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ABSTRACT Spiral wave is closely related to the occurrence of malignant ventricular arrhythmia. It is impor-
tant and necessary to study the spiral wave dynamics to better analyze and control spiral waves. In this paper,
the dynamics of FitzHugh-Nagumo(FHN)model is identified by using a novelmethod based on deterministic
learning and interpolation method. The FHN model, which has been studied extensively in physical and
mathematical science, is often used to study spiral waves. It is a distributed parameter (DPS) described by
two coupled partial differential equations (PDEs). To identify the underlying system dynamics of the FHN
model globally, we first transform the FHN model into a set of ordinary differential equations (ODEs) by
applying the method of lines. Then, we identify the dynamics of the approximation system by employing
deterministic learning. That is, the FHN dynamics on a set of spatial grid nodes is accurately identified.
To achieve the global identification of the FHNmodel, the underlying system dynamics of the FHNmodel on
any other spatial point is approximated via an algorithm based on the interpolation method. The effectiveness
and feasibility of the proposed method are demonstrated theoretically and numerically.

INDEX TERMS Dynamics, system identification, radial basis function networks, interpolation.

I. INTRODUCTION
Spiral waves are one of the most typical two-dimensional
spatiotemporal patterns in excitable or oscillatory reaction-
diffusion systems, which can be observed in a variety of
chemical and biological systems. Studies have shown that the
ventricular tachycardia and fibrillation are often regarded as
the results of the breakup of spiral waves in cardiac muscle
[1]–[3]. It is important and necessary to study the dynam-
ics of spiral waves, which may propose ideas in preven-
tion and treatment of ventricular tachycardia and fibrillation.
The FitzHugh-Nagumo(FHN) model [4], [5], a simplified
modification of the famous Hodgkin-Huxley model (the first
mathematical model of myocardial cell) [6], has been used
as a classic model for decades in the study of spiral waves
in excitable media [7], [8]. In addition, it is also useful for
the study of biology, genetics, and heat and mass transfer
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systems [9]. The chaos and synchronization of the FHN
model have potential applications value in several fields,
including medicine, laser technology, chemistry, and secure
communication [10]. Therefore, it is of great significance to
study the dynamics of FHN model in practical application.

It is noted that the FHNmodel is described by two coupled
PDEs, the identification of the FHNmodel is virtually a prob-
lem of distributed parameter system (DPS) identification. In
general, the researches on DPS identification can be classi-
fied as two categories [11]: (a) the system structure of DPS
is known while system parameters are unknown; (b) both
system structure and parameters of DPS are unknown, which
is very common in the real world. For the first case, it just
needs to identify the system parameters of DPS. For the sec-
ond case, both the system structure and parameters of DPS
have to be identified. Parameter identification, which means
for the determination of unknown parameters from observed
data in the sense that the predicted output is close to the
observed data on some criteria, is the fundamental issues in
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DPS identification [12], [13] (e.g., parameter estimation
in mechanical systems [14]–[16], spatially extended sys-
tems [17], flow reactors [18]). There is also much research
on parameter identification of the FHN model, which is
important for analyzing the dynamical behavior of the
FHN model [10], [19]–[22]. When the PDE description of
the DPS is known, it can be easily transformed into an
infinite-dimensional system of ordinary differential equa-
tion or difference equation (DE). Then the model reduction
will be critical to derive a low-order model for practical
application.

Persistent excitation (PE) condition is an essential con-
dition to ensure parameter convergence in both lumped
parameter system identification and DPS identification. Nev-
ertheless, the PE condition is normally hard to be satisfied and
cannot be verified in advance for the identification of gen-
eral nonlinear dynamical systems. Recently, a novel method,
named deterministic learning, was proposed to identify the
dynamics of general nonlinear dynamical systems [23]. It has
proved that the partial PE condition can be satisfied along
the recurrent orbits by applying the localized RBF networks,
where the recurrent orbit represents a large set of periodic,
quasiperiodic, almost-periodic, and even chaotic orbits gen-
erated from nonlinear dynamical systems (strict definition of
the recurrent orbit can be seen in [24]). With the partial PE
condition, the accurate identification of system dynamics can
be achieved along the recurrent orbits [25]–[27].

In our previous work [28], system dynamics of the FHN
model has been identified at a set of finite spatial points.
In our other work [29], a novel system identification method
based on deterministic learning and interpolation method had
been proposed to identify a one-dimensional DPS. In this
work, we will study global identification of FHN model,
whichmeans to achieve accurate identification of FHNmodel
on any spatial point, based on the methods proposed in [28]
and [29]. System dynamics of the FHNmodel can be regarded
as an infinite-dimensional continuous differentiable func-
tion vector since it is described by two coupled PDEs. The
infinite-dimensional propertymakes it hard to identify system
dynamics of the FHN model by applying neural networks
directly. To overcome the problem, the model reduction is
essential for FHN model. Therefore, we first divide the space
domain of FHN model into a set of subdomains by a set of
spatial grid nodes and approximate the spatial derivatives by
employing the method of lines (a special case of the finite
difference method). That is, the FHN model is approximated
by a set of ODEs. Second, we identify the dynamics of ODEs
by employing deterministic leaning theory. The dynamics
underlying recurrent orbits of spiral waves corresponding to
the grid nodes can be accurately identified and represented
as a constant manner. Third, we approximate the FHN model
dynamics at any other spatial point by applying interpolation
method based on the identification results corresponding to
the grid nodes. That is, the global identification of FHN
model is achieved, accurate identification of the FHN model
at any spatial point can be achieved.

