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ABSTRACT In algorithmic trading, feature extraction and trading strategy design are two prominent
challenges to acquire long-term profits. However, the previously proposed methods rely heavily on domain
knowledge to extract handcrafted features and lack an effective way to dynamically adjust the trading
strategy. With the recent breakthroughs of deep reinforcement learning (DRL), sequential real-world
problems can be modeled and solved with a more human-like approach. In this paper, we propose a
novel trading agent, based on deep reinforcement learning, to autonomously make trading decisions and
gain profits in the dynamic financial markets. We extend the value-based deep Q-network (DQN) and the
asynchronous advantage actor-critic (A3C) for better adapting to the trading market. Specifically, in order
to automatically extract robust market representations and resolve the financial time series dependence,
we utilize the stacked denoising autoencoders (SDAEs) and the long short-term memory (LSTM) as parts of
the function approximator, respectively. Furthermore, we design several elaborate mechanisms to make the
trading agent more practical to the real trading environment, such as position-controlled action and n-step
reward. The experimental results show that our trading agent outperforms the baselines and achieves stable
risk-adjusted returns in both the stock and the futures markets.

INDEX TERMS Algorithmic trading, Markov decision process, deep neural network, reinforcement
learning.

I. INTRODUCTION
Algorithmic trading is a valuable topic in the financial
market and has been widely discussed in modern artificial
intelligence. For both institutional investors and individual
investors, there is a strong demand in exploring autonomous
trading algorithms that are adaptable to the dynamic trading
market. However, mainstream methods for learning to trade
have longstanding challenges as follows: (1) the difficulty
in extracting effective market representations, and (2) the
difference between classification (up or down prediction) and
directly learning trading strategies (direct trading). According
to the different approaches for market modeling, previous
studies can be roughly categorized into three types: tradi-
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tional financial analysis,machine learning (ML) approaches,
and deep learning (DL) approaches. In traditional financial
analysis, mathematics is wildly adopted to recognize histor-
ical time series patterns and make predictions [1]. The com-
monmodels include autoregressivemoving average (ARMA)
model [2] and generalized autoregressive conditional het-
eroskedasticity (GARCH) model [3]. ARMAmodel contains
autoregressive (AR) [4] and moving average (MA) [5]. Its
generalization, AR-integrated MA (ARIMA) [6], becomes
a popular method for time series analysis in economics.
GARCH model is frequently used for asset pricing, risk
management, and volatility forecasting. In themachine learn-
ing approaches, [7] models the high-frequency limit order
book using support vector machine (SVM) with handcrafted
features and shows the effectiveness in the real-world data.
Reference [8] predicts the direction of stock market prices
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with random forest (RF) and shows that the model is robust
in predicting the future direction of the stock movement.
Reference [9] [10], [11] also reveal the ability of market
modeling. In more details, [9] shows that SVM outperforms
the back propagation (BP) neural network in financial fore-
casting, and there is comparable generalization performance
between SVM and the regularized RBF neural network.
Reference [10] shows that the neural network is able to
extract useful information from a huge data set and data
mining is also able to predict future trends and behaviors.
Reference [11] shows that the neural networks is able to
predict both single-dimensional data and multi-dimensional
data which are extracted from financial time series. With
the development of deep learning approaches, recurrent neu-
ral network (RNN) [12] is specifically designed to extract
temporal information from raw sequential data. RNN vari-
ations, such as long short-term memory (LSTM) [13] and
gated recurrent unit (GRU) [14] networks, have been pro-
posed to mitigate the gradient vanishing problem and achieve
state-of-the-art results in a variety of sequential data predic-
tion problems [15]–[17] shows that the convolutional neural
network (CNN) is better suited for predicting the price move-
ments of stocks than multilayer neural networks and sup-
port vector machines. Reference [18] proposes a temporal
attention-augmented bilinear network architecture that com-
bines bilinear projection and attention mechanism, which
demonstrates good results.

