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ABSTRACT Images taken under water usually suffer from the problems of quality degradation, such as low
contrast, blurring details, color deviations, non-uniform illumination, etc. As an important problem in image
processing and computer vision, the restoration and enhancement of underwater image are necessary for
numerous practical applications. Over the last few decades, underwater image restoration and enhancement
have been attracting an increasing amount of research effort. However, a comprehensive and in-depth survey
of related achievements and improvements is still missing, especially the survey of underwater image dataset
which is a key issue in underwater image processing and intelligent application. In this exposition, we first
summarizemore than 120 studies about the latest progress in underwater image restoration and enhancement,
including the techniques, datasets, available codes, and evaluation metrics. We analyze the contributions
and limitations of existing methods to facilitate the comprehensive understanding of underwater image
restoration and enhancement. Furthermore, we provide detailed objective evaluations and analysis of the
representative methods on five types of underwater scenarios, which verifies the applicability of these
methods in different underwater conditions. Finally, we discuss the potential challenges and open issues
of underwater image restoration and enhancement and suggest possible research directions in the future.

INDEX TERMS Underwater image quality degradation, underwater image database, underwater image
enhancement and restoration, underwater image quality evaluation.

I. INTRODUCTION
Underwater optical imaging systems mainly include an
optical camera, or adopt techniques such as polarization,
stereo/panoramic, and spectral imaging [1]–[4]. However,
each of techniques other than optical cameras has its limi-
tations, such as a narrow field of view, limited depth, com-
plex and professional operation, etc. When light propagates
through the water, the absorption and scattering determined
by the internal optical property (IOP) of the water affect
the process of underwater imaging [5]. Specifically, forward

The associate editor coordinating the review of this article and approving
it for publication was Mehul S. Raval.

scattering occurs when the light reaches the receiver after
being reflected from the target objects. The forward scatter-
ing makes the point light source diffuse into a blur circle,
which results in blurred images. The backscattering reduces
the contrast and produces foggy veiling in an underwater
image. Besides, the dissolved organic matter and small float-
ing particles which are called ‘sea snow’, whose concentra-
tion and species vary greatly, also affect underwater image
quality [6]. With the depth increasing in water, the colors
of light disappear depending on their wavelengths. Although
artificial lighting can be used to increase the visible distance,
it produces bright spot in the image surrounded by a dark
area and makes the scattering caused by suspended matters
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more serious. In addition, the inherent noise of underwater
imaging system also is a significant factor which affects the
quality of underwater image. Therefore, the optical images
captured from water need further restoration or enhancement
processing to improve their visual quality.

According to underwater imagingmodel was applied or not,
the related works can be divided into two categories, under-
water image enhancement methods and underwater image
restoration methods. Usually, subjective and objective under-
water image quality evaluations were employed to evaluate
the performance of different methods. With the develop-
ment of artificial intelligence technologies, many remark-
able achievements have been made in underwater image
restoration and enhancement. Some topics that are related
to underwater image restoration and enhancement have been
studied in [7], [8]. However, an in-depth exploration of
underwater restoration and enhancement methods, image
quality evaluation techniques and related datasets is still
missed. The contributions of this paper are listed as follows:
(i) we refer to more than 120 related studies and summarize
existing techniques, datasets, and evaluation metrics, which
aims to help researchers to understand the development of this
research area; (ii) we conduct detailed objective evaluations
and comprehensive performance analysis for the representa-
tive methods under classical five types of underwater scenes,
which can guide the selection of the most appropriate method
for practical cases; (iii) we summarize the datasets widely
used in the representative researches, which is the most
concerned issue in underwater image artificial intelligent
exploitation; and (iv) we look into several open issues of
underwater image restoration and enhancement, which sheds
light on potential research directions in future.

The rest of this paper is organized as follows. Section II
surveys the recent underwater image restoration and enhance-
ment methods. Underwater image quality evaluations and
datasets, followed by experimental results on five groups of
underwater images are presented in Section III. Section IV
discusses the open issues in underwater image processing.
The conclusion of this paper is given in Section V.

II. SURVEY OF STATE OF THE ART
In addition to using the simulated images for testing [9]–[11],
most of the underwater image processing methods focued on
the real optical underwater images to improve their clarity,
contrast and genuine color. In this section, we review the
related works of two categories, underwater image restoration
and underwater image enhancement.