Compared with other studies on identification of FHN
model, the features of the proposed method, including:
(a) The underlying system dynamics of FHN model is iden-
tified globally only based on the system state at a set of
spatial grid point via deterministic learning and interpolation;
(b) It has important significance in the possible application
of the method (e.g., the study of spiral wave in cardiac
tissue) as two-dimensional DPS is more common than one-
dimensional DPS in practice, it may provide new ways for
the DPS identification in industry; (c) The obtained knowl-
edge contains complete information on both states and sys-
tem dynamics of FHN model. Information of system states,
structure and parameters of the FHN model is also included;
(d) The obtained knowledge is stored by constant RBF net-
works, which makes it easy to be employed to recognize the
similar dynamical behaviors.

The remaining part of this paper is organized as follows.
Deterministic learning theory and polynomial interpolation
methods will be introduced briefly in Section 2. The pro-
posedmethod is demonstrated in Section 3. Numerical results
are discussed in Section 4. Finally, Section 5 concludes the
paper.

II. PRELIMINARY
A. DETERMINISTIC LEARNING
Deterministic learning theory is a machine learning method
recently proposed for the identification and recognition of
temporal patterns [25]. It was principally developed based on
the knowledge of RBF networks, adaptive control and system
identification. For a temporal pattern, which is defined as a
periodic or recurrent orbit generated by nonlinear dynamical
systems, the fundamental knowledge of the temporal pattern
can be accurate identified and stored as a time-invariant
manner [26], [27].

Consider the following dynamical system:

u̇ = G(u; p), u(t0) = u0 (1)

where u = [u1, . . . , un]T ∈ Rn is the system state, G(u; p) =
[g1(u; p), . . . , gn(u; p)]T is a continuous but unknown non-
linear function vector, and p is a constant parameter
vector.

In order to accuratelymodel the unknown system dynamics
G(u; p) underlying a dynamical pattern ϕζ (a recurrent orbit),
the following estimator system is applied:

˙̂ui = −di(ûi − ui)+ Ŵ T
i Si(u), (2)

where ui and ûi are states of (1) and (2) respectively, di > 0 is
a parameter to be designed, RBF networks Ŵ T

i Si(u) is used
to approximate gi(u; p), Ŵi = [wi1, . . . ,wiN ]T ∈ RN and
Si(u) = [si1(‖ u−ξ1 ‖), . . . , siN (‖ u−ξN ‖)]T , ξj are distinct
points in state space, sij(·) is Gaussian function.
Subtract Eq.(1) from Eq.(2), the following equation can be

obtained:

˙̃ui = −diũi + Ŵ T
i Si(u)− gi(u; p)

= −diũi + W̃ T
i Si(u)− ei, (3)

VOLUME 7, 2019 107335



X. Dong et al.: Global Identification of FHN Equation via Deterministic Learning and Interpolation

where ũi = ûi − ui is state estimation error, W̃i = Ŵi −W ∗i ,
W ∗i is the ideal constant weight vector, ei = gi(u; p) −
W ∗Ti Si(u) is the ideal approximation error. To update Ŵi,
the following Lyapunov-based learning law was employed:

˙̂Wi = −γiSi(u)ũi − σiγiŴi, (4)

where σi > 0 is a small constant parameter, γi = γ Ti > 0.
It has proved that for almost any temporal pattern (recur-

rent orbit) ϕζ , the accurate identification of unknown dynam-
ics gi(u; p) along the orbit ϕζ can be achieved [25]–[27] and
represented as follow:

gi(ϕζ ; p) = Ŵ T
i Si(ϕζ )+ eζ i

= W̄ T
i Si(ϕζ )+ eζ i1, (5)

where W̄i = meant∈[ts,tf ]Ŵi(t), mean is the arithmetic mean,
[ts, tf ] is a span of time after the transient process, eζ i1 =
O(eζ i) = O(ei) is the actual modeling error. It indicates
the dynamics underlying almost any temporal pattern can be
accurately modeled by empolying deterministic learning.

B. POLYNOMIAL INTERPOLATION
Interpolation is an essential mathematical tool that plays an
important role in scientific and technical calculation. Specif-
ically, it is a vital part of many mathematical algorithms
and methods. Polynomial interpolation is one of the most
popular interpolation methods since polynomials are easy to
construct and evaluate, easy to multiply and sum, easy to inte-
grate and differentiate, and have a variety of properties [30].
In many cases, it is seen that polynomial oscillates varyingly
but the function varies smoothly [30]. To overcome this prob-
lem, spline function, which is a function of polynomial bits
joined together, is considered. The cubic spline interpolation
is the most frequently used spline interpolation since it has
sufficient flexibility, and the interpolant is continuously dif-
ferentiable in the interval and has continuous second deriva-
tive [31]. The bicubic spline is defined as the product of
two one-dimensional cubic splines. It is a usual method that
is well-known and extensively applied since it gives more
smoother surface than nearest-neighbor or bilinear interpo-
lation method [32]. A two variable cubic spline interpolation
of a function f (x, y) is the fitting of a unique series of cubic
splines for a given set of data points (xi, yj, fij). The points
(x, y) at which f (x, y) are known based on the grid points in
x − y plane.
Remark 1: Though there are many interpolation methods

and algorithms in literature, none of these methods is better
than all other methods for all issues. There are no criteria to
evaluate which interpolation algorithm is superior to all other
algorithms [33]. The selection of the interpolation algorithm
has to consider multiple factors comprehensively, such as
computing consuming, data type and desired accuracy [34].
Since the purpose of the paper is to propose a new method
for the global identification of FHN model, the selection of
interpolationmethod is not discussed intensively in this paper.