Although the aforementioned methods demonstrate good
accuracy in the market modeling and tendency classification,
they are not robust to the dynamic real market and can not
be directly applied to algorithmic trading. The financial time
series contains a large amount of noise, including the manip-
ulation of large investors, the impact of news and notices,
the uncertain trading behaviors of investors, and so on. All
these noises lead to the highly non-stationary of financial
time series, which decrease the generalization capability of
the model. Moreover, there exists a handcrafted conversion
of mapping the market prediction to the trading action in
strategies, such as buy, sell and hold. The trading strategy is
a kind of complex sequential decision-making problem that
includes many components in the field of practical trading.
For example, prediction accuracy is just one of the strategy
metrics and doesn’t play a decisive role in the trading period.
If the accuracy of prediction is high but the profit and loss
(P&L) is lower than 1, profit is negative in this case because
the strategy is likely to gain little money in the correct pre-
diction but lose a lot in the wrong prediction. Meanwhile,
risk management and portfolio management are also critical
components in practical trading, which lead to a more com-
plex and challenging task of strategy design. Therefore, it’s
not suitable to directly learn the optimal trading strategy from
the market using the aforementioned methods.

Recently, deep reinforcement learning has achieved
remarkable successes in solving complex sequential
decision-making problems [19], [20]. The intrinsic advan-
tage of reinforcement learning (RL) [21] is to directly learn

an acting strategy, in the process of interacting with the
dynamic environment. More specifically, the RL approach
works in an online manner that explores an unknown envi-
ronment and simultaneously makes the optimal decision at
each specific timestamp. The ability to improve policy over
time via self-learning makes the RL approach inherently
suitable for the algorithmic trading strategy. Reference [22]
proposed deep direct reinforcement learning for financial
signal representation and trading. Nevertheless, [22] does
not utilize state-of-the-art architecture such as value-based
DQN [19] and actor-critic A3C [23] network, which remark-
ably outperform the RLmethod in various control tasks.More
importantly, when compared with conventional RL tasks,
there exists another challenge that the DRL framework is
muchmore difficult to design for trading. In order to make the
model more practical, market states, trading actions, reward
function, and position management should be taken into
account seriously.

In this paper, to address the aforementioned challenges and
issues, we propose a novel deep robust reinforcement learning
framework for practical algorithmic trading, which is able to
automatically trade in the financial markets. The proposed
model consists of twomain components, theEnvironment and
the Agent. The Environment manages the historical market
data and receives the incoming data from exchanges. The
Agent is composed of a data preprocessing module and a trad-
ing agent implemented by DRL (DQN-based & A3C-based)
with the well-designed state, action, reward, and network
structure.

Specifically, the main contributions of our work are of
three-folds:

- We present three effective methods to filter the financial
time series, reduce noise and increase the model’s gen-
eralization capability. Moreover, we utilize SDAEs [24]
for further addressing the incoming data due to the noise
and non-stationary. We show both theoretically and
experimentally that the efficiency of the preprocessing.

- We propose a more generic action set to automatically
adjust the trading rules, which allows the agent to learn
to control positions, e.g., holding more positions in a
bull market while decreasing positions in a bear market.
Furthermore, the reward received by the agent can be
adjusted to n-steps with larger discount factor in pursu-
ing of long-term return.

- We extend both the value-based DQN and actor-critic
A3C to the trading market and utilize an LSTM mod-
ule to capture the temporal patterns based on market
observations. The experiments show that the proposed
model is robust and practical in real-world algorithmic
trading.

The remaining parts of this paper are organized as follows.
In Section II, we provide an overview of the preliminaries and
background on trading problems with reinforcement learn-
ing. Section III describes our proposed network architecture
together with the analysis of algorithms. Section IV provides
details of our experimental settings, results, and quantitative
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analysis. Section V concludes this paper and discusses possi-
ble future extensions.

II. PRELIMINARIES AND BACKGROUND
In this section, we first present the introduction of the
markov decision process (MDP). Thereafter, we shortly
introduce the value-based reinforcement learning and the
policy-based reinforcement learning, and the combination
methods actor-critic reinforcement learning.

