79)

Given sufficiently small measurement noise and transmitter/
receiver location error, the covariance matrix of θ is given by

cov(θ ) = (GT
2W2G2)−1 (80)

In the localization step, we employ MN BR measure-
ments and MN BRR measurements, produced from the M
transmitters andN receivers, to determine the unknown target
location vector θo. In theory, to obtain a unique estimate
of the unknown target location, the number of transmit-
ters and receivers should satisfy MN ≥ 3. However, for
the two-step weighted least squares localization method
employed in the localization step, we introduced 2M aux-
iliary parameters Rot,1,R

o
t,2, . . . ,R

o
t,M , Ṙ

o
t,1, Ṙ

o
t,2, . . . , Ṙ

o
t,M to

construct an auxiliary vector ηo in (65). Hence, in order to

avoid underdetermined problem, the number of transmitters
and receivers should satisfy MN ≥ M + 3. If we introduce
Ror,1,R

o
r,2, . . . ,R

o
r,N , Ṙ

o
r,1, Ṙ

o
r,2, . . . , Ṙ

o
r,N as auxiliary parame-

ters, the number of transmitters and receivers should satisfy
MN ≥ N + 3.

B. PERFORMANCE ANALYSIS
As mentioned before, the CRLB traces out a lower bound for
minimum possible variance that an unbiased estimator can
achieve. In this subsection, we shall analyze the efficiency
of the proposed solution by comparing its covariance matrix
with the CRLB. For easier derivation, we would compare
their inverse, rather than directly compare themselves. The
CRLB has been presented in (39). Invoke thematrix inversion
lemma [23] to (39) and employ the definitions of X and Y,
then we have after mathematical simplifications,

CRLBc(θo)−1 =
(
∂αo

∂θo

)T

Q−1α

(
∂αo

∂θo

)
−

(
∂αo

∂θo

)T

Q−1α

(
∂αo

∂βo

)
Z̆
−1
(
∂αo

∂βo

)T

×Q−1α

(
∂αo

∂θo

)
(81)

where the definition of Z̆ has been given in (38).
On the other hand, by substituting (79), (72), (71)

and (62) into (80) successively, we can express the inverse
of cov(θ ) as

cov(θ )−1=GT
3Q
−1
α G3−GT

3Q
−1
α G4Z̄

−1
GT

4Q
−1
α G3 (82)

in which G3 = B−11 G1B−12 G2, G4 = B−11 D1, and Z̄ =
Q−1β +GT

4Q
−1
α G4 +GT

0 (C1QγC
T
1 +Qαc)−1G0.

Comparing (81) with (82), we observe that CRLBc(θo)−1

and cov(θ )−1 are identical in structure. Next, we proceed
to prove their equivalency under the following two sets of
conditions:
C1) ‖1st,m‖

/
‖cok − sot,m‖ ' 0, ‖1ṡt,m‖

/
‖ċok − ṡot,m‖ ' 0,

‖1sr,n‖
/
‖cok − sor,n‖ ' 0, ‖1ṡr,n‖

/
‖ċok − ṡor,n‖ ' 0,

‖1ck‖
/
‖cok − sot,m‖ ' 0, ‖1ċk‖

/
‖ċok − ṡot,m‖ ' 0,

‖1ck‖
/
‖cok − sor,n‖ ' 0, ‖1ċk‖

/
‖ċok − ṡor,n‖ ' 0, for

k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N ;
C2) ‖1rm,n‖

/
‖uo − sot,m‖ ' 0, ‖1ṙm,n‖

/
‖u̇o − ṡot,m‖ ' 0,

‖1rm,n‖
/
‖uo − sor,n‖ ' 0, ‖1ṙm,n‖

/
‖u̇o − ṡor,n‖ '