III. METHODS
Consider the following FHN model:

∂u
∂t
=

1
ε
u(u− 1)[u−

v+ b
a

]+∇2u

∂v
∂t
= um − v

(6)

where u = u(x, y, t) and v = v(x, y, t) are system states,
ε represents the time ratio between u and v, a, b,m are system
parameters, ∇2

=
∂

∂x2
+

∂

∂y2
is Laplace operator.

Remark 2: There has been a lot of research on the exis-
tence of spiral wave solutions of FHN model, their charac-
teristics and behaviors that vary with parameters [35]. It has
been shown that for different parameters the spiral waves
generated by the FHN model can behave different dynamical
behaviors, periodic rotation or quasiperiodic rotation. The
spiral wave orbit at any spatial point is recurrent.

Consider (x, y) ∈ � = [−L,L] × [−L,L], and evenly
subdivide the rectangle� into the following (N−1)×(N−1)
subrectangles:

�ij = (x, y) : xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1

with the following (N − 1)× (N − 1) internal grid nodes:

−L = x1 < x2 < · · · ≤ xN = L, xi = −L + (i− 1) · hx
−L = y1 < y2 < · · · ≤ yN = L, yj = −L + (j− 1) · hy

where hx = hy = h = 2L/(N − 1). For simplicity, denote
ui,j = u(xi, yj, t), then we can approximate the Laplacian
∇

2 u at (xi, yj) by using the method of lines as follow:

∇
2ui,j =

ui,j−1 + ui,j+1 + ui+1,j + ui−1,j − 4ui,j
h2

+ O(h2)

(7)

Thus, we can approximate the system (6) at the grid node
(xi, yj) as the following system:{

u̇i,j = F1(ui,j, vi,j; p1)
v̇i,j = F2(ui,j, vi,j; p2)

(8)

where ui,j = u(xi, yj, t), vi,j = v(xi, yj, t),F1(ui,j, vi,j; p1) =
f (ui,j, vi,j) + 1

h2
(ui−1,j + ui+1,j + ui,j+1 + ui,j−1 − 4ui,j),

F2(ui,j, vi,j; p2) = g(ui,j, vi,j), p1 = [a, b, ε] and p2 = m
represents the parameters of (6). That is, we transform the
infinite-dimensional FHN model described by PDEs into a
finite-dimensional dynamical system described by a set of
ODEs.

A. LOCAL IDENTIFICATION
In this subsection, the underlying system dynamics of FHN
model at the spatial grid nodes will be identified first,
which is called ‘‘local identification". We employ the fol-
lowing two dynamical models to identify the system dynam-
ics F1(ui,j, vi,j; p1) and F2(ui,j, vi,j; p2) of the approximation
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system (8):{
˙̂ui,j = −a1(ûi,j − ui,j)+ Ŵ T

1 S1(Ui,j)
˙̂vi,j = −a2(v̂i,j − vi,j)+ Ŵ T

2 S2(Vi,j)
(9)

where Ui,j = [ui−1,j, ui+1,j, ui,j−1, ui,j+1, ui,j, vi,j], Vi,j =
[ui,j, vi,j], ûi,j and v̂i,j are the estimation of ui,j and vi,j in
system (8) respectively, a1 > 0 and a2 > 0 are design con-
stants, RBF networks Ŵ T

1 S1(Ui,j) and Ŵ
T
2 S2(Vi,j) are used to

approximate F1(ui,j, vi,j; p1) and F2(ui,j, vi,j; p2).

Remark 3: Though there is no strict definition of the sys-
tem dynamics of DPS, it can be regarded as the infinite-
dimensional continuously differentiable vector function of
the infinite-dimensional dynamical system (i.e., the DPS that
often described by PDEs or integral equation) [36]. The
dynamics of the FHNmodel (6) are 1

ε
u(u−1)[u− v+b

a ]+∇2 u
and um − v.
From equations (8) and (9), the derivative of the state

estimation errors ũi,j = ûi,j − ui,j and ṽi,j = v̂i,j − vi,j satisfy:
˙̃ui,j = −a1ũi,j + Ŵ T

1 S1(Ui,j)− F1(ui,j, vi,j; p1)
= −a1ũi,j + W̃ T

1 S1(Ui,j)− ε1ij
˙̃vi,j = −a2ṽi,j + Ŵ T

2 S2(Vi,j)− F2(ui,j, vi,j; p2)
= −a2ṽi,j + W̃ T

2 S2(Vi,j)− ε2ij

(10)

where Ŵl is the estimate of W ∗l (l = 1, 2), W̃l = Ŵl −

W ∗l , and ε1ij = F1(ui,j, vi,j; p1) − W ∗T1 S1(Ui,j), ε2ij =
F2(ui,j, vi,j; p2) − W ∗T2 S2(Vi,j) are the ideal approximation
errors. The following law is employed to update Ŵ1 and Ŵ2:{

˙̂W1 =
˙̃W 1 = −01S1(Ui,j)ũi,j − σ101Ŵ1

˙̂W2 =
˙̃W 2 = −02S2(Vi,j)ṽi,j − σ202Ŵ2

(11)

where 01 = 0T1 > 0, 02 = 0T2 > 0 and σ1 > 0, σ2 > 0 are
small values.