A. UNDERWATER IMAGE RESTORATION METHODS
In general, underwater image restoration methods can be
further categorized into four groups depending on the degra-
dation models they adopted: (1) point spread function (PSF)
based restoration methods, (2) Jaffe-McGlamery model
based restoration methods, (3) turbulence degradation model
based restoration methods, and (4) image dehazing based
restoration methods.

FIGURE 1. Jaffe-McGlamery underwater imaging model.

1) PSF ESTIMATION BASED METHODS
In addition to measuring the PSF and modulation trans-
fer function (MTF) of seawater in the laboratory [12],
Hou et al. [13]–[15] regarded the imaging process in seawater
as a linear system. They incorporated the optical properties
of water into the traditional image restoration methods. The
absorption, attenuation, particle distribution and volume scat-
tering functions were measured by the specific instruments.
At the same time, the model parameters were estimated by
wavelet decomposition and power spectrum ratio after de-
noising process. Grosso [16], [17] and Voss and Chapin [18]
also measured the PSF by the specific instruments. How-
ever, the instruments they used were complex and expensive.
Moreover, these methods are difficult to meet the require-
ments of real-time processing.

Cho and Kim [19] measured the depth of the scene by
Doppler velocimeter. The illumination of artificial light was
estimated based on the model of LED optical transmis-
sion [20]. At last, Cho and Kim restored underwater images
by denoising, defogging, and deconvoluting by using the
PSF based on the generalized Gaussian distribution, and
then stretched the contrast by the contrast-limited adaptive
histogram equalization (CLAHE).

Beyond these, the deep-sea underwater camera [21],
stereo cameras [22] and laser range-gated underwater imag-
ing [23], [24] were taken into account to restore the underwa-
ter images.

2) JAFFE-MCGLAMERY MODEL BASED METHODS
Except for some models which aimed to study the
influence of illumination beam characteristics on the imag-
ing process [25], the Jaffe-McGlamery underwater imag-
ing model [26]–[28] was widely used in underwater image
restoration methods, in which the light ET received by the
camera was decomposed into three parts: the light reflected
directly from an object Ed , the forward scattered portion Ef
(small-angle light reflected from a target) and the backscat-
tered light Eb (non-target reflected light), as given by Eq. (1)
and shown in Fig. 1.

ET = Ed + Ef + Eb (1)

Trucco and Olmos [29] proposed a self-calibrated filter
based on a simplified Jaffe-McGlamery model. The filter was
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designed based on two assumptions: (1) illumination (direct
sunlight in shallow water) was uniform, and (2) forward
scattering was the main attenuation component while the
backscattering and the direct component were ignored. For
an underwater image, the optical parameters were estimated
by optimizing a global contrast evaluation function (mini-
mum blur). They qualitatively and quantitatively evaluated
the effect of the restoration for image classification (whether
there were artificial targets) [30], [31]. Wang and Wu [32]
focused on the backscattering in the Jaffe-McGlamery imag-
ing model, and on the basis of the dark channel prior (DCP)
[33]. This method assumed that there was a region with high
contrast in the image which was not affected by backscat-
tering. Based on this assumption, the model parameters
were estimated. Besides the limitations of the dark channel
method, there was no objective image evaluation, and the
restoration results were over-saturated. Akkaynak and Treib-
itz [34] presented a revised underwater imaging model based
on Jaffe-McGlamery model, in which they treated the direct
and backscattering coefficients separately. By utilizing the
measured depth of the field, they estimated the attenuation
coefficient and restored color image spatially.

The deconvolution method is strict but difficult to imple-
ment because the model parameters in the scene are unknown
and change with time and space in most cases. Moreover,
the execution time of the blind restoration is relatively long,
which is not suitable for the real-time applications.