0, ‖1st,m −1ŝt,m‖
/
‖uo − sot,m‖‖u

o
− sot,m‖ ' 0,

‖1ṡt,m −1ˆ̇st,m‖
/
‖u̇o − ṡot,m‖ ' 0,

‖1sr,n −1ŝr,n‖
/
‖uo − sor,n‖ ' 0,

‖1ṡr,n −1ˆ̇sr,n‖
/
‖u̇o − ṡor,n‖ ' 0, for m =

1, 2, . . . ,M , n = 1, 2, . . . ,N .
The set of conditions C1 implies the transmitter/receiver

location error and the calibration target location error are neg-
ligibly small compared with the range and range rate between
the calibration target and the transmitter/receiver. The set
of conditions C2 implies the BR/BRR measurement noise
and the error in the refined transmitter/receiver locations
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are negligibly small compared to the range and range rate
between the target and the transmitter/receiver. Using the
conditions in C1 and C2, we obtain, after some involved
algebraic manipulations, that

G3 '
∂αo

∂θo
, G4 ' −

∂αo

∂βo ,

G0 ' −
∂αoc
∂βo , C1 ' −

∂αoc
∂γ o (83)

Based on this, we can deduce cov(θ )−1 ' CRLBc(θo)−1,
from which it can be further inferred that

cov(θ ) ' CRLBc(θo) (84)

That is, the proposed solution accomplishes the CRLB accu-
racy if the two sets of conditions C1 and C2 are satisfied.

V. SIMULATION RESULTS
In this section, we proceed to assess the performance of
the proposed solution via numerical simulations. Unless oth-
erwise stated, we consider an MPR system with M = 3
transmitters, N = 4 receivers and K = 5 calibration
targets, the positions and velocities of which are the same
as those in TABLE 1. The localization accuracy is mea-
sured using root mean squares error (RMSE), which comes
from 5000 independent Monte Carlo trials. In each trial,
the zero-meanGaussian random errors with covariancematri-
cesQα = diag{σ 2

α IMN , 0.01σ
2
α IMN },Qβ = diag{σ 2

β I3(M+N ),
0.01σ 2

β I3(M+N )}, Qγ = diag{σ 2
γ I3K , 0.01σ

2
γ I3K } and Qαc =

diag{σ 2
α IKMN , 0.01σ

2
α IKMN } are added to the BRs/BRRs

from the unknown target, the actual transmitter/receiver loca-
tions, and the actual calibration target locations, and the
BRs/BRRs from the calibration targets, respectively, in order
to simulate a realistic localization scenario.

As mentioned in the Introduction part, Refs. [8], [9]
and [10] investigate the moving target localization without
considering the transmitter and receiver location uncertain-
ties, and Ref. [15] considers the transmitter and receiver
location error but does not use any calibration targets.
In Refs. [10] and [15], theoretical analysis and simulation
results have shown that the algorithm inRef. [10] outperforms
those proposed in Refs. [8] and [9]. Hence, for the sake of
simplicity, comparison among the algorithms in Refs. [8], [9]
and [10] will not be repeated. The interested reader is referred
to [10] and [15] for details. In order to protrude the superiority
of the proposed solution, the algorithm proposed in [10]
which is regarded as the representative of the localization
algorithms without considering the transmitter and receiver
location errors, and that proposed in [15] which considers
the statistical distributions of transmitter/receiver location
error but does not use any calibration targets, are chosen as
references for comparison.

As analyzed in Section IV-B, the localization accuracy of
the proposed solution is related to the distance between the
target and MPR system. Hence, in order to achieve a more
comprehensive insight on the performance of the proposed

FIGURE 4. Comparison of the RMSEs among different localization
algorithms in the far-field case: (a-1) position estimation accuracy as σα
increases and σβ = 50m, σγ = 10m; (a-2) velocity estimation accuracy as
σα increases and σβ = 50m, σγ = 10m; (b-1) position estimation accuracy
as σβ increases and σα = 10m, σγ = 10m; (b-2) velocity estimation
accuracy σβ increases and σα = 10m, σβ = 50m.

solution, we consider two cases, i.e. near-field case where
the target is close to the MPR system, and far-field case
where the target is far away from the MPR system. We
first address the far-field target, the position and velocity of
which are set as uo = [180000, 18000, 18000]Tm and u̇o =
[500, 500, 50]T m/s respectively. The results are presented in
FIGURE 4.