The following theorem manifests that F1(ui,j, vi,j; p1) and
F2(ui,j, vi,j; p2) can be accurately identified along the recur-
rent orbit at spatial grid nodes (xi, yj).
Theorem 4: [28] Consider the adaptive system composed

of (8), (9) and (11), we have: (i) ũi,j and ṽi,j converge to a
small neighborhood of zero, and Ŵ1 and Ŵ2 converge to small
neighborhoods of Ŵ ∗l and Ŵ ∗2 ; (ii) accurate approximation of
F1(ui,j, vi,j; p1) and F2(ui,j, vi,j; p2) can be attained along the
recurrent orbit at spatial grid node (xi, yj).{

F1(ui,j, vi,j; p1) = W̄ T
1 S1 + ε1e

F2(ui,j, vi,j; p2) = W̄ T
2 S2 + ε2e

(12)

where ε1e and ε2e are the practical approximation error along
the trajectory corresponding to spatial point (xi, yj).
Remark 5: FHN model is often used for studying spiral

waves, which is a representative of the two-dimensional
spatiotemporal patterns with recurrent orbit. Under different
parameter conditions, different spiral waves can be gener-
ated by FHN model, such as rotating spiral wave (periodic
orbit), modulated rotating spiral wave (quasiperiodic orbit),
meandering spiral wave (chaotic orbit). That is, for any given

FIGURE 1. The trajectories of u(x26, y26, t) and v (x26, y26, t).

spatial point (x, y), u(x, y, t) and v(x, y, t) are recurrent in
time. Thus, the partial PE condition can be satisfied along
the recurrent orbits at spatial grid nodes (xi, yj) by applying
the localized RBF networks, which makes the achievement
of local identification of the FHN model.

B. GLOBAL IDENTIFICATION
Based on the local identification of FHN model, in the sub-
section we will achieve the global identification of FHN
model by employed interpolation method. To differentiate
the notation from the spatial grid nodes involving in the
above subsection, replace the spatial variable Ui,j and Vi,j
in (11) with U (x, y) and V (x, y), where (x, y) is any given
spatial point barring the grid nodes (xi, yj), thusU (x, y, t) and
V (x, y, t) can be treated as one-variable function of t . Then
(11) can be rewritten as follows:{
˙̂W1(x, y, t) = −01S1(U (x, y, t))ũ(x, y, t)− σ101Ŵ1
˙̂W2(x, y, t) = −02S2(V (x, y, t))ṽ(x, y, t)− σ202Ŵ2

(13)

The following equations can be obtained by solving the
partial differential equations (13):

Ŵ1(x, y, t) = e−σ101t (C1

−
∫
01S1(U (x, y, t))ũ(x, y, t)e−σ0tdt)

Ŵ2(x, y, t) = e−σ202t (C2

−
∫
02S2(V (x, y, t))ṽ(x, y, t)e−σ0tdt)

(14)

where C1,C2 are constants, ũ(x, y, t) = û(x, y, t)−u(x, y, t),
ṽ(x, y, t) = v̂(x, y, t)− v(x, y, t).

To achieve the accurate identification of FHN model glob-
ally, the following Lemma and two theorems are first given.
Lemma 6: [37] Let f (x, y) ∈ C (4,4)[�], where � =

[x0, xn]× [y0, yn′ ]. Then

‖(f − sf )‖∞ ≤
5
384
‖f (4,0)‖∞h4x +

81
64
‖f (2,2)‖∞h2xh

2
y

+
5
384
‖f (0,4)‖∞h4y, 0 ≤ k, l ≤ 2 (15)
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FIGURE 2. The identification results of F1(u, v;p1) and F2(u, v;p2) at the spatial point (x26, y26) corresponding to h = 0.6.

FIGURE 3. The approximation of F1(u, v;p1) and F2(u, v;p2) with periodic u(x, y, t) and v (x, y, t) at spatial point (−15.3,−15.3).

where sf be the bicubic spline interpolant of f ∈ C (4,4)[�],
hx = max0≤i≤n−1(xi+1 − xi), hy = max0≤j≤n′−1(yj+1 − yj).
Theorem 7: Ŵ1(x, y, t), Ŵ2(x, y, t), S1(U (x, y, t)) and

S2(V (x, y, t)) ∈ C4[�] × [0,∞), and Ŵ (k,l)
1 (x, y, t),

Ŵ (k,l)
2 (x, y, t), S(k,l)1 (U (x, y, t)) and S(k,l)2 (V (x, y, t)) are

bounded in �, where 0 ≤ k, l ≤ 4 are integers, � =
[−L,L]× [−L,L].

Proof: Please see the appendix A. �
Based on the Theorem 4, Theorem 7 and Lemma 6,

the following theorem gives the identificationmethod of FHN
model system dynamics at any spatial point (x, y) based on
the identification results corresponding the grid nodes.
Theorem 8: The dynamics of (6)FI (u, v, pI )(I = 1, 2) can

be approximated as the following equation:{
F1(u, v; p1) = W1C (x, y,T )S1C (x, y,T )+ εN1 (x)
F2(u, v; p2) = W2C (x, y,T )S2C (x, y,T )+ εN2 (x)