A. MARKOV DECISION PROCESS
Reinforcement learning [21] can be regarded as a process
that an agent learns to self-adjust policies by successively
interacting with the unknown environment. The unknown
environment is often formalized as MDP by a tuple M =
(S,A, T ,R, γ ). The definition assumes that the markov
property holds in the environment, whichmeans the transition
to the next state st+1 is only conditional on the current state
st and action at . More specifically, after the agent takes an
action at ∈ A and receives a reward rt ∈ R, the environment
transitions from state st ∈ S to st+1 ∈ S according to a
state transition probability T . The return is the sum of future
discounted rewards with a discount factor γ ∈ (0, 1].
However, it’s not reasonable that agent can access full

states of the environment in real world environment, which
means markov property rarely holds. A more univer-
sal method, partially observable markov decision process
(POMDP) [25], can capture the dynamics of many real world
environment by explicitly acknowledging that the agent only
catches a partial glimpse of the current state. Formally,
a POMDP is described by a 6-tuple (S,A, T ,R, �,O). The
difference is that the agent receives an observation o ∈ �
instead of the true state s ∈ S. The observation o is gener-
ated from the current system state according to a probability
distribution O(s) = P(o|s).

B. REINFORCEMENT LEARNING
Studies on reinforcement learning are mainly divided
into two categories: the value-based reinforcement learn-
ing approaches and the policy-based reinforcement learn-
ing approaches. Besides, actor-critic reinforcement learning
approaches are the combination methods of value-based rein-
forcement learning approaches and policy-based reinforce-
ment learning approaches.
Value-based reinforcement learning. A well-known algo-

rithm for finding an optimal action-value function Q(s, a)
is Q-learning, and the action-value function Q(s, a; θ ) is
approximated by deep neural network (parameters θ) called
DQN [19] and asynchronous Q-learning [23]. The parame-
ters are updated by minimizing the mean-squared error loss.
The n-step loss can be described as LQ = E[(Rt:t+n +
γ nmaxa′Q(s′, a′; θ−) − Q(s, a; θ ))2], where θ− are previous
parameters and the optimization is with respect to θ . DQN
involves some techniques to restore stability, such as replay
memory D to minimize correlations between samples and
target network Q̂ to give consistent targets during temporal

difference backups. Some variations are proposed to improve
basic DQN, such as double Q-learning [26], is proposed
to avoid over-estimate, prioritized experience replay [27],
is proposed to introduce different importance into sampling,
and dueling architecture [28], is proposed to generalize learn-
ing across actions.
Policy-based reinforcement learning. In the policy-based

reinforcement learning algorithms [29], [30], one can
directly optimize the policy which is different with Q value-
based. The main process is that it parameterizes a function
mapping a state to an action, and then optimize that policy
with respect to the parameters in order to maximize the
long term reward. Policy-based reinforcement learning algo-
rithms adjust their policies to maximize the expected reward,
Lπ = −Es∼π [R1:∞], using gradient

`
θ Es∼π [R1:∞] =

E[
`
θ logπ (a|s)(Q

π (s, a) − V π (s))], in which true value
functions Qπ and V π are both substituted with approxima-
tors in practice. One advantage with policy-based methods
compared to value-based methods is that they allow for
stochastic policies, which may be the optimal policy for
some problems. The variations include trust region pol-
icy optimization(TRPO) [31], proximal policy optimization
(PPO) [32], and so on.

Both policy-based and value-based function are adjusted
towards to a n-step lookahead value using an entropy regular-
ization penalty, LA3C ≈ LVR + Lπ − Es∼π [αH (π (s, ·, θ))],
where LVR = Es∼π [(Rt:t+n+γ nV (st+n+1, θ−)−V (st , θ))2].
A3C combines value function and policy function together.
It constructs approximations to policy π (a|s, θ) and value
function V (s, θ) using parameters θ . In A3C, k actor-learners
run in parallel with their own copies of environment and
parameters for policy and value function, which accelerates
training and enhances stability.

III. DRL TRADING FRAMEWORK
In this section, firstly, we present three effective methods
to filter the financial time series and eliminate most of the
uncertainty noise. In addition, we apply the SDAEs module
to further make the model more robust. Secondly, we describe
the major components of our trading framework, such as mar-
ket state, trading action and reward. Lastly, we introduce two
types of reinforcement learning architecture: DQN-extended
and A3C-extended, which represent the value-based algo-
rithm and actor-critic algorithm respectively.