FIGURE 4(a-1) and FIGURE 4(a-2) plot the position
RMSE curves and velocity curves of the algorithms versus the
BR/BRR measurement noise level. It shows that the localiza-
tion RMSE of the proposed solution matches the CRLB very
well and much lower than that of the algorithms in Refs. [10]
and [15], at low to moderate BR/BRR measurement noise
level. Although it deviates from the CRLB when the BR
and BRR measurement noise is large, it is still much smaller
than that of other two algorithms. And the deviation from
the CRLB, known as thresholding phenomenon, is due to the
ignored second order error terms in the design of the solution,
which is invalid for large error levels. Owing to considering
the statistical distributions of the transmitter/receiver location
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error, the RMSEs produced by the algorithm in Ref. [15]
is generally lower than that by the algorithm in Ref. [10].
But compared with the use of the calibration targets in the
proposed solution, the localization accuracy improvement
brought by the consideration of transmitter/receiver loca-
tion uncertainties in Ref. [15] is not sufficiently impres-
sive. FIGURE 4(b-1) and FIGURE 4(b-2) give the position
RMSE curves and velocity curves of the algorithms ver-
sus the transmitter/receiver location uncertainty level. It can
be seen that, the superiority of the proposed solution in
localization accuracy is mainly reflected at moderate to
high transmitter/receiver location uncertainty level. When the
transmitter/receiver location error is small, the localization
accuracy of the proposed solution and the other two algo-
rithms is comparable. This again agrees very well with the
theoretical performance in Section III. FIGURE 4(c-1) and
FIGURE 4(c-2) compare the RMSEs from the algorithms
with respect to different calibration target location error lev-
els. As is illustrated in FIGURE 4(c-1) and FIGURE 4(c-2),
the proposed solution always offers a remarkable advantage
over the other two algorithms at low to moderate calibration
target location error levels. At a calibration target location
error level of σγ = 1000m, the proposed solution deviates
from the CRLB and loses its superiority over the algorithm
in Ref. [15]. However, such a high calibration target location
error is very rare in practice, since the calibration targets are
well-chosen and cooperative.

Next, the same set of simulations was repeated for a near-
field target, the position and velocity of which are set as uo =
[18000, 1800, 1800]Tm and u̇o = [500, 500, 50]Tm/s. The
results are provided in FIGURE 5.

FIGURE 5 plots the comparison results in a near-field case.
It can be seen from FIGURE 5 that the proposed solution
still performs much better than the other algorithms. How-
ever, comparing with the corresponding results in FIGURE 4,
we find the localization accuracy for near-field target is gener-
ally better than a far-field target, given the samemeasurement
noise and transmitter/receiver/calibration target location error
levels. One reason may be that, when the target is close
to the MPR system, the transmitters/receivers are far apart
relative to the distance between the target and the MPR
system. Thus, the localization geometry would become more
regular and the corresponding geometric dilution of preci-
sion (GDOP) value would be smaller compared to the far-
field case. Nevertheless, on the other hand, comparing the
thresholding values in FIGURE 5 and FIGURE 4 indicates
that the RMSE curves for the near-field target deviate from
the CRLB at smaller threshold values than those for the
far-field target. This phenomenon is consistent with the anal-
ysis under conditions C1 and C2 that the equivalency between
the estimate variance and the CRLB is more affected by the
BR/BRR measurement noises when the target is close to
the MPR system. It is also worth noting in FIGURE 5(b-1)
and FIGURE 5(b-2) that at a transmitter/receiver location
uncertainty level σβ = 200m, the RMSE of the proposed
solution is even smaller than the CRLB. Similar phenomenon

FIGURE 5. Comparison of the RMSEs among different localization
algorithms in the far-field case: (a-1) position estimation accuracy as σα
increases and σβ = 50m, σγ = 10m; (a-2) velocity estimation accuracy as
σα increases and σβ = 50m, σγ = 10m; (b-1) position estimation accuracy
as σβ increases and σα = 10m, σγ =10m; (b-2) velocity estimation
accuracy σβ increases and σα = 10m, σβ = 50m.

has also been reported from previous studies on source local-
ization problem [26]. A plausible explanation is that for this
transmitter/receiver location uncertainty level, the second-
order error terms cannot be ignored and the proposed solution
would give a biased estimate. When an estimate is biased,
its RMSE can be smaller than the CRLB [25]. In theory,
if the two sets of conditions C1 and C2 are not satisfied,
the proposed solution strictly speaking cannot be regarded as
an unbiased estimate, and this phenomenon would potentially
appear.