(16)

where WIC (x, y,T ) is bicubic spline interpolation of
ŴI (x, y,T ), S1C (x, y,T ) and S2C (x, y,T ) are bicubic spline

interpolation of S1(U (x, y,T )) and S2(V (x, y,T )),
εN1 (x) = W1C (x, y,T )R1S (x, y,T )
+R1W (x, y,T )S1(U (x, y,T ))+ O(ε)
εN2 (x) = W2C (x, y,T )R2S (x, y,T )
+R2W (x, y,T )S2(V (x, y,T ))+ O(ε)

are approximation errors, RIW (x, y,T ) = WI (x, y,T ) −
WIC (x, y,T ), R1S (x, y,T ) = S1(U (x, y,T )) − S1C (x, y,T ),
R2S (x, y,T ) = S2(V (x, y,T ))− S2C (x, y,T ), and

‖εNI (x)‖∞≤
5h4x
384

(W4,0
I + S4,0I ‖WIC (x, y,T )‖∞)

+
81h2xh

2
y

64
(W2,2

I +S
2,2
I ‖WIC (x, y,T )‖∞

+
5h4y
384

(W0,4
I + S0,4I ‖WIC (x, y,T )‖∞)+ O(εI ),

(17)
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FIGURE 4. The approximation of F1(u, v;p1) and F2(u, v;p2) with periodic u(x, y, t) and v (x, y, t) at spatial point (23.7,−20.7).

FIGURE 5. The approximation performance comparison of different h. a: ‖F̃ (u(−15.3,−15.3), v (−15.3,−15.3))‖L1
corresponding to

different h; b: ‖F̃ (u(23.7,−20.7), v (23.7,−20.7))‖L1
corresponding to different h.

where εI is the ideal approximation error of FI (u, v, pI )
by employing RBF network, which can be made arbitrarily
small.

Proof: Please see the appendix B. �
Remark 9: It can be seen from (17) that the approxima-

tion errors strongly depend on the mesh spacing h. The
approximation errors εN1(x), εN2(x) are in proportion to h4

under given parameters σ, 0 and C , the smaller h the smaller
εN1(x), εN2(x). In practice, the determination of h needs to
take into account various factors comprehensively, such as
accuracy requirement, system formation, and even computing
resources.

IV. SIMULATION RESULTS
To demonstrate the feasibility and effectiveness of the pro-
posed method, simulation results on spiral waves with peri-
odic and chaotic dynamics will be presented in the section.

FIGURE 6. The trajectories of u(x20, y50, t) and v (x20, y50, t).

The FHN model (6) will be first solved by using finite
difference method and explicit Euler method. Eq. (7) is used
to approximate the Laplacian ∇2 u. The reaction time terms
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FIGURE 7. The identification results of F1(u, v;p1) and F2(u, v;p2) at the spatial point (x40, y40) corresponding to h = 0.6.

are stepped with the following algorithm:{
uk+1 = uk + dt · f (uk , vk )

vk+1 = vk + dt · g(uk , vk )
(18)

where dt = tk+1 − tk is the time step.
The FHN equation (6) is first solved under no-flux

boundary conditions with the following parameters: � =
[−30, 30] × [−30, 30], h = 0.6, N = 101, dt = 0.0001,
ε = 0.005, a = 0.3, b = 0.01,m = 1. The numerical solution
of the FHN model is a rotating wave which is rigidly rotating
periodic states. The trajectory of u(x, y, t) and v(x, y, t) at
spatial grid node (x26, y26) are shown in Figure 1, which are
periodic.

The rectangle� is evenly subdivided into (N−1)×(N−1)
subrectangles:

�ij = (x, y) : xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1

where

−L = x1 < x2 < · · · ≤ xN = L

−L = y1 < y2 < · · · ≤ yN = L

xi = h · (i− 51), i = 1, · · · , 101

yj = h · (j− 51), j = 1, · · · , 101

Using the deterministic learning, F1(ui,j, vi,j; p) and
F2(ui,j, vi,j; p) can be accurately identified and represented as
W̄ T

1 S1(Ui,j) and W̄
T
2 S2(Vi,j). Figure 2 shows the identification

results of F1(u, v; p1) and F2(u, v; p2) at the spatial grid point
(x26, y26) by using deterministic learning as an example,
where E1 = F1(u26,26, v26,26; p1) − W̄ T

1 S1(U26,26) and
E2 = F2(u26,26, v26,26; p1)− W̄ T

2 S2(V26,26) are identification
errors.

Based on the identification results at the spatial gird points
(xi, yj), the system dynamics F1(u, v; p1) and F2(u, v; p2) cor-
responding to any spatial point (x, y) can be approximated by

employing the proposed method. The interpolation approxi-
mation F̂I (u, v; pI )(I = 1, 2) at spatial points (−15.3,−15.3)
and (23.7,−20.7) based on W̄ T

1 S1(Ui,j) and W̄
T
2 S2(Vi,j)(i, j =

1, · · · , 101) are shown as examples in Figure 3 and Figure 4.
It is shown that the accurate identification of F̂I (u, v); pI )
(I = 1, 2) at any spatial point (x, y) can be achieved by
employing the proposed method.