A. FINANCIAL TIME SERIES EXTRACTION
Sampling random length of the episode. DRL can be trained
by any pieces extracted from financial time series, but it
may raise some problems at the same time. For instance, it’s
best to buy at the price of 11 with the financial time series
12-13-11-15-13-16. However, the best execution is at the
price of 9 not 11 if we just extend one-time length of the series
to 12-13-11-15-13-16-9. In addressing the aforementioned
problem, we introduce private variables (remaining trading
cash and the previous sharp ratio) to increase the difference
between states. Another improvement is sampling random
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Algorithm 1 SDAEs
Input:

Environment observation ot ; Stacked layers n.
Encoder-decoder parameters θ, θ ′.

Output:
Denoised state representation st .

1: for each i in {1, . . . , n} do
2: ot ∼ f (i)θ (ot )
3: end for
4: Get final representation: st = ot
5: Update SDAEs parameters θ, θ ′ using layer-wise tuning

6: Return st

length of the episode from the financial time series. This set-
ting can increase the model’s generalization and exploration.
Reducing the impacts of news and notices. Financial time

series is highly influenced by news and notices [33], [34]. It’s
difficult to make an accurate prediction solely based on the
market data. We reduce the impact of these news and notices
by specific setting. For example, as most news and notices of
quoted companies are released off the trading time in China,
their impacts usually occur in the opening time (high open
or low open). According to this phenomenon, we extract the
financial time series within the trading period (9:30 am to
11:30 am and 13:00 pm to 15:00 pm).
Removing the low volatility. The low volatility of the finan-

cial time series will have a detrimental effect on our predic-
tions due to their abnormal fluctuations. The low volatility
of time series is mainly caused by the individual investors
(not institutional investors) which can be regarded as noise.
The market is inactive accompanied by a lot of noise at those
time points, thus we remove those series with low volatility
in order to reduce noise and unsteadiness.

B. DENOISE THE OBSERVATIONS
After the extraction proposed above, the rest of finan-

cial time series are close to a Gaussian distribution because
we eliminate most of the uncertainty noise. Furthermore,
we employ SDAEs to denoise the observations. The method
can be formalized as follows: firstly, the initial observation o
is stochastically corrupted by adding tiny Gaussian noise q =

1
σ
√
2π
e−

(z−µ)2

2σ2 to õ. Then, the auto encoder maps õ to a hidden
representation s = fθ (õ) with the encoder f (õ) = Wõ + b,
and reconstruct it to z = gθ ′ (õ) with the decoder gθ ′ . Recon-
struction error is measured by the loss L2(o, z) = ‖o− z‖2.
In our experiments, parameters are initialized randomly and
then optimized by stochastic gradient descent. After pre-
train, the high-level hidden state s is regarded as the robust
representation of the observation, which will be passed to the
next pipeline. Details are shown in Algorithm 1.

C. PROBLEM FORMULATION IN TRADING
State. Each state s ∈ S is a vector that describes the cur-
rent configuration of our system. The state representation

is composed of market variables, technical indicators and
private variables. Market variables are released from the
exchanges, which include open, close, high, low price and
trading volume. Technical indicators are computed frommar-
ket data, such as MACD, MA, EMA, ATR, ROC, which are
described in [35]. Private variables are the remaining trading
cash and the previous sharp ratio [36], which represent how
much cash has been left and howmuch profit or loss has been
got.
Action. It is standard practice for policies (or value func-

tion) to map the states to the actions. In this setting, the action
space simply contains the operation buy, sell and hold. [22]
trades one share per time, which has the action space
[1,0,−1]. However, the real trading environment is more
complex, where exists a great many operations corresponding
to different trading directions (long, sell, short, cover). The
long and the short is equal to buy and sell, respectively. The
cover represents the action of buying shares of stock in order
to close out an existing short position. The sell represents
the action of selling shares of stock in order to close out
an existing long position. Furthermore, we aim at opening
positions during the goodmarket and closing positions during
the bad market. Therefore, traditional method is unable to
deal with such complex situation. In this paper, we propose
a novel positions-embedded action space. With the maxi-
mum position n, the action space is extended to {−n,−n +
1, . . . , 0, . . . , n− 1, n}, which represents the position held in
the next state. For instance, if the previous action is 5 and
the current action is −2, it means to sell 5 shares and short
2 shares.
Reward. Taking an action will produce immediate incen-

tive for the trading agent, either positive (profit) or negative
(loss). The immediate reward is computed as rt = 1cpt−1 −
(α+β) |1p|, where α is the transaction costs rate and β is the
slippage rate, 1c = ct − ct−1 is the price change (ct is close
price),1p = pt −pt−1 is the position change (pt is position).
Furthermore, the sharp ratio will be passed from the current
state to the next state as a private variable, which is used to
help the investors to understand the risk-adjusted return. The
sharp ratio is computed as SR = Rp−Rf