At an intuitive level, the more calibration targets are used,
the better the localization accuracy is. In what follows,
we will quantitatively analyze the effect of number of cal-
ibration targets on the localization accuracy by varying the
number of calibration targets from 0 to 10. The positions and
velocities of the transmitters and receivers remain the same
as before. The location parameters of calibration targets and
unknown target are chosen randomly from parameter space
with lower bound [0km,−30km, 0km,−600m/s,−600m/s,
−100m/s]T and upper bound [60km, 30km, 60km, 600m/s,
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FIGURE 6. Localization accuracy versus the number of calibration targets.

600m/s, 100m/s]T. The simulation results are depicted in
FIGURE 6.

FIGURE 6 shows the localization RMSE as well as the
CRLB, versus the number of calibration targets. As expected,
when the number of calibration targets is small, the localiza-
tion accuracy improves significantly as the number of cali-
bration targets increases. However, as soon as the number of
calibration targets increases to more than 5, the improvement
rate decreases radically. That is, by increasing the number of
calibration targets, the localization RMSE with respect to the
number of calibration targets tends to a bound.

VI. CONCLUSION
This paper explores the use of calibration targets with known
positions and velocities to refine the inaccurate transmitter/
receiver locations and thus enhance target localization accu-
racy in MPR system. We start our research by evaluating
the target localization CRLB in the presence of calibration
targets, which justifies the potential of calibration targets
in enhancing localization accuracy. Then, in order to fulfill
this potential, a novel closed-form solution was designed for
target localization using BR and BRR measurements from
the unknown target as well as those from the calibration tar-
gets. The proposed solution was shown both analytically and
numerically to attain the CRLB under some mild conditions,
and verified to outperform existing algorithms in terms of
target localization accuracy. Furthermore, from the view of
engineering practice, if the employed calibration targets are
off-the-shelf, such as the commercial aircrafts broadcasting
ADS-B signal, the use of calibration targets would bring little
added cost or complexity to the MPR system, but could bring
a significant enhancement to the target localization accuracy.

APPENDIX
First, we will derive the detailed expression of partial deriva-
tive ∂αo

/
∂θo. Considering the structure of ∂αo

/
∂θo has to

do with the order of the elements arranged in αo and θo, it is
natural to divide it into four block submatrices as

∂αo

∂θo
=

 ∂ro

∂uo
∂ro

∂u̇o
∂ ṙo

∂uo
∂ ṙo

∂u̇o

 (85)

According to (8) and (9), the elements of block submatrices
∂ro

/
∂uo, ∂ro

/
∂u̇o, ∂ ṙo

/
∂uo and ∂ ṙo

/
∂u̇o are further given

by[
∂ro

∂uo

]
(m−1)N+n,1:3

=
(uo − sot,m)

T

Rot,m
+

(uo − sor,n)
T

Ror,n[
∂ro

∂u̇o

]
(m−1)N+n,1:3

= 0T3×1[
∂ ṙo

∂uo

]
(m−1)N+n,1:3

=
(u̇o − ṡot,m)

TRot,m − (uo − sot,m)
TṘot,m

(Rot,m)2

+
(u̇o − ṡor,n)

TRor,n − (uo − sor,n)
TṘor,n

(Ror,n)2[
∂ ṙo

∂u̇o

]
(m−1)N+n,1:3

=
(uo − sot,m)

T

Rot,m
+

(uo − sor,n)
T

Ror,n

for m = 1, 2, . . . ,M , n = 1, 2, . . . ,N .
In like manner, the partial derivative ∂αo