Another two numerical simulations with h = 0.5 and
h = 0.4 are given to show the influence of h on the
approximation error. Due to space limitation, the approx-
imation results of FI (u, v; pI )(I = 1, 2) at spatial points
(−15.3,−15.3) and (23.7,−20.7) corresponding to h =
0.5 and h = 0.4 are omitted in the paper. ‖F̃(u, v)‖L1 =
‖F̃1(u, v; p1)‖L1 + ‖F̃2(u, v; p2)‖L1 is used to compare the
approximation performance corresponding to different h,
where ‖ · ‖L1 is the average L1 norm, F̃I (u, v; pI ) =
F̂I (u, v; pI ) − FI (u, v; pI ), (I = 1, 2). ‖F̃(u, v)‖L1 at spatial
points (−15.3,−15.3) and (23.7,−20.7) corresponding to
h = 0.4, h = 0.5, and h = 0.6 are given in Figure 5. It can be
seen that the smaller mesh spacing h, the smaller the approx-
imation error εN1(x), εN2(x). In other words, the smaller
h, the higher accuracy of approximation of the proposed
method.
For spiral waves with chaotic orbit, the accurately identi-

fication of FHN model can also be achieved. Spiral waves
with chaotic behavior can be generated from FHN model
(6) under the following parameter conditions: ε = 0.2,
h = 0.6, N = 101, dt = 0.01, a = 0.3, b = 0.01,
m = 3. The chaotic orbit of spiral waves at spatial grid node
(x20, y50) is shown in Fig. (III-B) as an example. The identi-
fication results of F1(u, v; p1) and F2(u, v; p2) at spatial grid
node (x40, y40) by using deterministic learning are shown in
Figure 7, where E1 = F1(u40,40, v40,40; p1) − W̄ T

1 S1(U40,40)
and E2 = F2(u40,40, v40,40; p1) − W̄ T

2 S2(V40,40) are identifi-
cation errors.
The accurate approximation ofF1(u, v; p1) andF2(u, v; p2)

at spatial points (11.7, 11.7) and (23.7, 23.4) using
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FIGURE 8. The approximation of F1(u, v;p1) and F2(u, v;p2) with chaotic u(x, y, t) and v (x, y, t) at spatial point (11.7, 11.7).

FIGURE 9. The approximation of F1(u, v;p1) and F2(u, v;p2) with chaotic u(x, y, t) and v (x, y, t) at spatial point (23.7, 23.4).

FIGURE 10. The approximation performance comparison of different h. a: ‖F̃ (u(11.7, 11.7), v (11.7, 11.7))‖L1
corresponding to

different h; b: ‖F̃ (u(23.7, 23.4), v (23.7, 23.4))‖L1
corresponding to different h.

bicubic spline interpolation based on W̄ T
1 S1(Ui,j) and

W̄ T
2 S2(Vi,j)(i, j = 1, · · · , 101) are shown in shown as

examples in Figures 8, and 9 corresponding to h = 0.6,

respectively. These indicate that FI (u, v; pI )(I = 1, 2) with
chaotic orbit of u(x, y, t) and v(x, y, t) can also be accurately
identified by using the proposed method. The comparisons
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of ‖F̃(u, v)‖L1 at spatial points (11.7, 11.7) and (23.7, 23.4)
corresponding to h = 0.4, 0.5, 0.6 are shown in Figure 10.
It can be seen the smaller mesh spacing h, the smaller
approximation error, which is consistent with the influence
of h on approximation error for periodic orbit.

V. CONCLUSION
In this study, a novel method via deterministic learning
and interpolation is proposed for identifying FHN model
dynamics. It extends the method proposed in [29] from
one-dimensional DPS to a two-dimensional DPS with cou-
pled variables, and achieves the global identification of the
FHN model based on system states at a set of spatial points.
It also provides a new idea for the identification of other
actual DPS. It is a significant advancement from the view-
point of the possible application of the method in the iden-
tification of actual DPS (e.g., the studies of spiral wave in
cardiac tissue). The system dynamics at spatial grid nodes are
first accurately modeled by employing deterministic learn-
ing. Then the system dynamics at any other spatial point is
approximated based on the identification results correspond-
ing to the spatial grid nodes. That is, global identification
of the FHN model dynamics is achieved. The effectiveness
and feasibility of the proposed method are demonstrated
theoretically and numerically, which involves reselecting the
interpolation method and correspondingly both theoretical
derivation and computer algorithm have to be redesigned
due to the FHN model is composed of two coupled PDEs.
Different from existing methods in literature, the identifica-
tion results contain more information than system structure
and parameters of the FHNmodel. In addition, the identifica-
tion result can be represented and stored as a constant manner,
which makes it easy to be employed to recognize the similar
dynamical behaviors. The proposed method can also provide
some new thought in practical application, such as study of
spiral wave in cardiac tissue. Future work will be focused
on the following two aspects: (a) how to extend the method
to other high-dimensional DPS; (b) how to improve the
approximation performance through the appropriate selec-
tion of dimensionality reduction method and interpolation
algorithm.

APPENDIX A
In the appendix, we give the proof of Theorem 7.

Proof: From (14), it can be seen that ∂k+lW1(x,y,t)
∂xk∂yl(

∂k+lW2(x,y,t)
∂xk∂yl

)
is bounded and continuous if and only if

∂k+l ũ(x,y,t)
∂xk∂yl

(
∂k+l ṽ(x,y,t)
∂xk∂yl

)
and ∂k+lS1(U (x,y,t))

∂xk∂yl

(
∂k+lS2(V (x,y,t))

∂xk∂yl

)
are bounded and continuous.

i) We first prove that ∂k+l ũ(x,y,t)
∂xk∂yl is bounded in space

domain �.
Assume ∂ ũ(x,y,t)

∂x is unbounded in �, then for ∀M1,0 > 0,
without loss of generality, ∃(x ′, y′) = (xi, yj) ∈ �, such that∣∣∣∂ ũ(xi, yj, t)

∂x

∣∣∣ = ∣∣∣ lim
4x→0

ũ(xi+1, yj, t)− ũ(xi, yj, t)
4x

∣∣∣
> M1,0 (19)

then we have

|ũ(xi+1, yj, t)− ũ(xi, yj, t)| > 4xM1,0 (20)