σp
, where Rp is the return

of portfolio, Rf is risk-free rate and σp is standard deviation
of the portfolio’s excess return.

The goal of the trading agent is to maximize the cumulative
profit Rt =

∑T
t=1 rt .

D. ARCHITECTURES AND ALGORITHMS
In this section, we experiment with two types of modi-
fied DRL algorithms: the DQN-extended algorithm and the
A3C-extended algorithm. The explanation of our methodol-
ogy for learning to trade in practical algorithmic trading is
discussed as follows.

1) DQN-EXTENDED ARCHITECTURE
The DQN-extended architecture was depicted in Figure 1.

The Deep Q-Network is capable of handling partial
observability. To further enhance the ability of modeling time
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FIGURE 1. Illustration of DQN-extended architecture.

series, we combine the DQNwith the LSTMmodule as a part
of function approximator, which is effective for dealing with
the long-term dependency of financial time series.

The detailed process to train the DQN-extended agent is
summarized in Algorithm 2. The main process is as fol-
lows: firstly, we set the environment Env, step roll-out size
tmax , empty replay buffer D, replay buffer size ND; training
batch size NT , and also set initial network parameters θ ,
initial target network parameters θ− due to the utilizing of
double Q-network learning [26] here to reduce update error
from overoptimism. Secondly, during the inner loop of each
episode e ∼ {1, . . . ,M}, the received observation ot from
the environment Env is denoised by the SDAEs(ot ). Thirdly,
the denoised representation st is passed to several hidden
fully-connected layers, followed by a nonlinear rectifier. Out-
puts of the last hidden layer are fed to the fully-connected
LSTM layer, and a fully-connected linear layer transforms
the LSTM outputs to a Q-value (Q(st , a; θ)) tensor for each
possible action at as the next position, an action is selected
by maxa Q(st , a; θ ) with probability ε and receive reward rt ,
new observation ot+1, the process is end until the state is
terminal or the length of the steps is equal to tmax . After that,
(sj, aj, rj, sj+1, . . . , st ) is added to the replay buffer. Lastly,
we sample a mini-batch of NT traces (sj, aj, rj, sj+1, . . . , st )
from replay buffer according to priorities [27] and obtain
n-step temporal difference update, the parameters θ are
updated with gradient descent.

2) A3C-EXTENDED ARCHITECTURE
The A3C-extended architecture was depicted in Figure 2.

The detailed process to train the A3C-extended agent is
summarized in Algorithm 3. The main process is as follows:
firstly, we set the environment Env, step roll-out size tmax ,
global shared parameters (θπ , θv), global shared counter T ,
maximal time Tmax , thread-specific parameters (θ ′π , θ

′
v), and

thread-specific counter t . Secondly, during the inner loop of
algorithm, the received observation ot from the environment
Env is denoised by the SDAEs(ot ). Thirdly, the denoised
representation st is passed to several hidden fully-connected
layers, followed by a nonlinear rectifier. Outputs of the last
hidden layer are fed to the fully-connected LSTM layer,
and the LSTM outputs are duplicated into two streams of

Algorithm 2 DQN-extended Architecture
Input:

Environment Env; Step roll-out size tmax ;
Empty replay buffer D; Initial network parameters θ ;
Initial target network parameters θ−;
Replay buffer size ND; Training batch size NT ;
Target network update frequency N−.

Output:
Action-value function Q(·, ·; θ ).