3) TURBULENCE DEGRADATION MODEL BASED METHODS
Turbulence leads to a random change in the refractive index
of the atmosphere, which is similar to the light propagating in
water. Hufnagel and Stanley [35] proposed an image degrada-
tion modelH based on the physical properties of atmospheric
turbulence, which can be expressed in the frequency domain
(u, v) as:

H (u, v) = exp[−k(u2 + v2)
5
6 ] (2)

where k indicates the extent of turbulence. Underwater
image restoration based on the atmospheric turbulence image
degradation model represents a process of estimating the
parameter k . By combining the atmospheric turbulence image
degradation model with the image quality evaluation func-
tion, the adaptive underwater image restoration can be real-
ized. For instance, Zhang et al. [36] combined Wiener filter
with the image quality evaluation to estimate model parame-
ters and restored images based on the turbulence degradation
model. Yang and Wei [37] proposed an adaptive underwater
restoration scheme based on the turbulence model, wherein
the weighted contrast average grads (WCAG) was used to
evaluate the quality of an underwater image.

4) IMAGE DEHAZING BASED RESTORATION METHODS
In this subsection, we group the underwater dehazing meth-
ods in two subgroups: (1) classical DCP based restoration
methods, and (2) learning based DCP underwater image

restoration methods. These methods are listed in Table 1, and
discussed at the end of this section.

a: CLASSICAL DCP BASED IMAGE RESTORATION METHODS
In the Jaffe-McGlamery underwater imaging model, for a
degraded underwater image Ic(x),c = {R,G,B}, Ed is given
by:

Ed = Jc(x)e−pλd(x), (3)

where jc(x) is the undistored underwater image, and d(x) is
the distance between the observer and the object, pλ denotes
the sum of the absorption coefficient aλ and scattering coef-
ficient bλ in an underwater environment, both of which are
related to the wavelength λ:

pλ = aλ + bλ. (4)

The exponential term e−pλd(x) is referred to as a transmission
map tc(x):

tc(x) = e−pλd(x). (5)

Further, Eb is given by:

Eb(x) = Ac∞(1− e
−pλd(x)) = Ac∞(1− tc(x)), (6)

where Ac∞ denotes the background or backscattering light
of a color channel c. Generally, forward scattering Ef is
related to a small part of the image degradation process, so a
simplified underwater optical model which is used in most
existing underwater restoration methods can be expressed
as:

Ic(x) = Jc(x)tc(x)+ Ac∞(1− tc(x)). (7)

By substituting the original image Ic(x), Ac∞ and tc(x)
into (7), the restored underwater image Jc(x) can be expressed
as:

Jc(x) =
Ic(x)− Ac∞

tc(x)
+ Ac∞. (8)

He et al. [33] proposed the dark channel hypothesis and
pointed out that an increase of the dark channel brightness
was due to the fog. IDark is the dark channel of Ic(x) obtained
from the local minimization of R, G and B channels, which is
expressed by:

IDark = min
y∈�(x)

( min
c∈R,G,B

Ic(x)), (9)

where�(x) is the neighborhood centered at a pixel x. Accord-
ing to the DCP, at least one color channel in Jc(x) is assumed
to have zero pixel value, thus:

min
y∈�(x)

( min
c∈R,G,B

Jc(x)) = 0. (10)

Then, IDark can be obtained by applying Eqs. (10) and (9) on
Eq. (7):

IDark = Ãc∞(1− t̃c(x)). (11)

Usually, Ãc∞ represents the estimation of Ac∞, and is
defined as the maximum value of the dark channel, and the
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TABLE 1. The DCP based underwater restoration methods sorted by year.

global background light is used as a denominator to estimate
the transmission map t̃c(x), which is respectively given by:

Ãc∞ = Ic(argmax
x

IDark (x)), (12)

t̃c(x) = 1−

(
IDark
Ãc∞

)
. (13)

In recent years, the underwater image restoration based
on DCP has received extensive attention [34], [38]–[58].
An assumption that the red attenuation is the fastest, which
is basically correct in open water, has been used to compute
the dark channel image in several DCP based underwater
image restorations. Carlevaris-Bianco et al. [38] first calcu-
lated the maximum difference between the blue-green chan-
nel and red channel, and estimated the transmission map by
adjusting the difference until the maximum difference was 1.
The minimum value of the transmission map was used as a
background light. At last, the restored imagewas estimated by
maximizing the posterior probability. Chiang and Chen [39]
defined the transmission map as a residual energy ratio of the
original image to the camera after reflection. The artificial
light source was estimated by comparing the average bright-
ness difference between the foreground and background.
Galdran et al. [40] considered the red channel as an under-
water prior. The background light was estimated by the max-
imum value of the red channel. P. Drews, Jr., et al. [41]
assumed that the red channel attenuated the fastest, so it could
not provide information related to the field depth. Therefore,
an underwater dark channel (UDCP) prior was proposed,
where the dark channel image was calculated by using the

minimum of G and B channels, and the background light was
estimated by themaximum value of the obtained dark channel
image.