According to Theorem 4, for (xi, yj) ∈ �

lim
t→∞

ũ(xi, yj, t) = 0

thus

lim
t→∞
‖ũ(xi+1, yj, t)−ũ(xi, yj, t)‖≤ lim

t→∞
‖ũ(xi+1, yj, t)‖

+ lim
t→∞
‖ũ(xi, yj, t)‖≤0

It contradicts with (20). Thus, ∂ ũ(x,y,t)
∂x is bounded in �

Assume that ∂2ũ(x,y,t)
∂x2

is unbounded in �, then for
∀M2,0 > 0, without loss of generality, there ∃(x ′, y′) =
(xi, yj) ∈ �, such that∣∣∣∂2ũ(xi, yj, t)

∂x2

∣∣∣
=

∣∣∣ lim
4x→0

∂ ũ(xi+1,yj,t)
∂x −

∂ ũ(xi,yj,t)
∂x

4x

∣∣∣
=

∣∣∣ lim
4x→0

ũ(xi+2, yj, t)− 2ũ(xi+1, yj, t)+ ũ(xi, yj, t)
4x2

∣∣∣
(21)

then we have

|ũ(xi+2, yj, t)− 2ũ(xi+1, yj, t)+ ũ(xi, yj, t)| > 4x2M2,0

Similarly, It contradicts with Theorem 4 that ũi,j converges to

a small neighborhood of zero. Hence, ∂
2ũ(x,y,t)
∂x2

is bounded.

In the same way, we can prove that ∂
k ũ(x,y,t)
∂xk (k = 3, 4) and

∂ l ũ(x,y,t)
∂yl (l = 1, 2, 3, 4) are all bounded in �.

Assume that ∂1+l ũ(x,y,t)
∂x∂yl is unbounded in �, then for

∀M1,l > 0, without loss of generality, there ∃(x ′, y′) ∈ �,
such that

∣∣∣∂1+l ũ(x ′, y′, t)
∂x∂yl

∣∣∣ = ∣∣∣ lim
4x→0

∂ l ũ(x ′+4x,y′,t)
∂yl −

∂ l ũ(x ′,y′,t)
∂yl

4x

∣∣∣
> M1,l (22)

It contradicts with the boundness of ∂
l ũ(x,y,t)
∂yl proved above.

Assume that ∂
2+l ũ(x,y,t)
∂x2∂yl

is unbounded in�, without loss of
generality, there ∃(x ′, y′) ∈ �, such that

∣∣∣∂2+l ũ(x ′, y′, t)
∂x2∂yl

∣∣∣ = ∣∣∣ lim
4x→0

∂1+l ũ(x ′+4x,y′,t)
∂x∂yl −

∂1+l ũ(x ′,y′,t)
∂x∂yl

4x

∣∣∣
> M2,l (23)

It contradicts with the boundness of ∂
1+l ũ(x,y,t)
∂x∂yl proofed above.

Similarly, the boundness of ∂
l+k ũ(x,y,t)
∂xk∂yl (k = 3, 4) can also be

proofed.
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In summary, ∂
k+l ũ(x,y,t)
∂xk∂yl is bounded in�, that is there exists

M̃ k,l
u > 0, so that for ∀(x, y) ∈ �,

∂k+l ũ(x, y, t)
∂xk∂yl

< M̃ k,l
u , 0 ≤ k, l ≤ 4

In the same way, it can be proofed that ∂k+l ṽ(x,y,t)
∂xk∂yl ,

0 ≤ k, l ≤ 4 is bounded in �, that is there exists M̃ k,l
v > 0,

so that for ∀(x, y) ∈ �,

∂k+l ṽ(x, y, t)
∂xk∂yl

< M̃ k,l
v , 0 ≤ k, l ≤ 4

ii) Next, we prove the continuity of ∂
k+l ũ(x,y,t)
∂xk∂yl .

From the above analysis, it can be proved that ∂
k+l+2ũ(x,y,t)
∂xk+1∂yl+1

is also bounded in �, that is there exists M̃ k+1,l+1
u > 0 such

that

|
∂k+l+2ũ(x, y, t)
∂xk+1∂yl+1

| ≤ M̃ k+1,l+1
u

For ∀ε > 0, no matter how small, take δ = ( ε

M̃k+1,l+1
u

)
1
2 >

0, for (x ′, y′), (x ′′, y′′) ∈ �, if |x ′− x ′′| < δ and |y′− y′′| < δ,
we have

|
∂k+l ũ(x ′′, y′′, t)

∂xk∂yl
−
∂k+l ũ(x ′, y′, t)

∂xk∂yl
|

= |

∫ y′′

y′

∫ x ′′

x ′

∂k+l+2ũ(x, y, t)
∂xk+1∂yl+1

dxdy|

≤ M̃ k+1,l+1
u · |x ′′ − x ′| · |y′′ − y′|

< M̃ k+1,l+1
u · δ2 = ε (24)

That is, ∂
k+l ũ(x,y,t)
∂xk∂yl is continus in �.