1: for each episode e in {1, . . . ,M} do
2: Initial step counter t ← 0
3: repeat
4: tstart = t
5: Get observation ot from Env
6: Generate denoised state st ← SDAEs(ot )
7: repeat
8: Select an action with probability ε: at ←

argmaxa Q(st , a; θ)
9: Receive reward rt and new observation ot+1

10: st+1← SDAEs(ot+1)
11: t ← t + 1
12: until st is terminal or t − tstart = tmax
13: Add traces of experience to the replay buffer
14: Sample a mini-batch of NT traces

(sj, aj, rj, sj+1, . . . , st ) from replay according
to priority

15: if st is a terminal state then
16: R = 0
17: else
18: R = Q(st , argmaxa Q(st−1, a; θ ); θ−);
19: end if
20: for each i in {t − 1, . . . , tj} do
21: Update R : R← ri + γR
22: dθ ← dθ +

`
θ (R− Q(si, ai; θ ))

2

23: end for
24: Perform asynchronous update θ ← θ + αdθ
25: Update target network: θ−← θ every N− steps
26: until st is terminal
27: end for

fully-connected layers, one for the policy network π (·; θ ) and
the other for the value network V (·; θv), The output of policy
network is the probability distribution of the next position,
and the output of value network is the estimation of the
current state. the process is end until the state is terminal or
the length of steps is equal to tmax . Lastly, the n-step returns
update the parameters of both the policy and value-function
using the BP algorithm with gradient descent.

Multiple workers concurrently interact with the local copy
of the environment and optimize the global network through
asynchronous gradient descent. The weights of network are
stored in a central parameter server. In this work, we follow
the previous work GA3C [37] and create one GPU thread for
per worker in the cluster.
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FIGURE 2. Illustration of A3C-extended architecture.

TABLE 1. Assets details.

After the DQN-extended algorithm is trained with histori-
cal data and reaches stable performance, the final Q-network
can be used to make sequential trading decisions. In a similar
fashion, after the A3C-extended algorithm is concurrently
simulated with historical data and reaches stable perfor-
mance, its global network is used to make sequential trading
decisions. Whenever the market data (prices and volumes)
is received from exchanges, A3C-extended algorithm (DQN-
extended algorithm) maps it to a probability distribution of
next possible positions (the value of current market state).
Then, the algorithm chooses the best action to execute.

IV. EXPERIMENTS
In this section, we first introduce the data used in our
experiments and then present the proposed model in detail.
At last, we analysis the experimental results and make further
discussion.

A. TRADING ENVIRONMENTS SETTING
We test the proposed model on ten years of market data
(Jan-2008 to Jan-2018) from the Thomson Reuters His-
tory (TRTH) database. The interval of the data is 1-minute,
which is easy to gain for a long history and can generate
derived data with interval of 5-minute, 30-minute and a
day. We select future contracts and stocks which with high
liquidity and large trading volume. Their detailed statis-
tics are shown in Table 1, together with other parameters
(contract multiplier, transaction costs (TC), slippage, trading

Algorithm 3 A3C-Extended Architecture (Per Actor-
Learner)
Input:

Environment Env;
Global shared parameters (θπ ,θv);
Global shared counter T ;
Maximal time Tmax .
Thread-specific parameters (θ ′π , θ

′
v); Thread-specific

counter t and roll-out size tmax .
Output:

The policy π (·; θ ) and the value V (·; θv).
1: Initial thread counter t ← 1
2: repeat
3: Reset cumulative gradients: dθπ ← 0 and dθv← 0
4: Synchronize thread-specific parameters: θ ′π ← θπ and

θ ′v← θv
5: tstart = t
6: Get observation ot from Env
7: Generate denoised state st ← SDAEs(ot )
8: repeat
9: Policy choice: at ∼ π (·|st ; θ ′π )
10: Receive reward rt and new observation ot+1
11: st+1← SDAEs(ot+1)
12: t ← t + 1 and T ← T + 1
13: until st terminal or t − tstart = tmax
14: if st is a terminal state then
15: R = 0
16: else
17: R = V (st ; θ ′v)
18: end if
19: for each i in {t − 1, . . . , tstart} do
20: Update R : R← ri + γR
21: dθπ ← dθπ +

`
θ ′π
logπ (ai|si; θ ′π )(R− V (si; θ

′
v))

22: dθv← dθv +
`
θ ′v
(R− V (si; θ ′v))