/
∂βo can be

partitioned as

∂αo

∂βo =


∂ro

∂sot

∂ro

∂sor

∂ro

∂ ṡot

∂ro

∂ ṡor
∂ ṙo

∂sot

∂ ṙo

∂sor

∂ ṙo

∂ ṡot

∂ ṙo

∂ ṡor

 (86)

and the elements of the involved submatrices are given by[
∂ro

∂sot

]
(m−1)N+n,3m−2:3m

=
(sot,m − uo)T

Rot,m[
∂ro

∂sor

]
(m−1)N+n,3n−2:3n

=
(sor,n − uo)T

Ror,n[
∂ro

∂ ṡot

]
(m−1)N+n,3m−2:3m

= 0T3×1[
∂ro

∂ ṡor

]
(m−1)N+n,3n−2:3n

= 0T3×1[
∂ ṙo

∂sot

]
(m−1)N+n,3m−2:3m

=
(ṡot,m−u̇

o)TRot,m−(s
o
t,m−u

o)TṘot,m
(Rot,m)2[

∂ ṙo

∂sor

]
(m−1)N+n,3n−2:3n

=
(ṡor,n−u̇

o)TRor,n−(s
o
r,n−u

o)TṘor,n
(Ror,n)2[

∂ ṙo

∂ ṡot

]
(m−1)N+n,3m−2:3m

=
(sot,m − uo)T

Rot,m[
∂ ṙo

∂ ṡor

]
(m−1)N+n,3n−2:3n

=
(sor,n − uo)T

Ror,n

for m = 1, 2, . . . ,M , n = 1, 2, . . . ,N .
The partial derivative ∂αoc

/
∂βo can be written as

∂αoc
∂βo =


∂roc
∂sot

∂roc
∂sor

∂roc
∂ ṡot

∂roc
∂ ṡor

∂ ṙoc
∂sot

∂ ṙoc
∂sor

∂ ṙoc
∂ ṡot

∂ ṙoc
∂ ṡor

 (87)
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with the elements of the involved submatrices given by[
∂roc
∂sot

]
(k−1)MN+(m−1)N+n,3m−2:3m

=
(sot,m − cok )

T

Roc,k,t,m[
∂roc
∂sot

]
(k−1)MN+(m−1)N+n,3n−2:3n

=
(sor,n − cok )

T

Roc,k,r,n[
∂roc
∂ ṡot

]
(k−1)MN+(m−1)N+n,3m−2:3m

= 0T3×1[
∂roc
∂ ṡor

]
(k−1)MN+(m−1)N+n,3n−2:3n

= 0T3×1[
∂roc
∂sot

]
(k−1)MN+(m−1)N+n,3m−2:3m

=
(ṡot,m − ċok )

T

Roc,k,t,m

−
(sot,m − cok )

TṘoc,k,t,m
(Roc,k,t,m)

2[
∂ ṙoc
∂sor

]
(k−1)MN+(m−1)N+n,3n−2:3n

=
(ṡor,n − ċok )

T

Roc,k,r,n

−
(sor,n − cok )

TṘoc,k,r,n
(Roc,k,r,n)

2[
∂ ṙoc
∂ ṡot

]
(k−1)MN+(m−1)N+n,3m−2:3m

=
(sot,m − cok )

T

Roc,k,t,m[
∂ ṙoc
∂ ṡor

]
(k−1)MN+(m−1)N+n,3n−2:3n

=
(sor,n − cok )

T

Roc,k,r,n

for k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N .
The partial derivative ∂αoc

/
∂γ o can be given as

∂αoc
∂γ o =


∂roc
∂co

∂roc
∂ ċo

∂ ṙoc
∂co

∂ ṙoc
∂ ċo

 (88)

with the elements of the involved submatrices given by[
∂roc
∂co

]
(k−1)MN+(m−1)N+n,3k−2:3k

=
(cok − sot,m)

T

Roc,k,t,m

+
(cok − sor,n)

T

Roc,k,r,n[
∂roc
∂ ċo

]
(k−1)MN+(m−1)N+n,3k−2:3k

= 0T3×1[
∂ ṙoc
∂co

]
(k−1)MN+(m−1)N+n,3k−2:3k

=
(ċok − ṡot,m)

T

Roc,k,t,m

−
(cok − sot,m)

TṘoc,k,t,m
(Roc,k,t,m)

2

+
(ċok − ṡor,n)

T

Roc,k,r,n

−
(cok − sor,n)

TṘoc,k,r,n
(Roc,k,r,n)

2

[
∂ ṙoc
∂ ċo

]
(k−1)MN+(m−1)N+n,3k−2:3k

=
(cok − sot,m)

T

Roc,k,t,m

+
(cok − sor,n)

T

Roc,k,r,n

for k = 1, 2, . . . ,K , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N .
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