Similarity, the continuity of ∂
k+l ṽ(x,y,t)
∂xk∂yl can also be proofed.

iii) The continuity of ∂k+lS1(U (x,y,t))
∂xk∂yl is apparent, since

u(x, y, t), v(x, y, t) ∈ C4,4(�) × [0,∞) and S1(U (x, y, t)) is
a vector of Gaussian function. As � = [−L,L]× [−L,L] is
a closed region, ∂

k+lS(U (x,y,t))
∂xk∂yl is bounded in�. There exists a

constant Sk,l1 > 0, such that, for ∀(x, y) ∈ �

‖
∂k+lS1(U (x, y, t))

∂xk∂yl
‖∞ ≤ Sk,l1 . (25)

In the same way, there exists a constant Sk,l2 > 0, such that,
for ∀(x, y) ∈ �,

‖
∂k+lS2(V (x, y, t))

∂xk∂yl
‖∞ ≤ Sk,l2 . (26)

iv) With continuity of ∂
k+l ũ(x,y,t)
∂xk∂xl and ∂k+lS1(U (x,y,t))

∂xk∂yl , it can

be derived that ∂
k+lŴ1(x,y,t)
∂xk∂yl is continuous and bounded in �,

that is W1(x, y, t) ∈ C (4,4)(�) × [0,∞], and there exists a
constant Wk,l

1 > 0, such that for ∀(x, y) ∈ �,

‖
∂k+lW1(x, y, t)

∂xk∂yl
‖∞ ≤Wk,l

1 . (27)

Similarity, ∂
k+lW2(x,y,t)
∂xk∂yl is also continuous and bounded in

�, there exists a constantWk,l
2 > 0, such that for ∀(x, y) ∈ �,

‖
∂k+lW2(x, y, t)

∂xk∂yl
‖∞ ≤Wk,l

2 . (28)

�

APPENDIX B
In the appendix, we give the proof of Theorem 8.

Proof: By Theorem 4, it can be seen that the dynamics
F1(u, v; p) can be accurately modeled by using deterministic
learning and expressed as follow:

F1(u, v; p1) = W1(x, y,T )S1(U ,T )+ εI (x, y) (29)

where T is a time point to confirm W1(x, y, t) convergence,
εI (x, y) = O(εI ) is the approximation error.
By Theorem 7 and Lemma 6{

W1(x, y,T ) = W1C (x, y,T )+ R1W (x, y,T )
S1(U (x, y,T )) = S1C (x, y,T )+ R1S (x, y,T )

(30)

and

‖R1W (x, y,T )‖∞ ≤
5h4x
384
‖W (4,0)

1 ‖∞ +
81h2xh

2
y

64
‖W (2,2)

1 ‖∞

+
5h4y
384
‖W (0,4)

1 ‖∞

‖R1S (x, y,T )‖∞ ≤
5h4x
384
‖S(4,0)1 ‖∞ +

81h2xh
2
y

64
‖S(2,2)1 ‖∞

+
5h4y
384
‖S(0,4)1 ‖∞

(31)

Thus

F1(u, v; p1) = W1(x, y, t)S1(U (x, y,T ))+ ε(x, y)
= (W1C (x, y,T )+ R1W (x, y,T ))(S1C (x, y,T )
+R1S (x, y,T ))+ O(εI )

= W1C (x, y,T )S1C (x, y,T )+ εN1 (x, y) (32)

where

εN1 (x) = W1C (x, y,T )R1S (x, y,T )
+R1W (x, y,T )S1(U (x, y,T ))+ O(εI )

.
According to Theorem 7 and Lemma 6

‖R1W (x, y,T )S1(U (x, y,T ))‖∞
≤ ‖R1W (x, y,T )‖∞‖S1(U (x, y,T ))‖∞
≤ ‖R1W (x, y,T )‖∞

≤
5h4x
384

W4,0
1 +

81h2xh
2
y

64
W2,2

1 +
5h4y
384

W0,4
1 (33)

and

‖W1C (x, y,T )R1S (x, y,T )‖∞

≤ ‖W1C (x, y,T )‖∞(
5h4x
384

S4,01 +
81h2xh

2
y

64
S2,21 +

5h4y
384

S0,41 )

(34)
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Thus,

‖εN1 (x)‖∞

≤
5h4x
384

(W4,0
1 +S

4,0
1 ‖W1C (x, y,T )‖∞)

+
81h2xh

2
y

64
(W2,2

1 + S2,21 ‖W1C (x, y,T )‖∞

+
5h4y
384

(W0,4
1 +S

0,4
1 ‖W1C (x, y,T )‖∞)+ O(εI ) (35)

By (14), (30) and (31),

‖W1C (x, y,T )‖∞
= ‖W1(x, y,T )− R1W (x, y,T )‖∞
≤ ‖W1(x, y,T )‖∞ + ‖R1W (x, y,T )‖

≤ (C1 + T‖01‖∞‖ũ(x, y,T )‖∞)+
5h4x
384

W4,0
1

+
81h2xh

2
y

64
W2,2

1 +
5h4y
384

W0,4
1 (36)

thus, ‖W1C (x, y,T )‖∞ is boundness in �

By the boundness of W4,0
1 , W2,2

1 , W0,4
1 , S4,01 , S2,21 ,

S0,41 and ‖W1C (x, y,T )‖∞, we haveW1C (x, y,T )S1C (x, y,T )
converges uniformly to W1(x, y,T )S1(U (x, y,T )) as h =
max{hx , hy} → 0, and

lim
h→0
‖εN1 (x, y)‖∞ = O(ε1). (37)

Similarly, it can be proved that W2C (x, y,T )S2C (x, y,T )
converges uniformly to W2(x, y,T )S2(V (x, y,T )) as h =
max{hx , hy} → 0, and

lim
h→0
‖εN2 (x, y)‖∞ = O(ε2). (38)

�
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