2

23: end for
24: Perform asynchronous update:θπ ← θπ + απdθπ
25: Perform asynchronous update:θv← θv + αvdθv
26: until T > Tmax

operation) of each asset. The TC is reprinted of the official
websites (https://www.nyse.com/markets/nyse/trading-info/
fees, https://www.cmegroup.com/company/clearing-fees.
html, http://www.gtjaqh.com/fees.jsp). The slippage is twice
as much as the transaction costs. For stock assets, we choose
APPL, IBM and PG from NASDAQ. For contract futures,
we select S&P 500 stock-index mini future (ES) from
Chicago Mercantile Exchange and HS300 stock index
future (IF) from China Financial Futures Exchange.

As for the futures, the inherent values of these two future
contracts are evaluated by different contracts multiplier per
spot. For instance, in the IF data, the increase (decrease) in
one spot leads to a reward of CNY 300 for a long (short)
position. We use legal tender (such as CNY, USD) as the
rewards due to the leverage in future contracts.
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TABLE 2. Results in test set.

The data will be divided into train sets and test sets accord-
ing to the trading time. The first ninety percent of data set
is used as train data, and the remaining data is used as test
data. All models and strategies are evaluated by the metric
annualized return (AR) and the metric sharp ratio (SR). The
annualized return is the geometric average of the money
earned by an investment each year over a given time period,
and SR is computed as mentioned above.

B. TRADING AGENTS SETTING
The parameters we set as follows are fine-tuned with exten-
sive comparative experiments.

1) DQN-EXTENDED ARCHITECTURE
Basic DQN agent is initialized with twelve normalized
inputs (five market variables, five technical indicators, and
two private variables), four hidden fully-connected layers
(16-64-128-128) and seven outputs (assume the maximum
position is three). In our proposed SDAEs-LSTMDQNagent.
A five-layer (12-10-16-10-12) SDAEs is employed to take
raw normalized inputs and reconstruct a 16-dimension rep-
resentation for the Q-network. All hidden layers are fol-
lowed by a nonlinear rectifier and a single linear output unit
for each action (position) representing the action-value. The
last fully-connected layer is replaced by a single layer with
128 LSTM cells.

2) A3C-EXTENDED ARCHITECTURE
Basic A3C agent uses 8 actor-learner running on the GPU
cluster. The network uses four fully-connected hidden layers
(16-64-128-128) to learn representations of twelve normal-
ized inputs (five market variables, five technical indicators,
and two private variables). Our proposed SDAEs-LSTMA3C
agent employs the same actor-learner threads to train the
value-network and policy-network. The network is modified
in a similar fashion to DQN: firstly, the raw normalized
input is encoded by an SDAEs, which returns a 16-dimension
robust representation of the input. Secondly, all hidden layers
are followed by a nonlinear rectifier, and have two sets of out-
put, a softmax output representing the probability distribution
of action (position) and a single linear output representing the
value function. Similarly, the last hidden layer is replaced by
a single layer of 128 LSTM cells.

Shared parameters of the DQN-extended agent and the
A3C-extended agent include discounted factor of γ = 0.9

and RMSProp (decay factor of α = 0.99). To verify the abil-
ities of long-term profit generation, we set n = 10 in n-step
reward, which means that updates are performed after every
10 actions. To verify the abilities of position management,
we set max position to 3, which extends the output of the
network to be of size 7 (six-direction positions and an empty
position).

C. RESULTS AND DISCUSSIONS
Table 2 shows the AR and SR for each selected asset in
the test set (last 10% data). Several models including the
basic DQN (refer to [38]), basic A3C, and our proposed
DQN-extended and A3C-extended algorithm are evaluated.
The baseline of trading strategy is buy and hold (B&H).
It should be noted that the SR is unable to be computed in
the case of buy and hold. According to the metrics above, our
proposed agents consistently outperform the original ones.
This indicates that our trading agent benefits from robust fea-
ture representation and sequential informationmemory.More
specifically, the A3C-extended algorithm yields more profits
than the DQN-extended algorithm. The detailed discussion is
as follows.