The inhomogeneous color projection caused by the absorp-
tion of light through water often makes the dark channel prior
fail to estimate the transmission map accurately. In addition,
an underwater environment is usually characterized by a
little or inadequate light. A dark scene point will still be dark
after imaging and will be erroneously estimated to be closer
to the camera in the application of the DCP. In recent works,
the field depth and fuzzy image have been utilized to improve
the transmission map estimation [42], [45]–[46], [49], [51],
and the color correction has been widely combined to com-
pensate for a non-uniform color projection caused by absorp-
tion [42], [45]–[47], [49]–[53], [56]–[58].

Background light, can also be defined as a flat area [47],
[50] or blurriest region [44], [56]. Li et al. [47] computed
the regional variance and the corresponding fuzzy graph of
the local image by iterative quadtree decomposition. The
weighted combination of the maximum and minimum values
of a set consisted of the mean of 0.1% blurred image ele-
ments, pixels in the minimum variance region, and the mean
of pixels in the fuzziest region was adopted as a background
light. Furthermore, a combination based on different under-
water images and light conditions was applied to estimate the
depth of field. Emberton et al. [44] proposed a hierarchical
method to find the blurriest region in an underwater image
and estimate the background light. However, this method
became unreliable when the color of the underwater target
was close to that of the blurred area. Based on the hierarchic

VOLUME 7, 2019 123641



M. Yang et al.: In-Depth Survey of Underwater Image Enhancement and Restoration

technique, Emberton et al. [56] further divided underwater
images into three categories: bluish, blue-greenish and green-
ish, and different white balance procedure was utilized for
each category before the DCP based restoration. However,
when the theoretical maximum value of the background light
was used as the denominator to estimate the transmission
map, the phenomenon of over-saturation occurred, which
resulted in artifacts in the background region [59].

As the imaging effects also depend on object distance,
the degradations are local and cannot be corrected by global
operations. The related research has shown that the light rays
traveling through the underwater environment encountered
beam-particle interaction with different random times [60].
A single background light value over the entire image failed
to explain the real interactions between light rays and par-
ticles in the water medium, and the enhanced underwater
image experienced phenomena such as poor local clarity and
local over-saturation. On the other hand, since the 3D space
had to be sliced into planes to calculate the backscattering
irradiance of every small plane in different directions and
distances relative to the camera, the background light was
regarded as a superposition of many point-sources of the light
in the space, which produced a non-uniform image intensity.
Therefore, multiple background values were utilized in [48],
[58]. Ancuti et al. [48] estimated the background light by the
local maximum value of the dark channel. Yang et al. [58]
explored the statistical priori of offshore images to compute
the dark channel. In the proposed method, Retinex reflection
light decomposition was applied to the dark channel and the
backscattering light was obtained by local Gaussian low-
pass filtering of R, G and B components of a raw image
respectively, and color correction was added to the recovered
underwater image to compensate a possible color deviation
further.

Beyond these, Cho et al. [46] trained an incremental
Gaussian processing (iGP) [61] with the Flickr dataset [62],
assuming the local sparse depth data had been known; they
estimated the transmission map in an online manner [63].
After that, they used the brightest pixel in the depth of field
as the global background light. In the restoration process,
the background light was compensated by a color correction
in the CIELab space.

In addition to color stretching after defogging, more
and more methods incorporated color compensations [50],
[52]–[53], [56]. Ancuti et al. [52], [53] combined a color
transfer algorithm with DCP based underwater image defog-
ging. Li et al. [50] applied the classical DCP to a color
corrected underwater image. They also assumed a global
uniform background light. After the Gaussian filtering in
the CIELab space, they located a highlight and low-gradient
flat region in L component with the size larger than 5%
of the image as a candidate region. For bluish or greenish
underwater images, the corresponding color of pixel with the
largest blue-red or green-red difference of the brightest 0.1%
pixels in the candidate region was selected as a final global
background light. A total of thirteen features, including the

dark channel, local maximum contrast, local maximum satu-
ration, and hue difference, were extracted from the simulated
blurred images in the transmission map estimation process.
Transmission map of the image block was acquired by the
random forest model [64].