1) REINFORCEMENT LEARNING WITH DQN-EXTENDED AND
A3C-EXTENDED
Table 2 shows that the actor-critic reinforcement learning
(A3C-extend) is better than value-based reinforcement learn-
ing (DQN-extend), the main reason is that it is too complex to
learn on the Q function with value-based algorithm. However,
the policy-based algorithm is still capable of learning a good
policy since it directly operates in the policy space. The
actor-critic which is the combination of value-based algo-
rithm and policy-based algorithm can handle the complex
financial problem and performs the best over baselines. Fur-
thermore, A3C-extend algorithm shows a faster convergence
rate than DQN-extend algorithm depicted in Figure 3.

2) MACHINE LEARNING PERFORMANCE
We evaluate the machine learning methods (SVM, refer
to [9]; DNN, refer to [11]; CNN, refer to [17]; LSTM, refer
to [39]) using the same data tested in reinforcement learning.
The input features include market data and technical indi-
cators. The result of accuracy (ACC) is shown in Table 3.
We can see that LSTM outperforms the other three methods
(SVM, DNN, CNN).

108020 VOLUME 7, 2019



Y. Li et al.: Deep Robust Reinforcement Learning for Practical Algorithmic Trading

FIGURE 3. Algorithms with different maximum positions in IF.

FIGURE 4. The performance between SDAEs-LSTM A3C and LSTM in IF.

TABLE 3. The performance of machine learning in test set.

We follow the basic rule to generate a strategy. The strategy
is that we will cover the sold shares at first, then buy 3 shares
at the case of up prediction, the case is the same as down
prediction. We conduct the experiments without considera-
tion of the transaction costs. Experimental result of annual
return (AR(3), buy or sell 3 shares at one time) is shown
in Table 3, which indicates that LSTM outperforms the other
models (SVM, DNN, CNN) and slightly surpasses the basic
DQN but worse than the DQN-extend compared with Table 2.
In conclusion, the proposed methods of SDAEs-LSTM DQN
and SDAEs-LSTM A3C are more effective than machine
learning methods (SVM, DNN, CNN, LSTM).

In more details, in Figure 4 which is extracted from test
episodeswith themethods of LSTMand SDAEs-LSTMA3C,
the SDAEs-LSTM A3C can learn a strategy which buys in
green circle area and sells in the red circle area. As compare
with the SDAEs-LSTM A3C, LSTM cannot buy at the plain

area marked in green circle area, instead it usually buys at
the trend area marked in green square area. At the same
time, the SDAEs-LSTM A3C can sell ahead of the LSTM
in Figure 4 and can gain more profits or decrease the losses.
Therefore, the SDAEs-LSTMA3C can learn a more valuable
strategy and outperform LSTM which just predict accuracy.

3) THE DISCUSSION OF NOVEL ACTION SPACE
To evaluate our position management policy, we extend the
action space from {−1, 0, 1} to {−3,−2,−1, 0, 1, 2, 3} by
scaling the network outputs. The training process of agents
is depicted in Figure 3, which shows the performance of
the DQN-extended model and the A3C-extended model with
different positions. Intuitively, when the maximum positions
scale 3 times, the cumulative reward should have been 3
times. However, as the training process goes on, the cumu-
lative reward with the 3 shares positions surpasses triple over
the 1 share position. This indicates that the agent with 3 shares
positions has learned to manage positions. In more detail,
a larger position is held during a good market, vise versa.
As an extension, the max maximum positions can be any
number if the cash allows.

V. CONCLUSION AND FUTURE WORK
We propose a novel framework for practical algorithmic
trading using deep robust reinforcement learning, which
demonstrates significant improvement over the baselines.
The framework is more suitable for the practical trading
environment while retaining robustness. The effectiveness of
the framework is ascribed to the following features. First,
it addresses the important issue of noisy financial data by
adopting SDAEs, which can obtain more robust features.
In addition, it applies LSTM units to extend the deep rein-
forcement learning algorithm (DQN and A3C), allowing the
agent to resolve the partial observability and discover latent
patterns. At last, in order to achieve positions management,
it adopts the multiple discrete positions as actions of the
agent, which is the generic extension of previous works.

While the effectiveness of the proposed framework has
been verified in this paper, there are some future directions.
In consideration of correlations among financial assets, it’s
possible to extend the proposed framework to handle various
assets simultaneously.
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