b: LEARNING BASED DCP UNDERWATER IMAGE
RESTORATION
The majority of the existing learning-based studies on the
DCP underwater restoration focuses on the supervised sce-
nario [50]. However, in some of these methods, the unsu-
pervised techniques were utilized. In [54], [55], the authors
clustered all the colors in natural image into 500 categories
according to the statistical distribution of the color image.
Each pixel in a color image was represented by a clustering
center. Color pixels exhibited a line segment in clustering
space according to the distance to the camera. The attenuation
curve was obtained by the k-dimensional (KD) tree clustering
with logarithmic of the RGB value. The background light
was estimated by selecting the pixel value with the largest
difference between R, G and B channels in the image blocks
whose total variation was less than the predefined threshold.
At the same time, saturation constraint was applied to adjust
the transmission map, but the restored image was still dark
and over-saturated.

Convolutional Neural Networks (CNNs) [65] have also
been applied to underwater image restoration. Ding et al. [51]
used a CNN to estimate the depth of a corrected underwater
image with white balance, so as to estimate the transmission
map. In the training process, the Make3D dataset [66] was
adopted, and the mean color value of the corrected image
was used as the global background light. Hou et al. [57]
proposed an underwater residual CNN (URCNN) model by
modifying the VGG network [67] to learn the transmission
map. In the residual architecture they designed, a global back-
ground light was selected from blue and green channels as
same with the strategy applied in [43]. To train the proposed
URCNN, they synthesized an underwater image dataset con-
sisting 1000 images from the NYU Depth dataset [68] with
realistic depths of object and the corresponding clean images.
The illuminance compensation and color correction were also
performed on the output of the URCNN to get the final image.

c: SUMMARY OF UNDERWATER IMAGE RESTORATION
METHODS BASED ON DCP
The performance of underwater defogging based on the
DCP can be affected by the background light and trans-
mission map estimations, and the combined color correction
methods. The estimations of background light and transmis-
sion map adopted in the literatures mentioned in this section
are summarized in Appendix A. Fig. 2 and Fig. 3 illus-
trate the background light estimations and transmission maps
of three underwater images obtained by different methods,
respectively.

To summarize, different IOPs in water make the dark chan-
nel priors assumed by various algorithms unsuitable for other
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FIGURE 2. The background light estimation results obtained by different restoration methods. From left to right: Input image, the
output of the method of Carlevaris-Bianco et al. [38], the output of the method of Galdran et al. [40], the output of the method of
Peng and Cosman [49], the output of the method of Li et al. [47], and the output of the method of Yang et al. [58].

FIGURE 3. The transmission map estimation results obtained by different restoration methods. From left to right: Input image, the
output of the method of Carlevaris-Bianco et al. [38], the output of the method of Galdran et al. [40], the output of the method of
Peng and Cosman [49], the output of the method of Li et al. [47], and the output of the method of Yang et al. [58].

situations [33], [38]–[42], [44]–[45], [47]–[50], [52]–[53],
[56], [58]. For instance, after a certain underwater depth,
the red light disappears, so the scene information cannot be
applied to compute the dark channel image [33], [38]–[40],
[42], [45], [49], [53]; as shown in the second picture
in Fig. 3(a), the depth information is lost. Secondly, the
background light estimation is a very important step in dehaz-
ing. If the background light is assumed to be uniform and
the brightest value in the opaquest region of the image is
selected as a background light, the problem of selecting
pixels from the bright target is unavoidable [33], [38]–[42],
[44]–[45], [47], [49]–[50], [52]–[53], 56], as shown in the
fifth picture in Fig. 2(a). The local maximum of the dark
channel was obtained without considering the characteristics

of backscattering light in [48], and the scale was not dis-
cussed. Thirdly, when the dark channel is used to estimate
the transmission map, a bright target will be considered as a
relatively far area, resulting in transmission map estimation
error [33], [38]–[39], [41], [44], such as the high light spots
in Fig. 3. When the normalized output underwater image
has non-physical values, i.e., values outside the range (0, 1),
under saturation occurs. Furthermore, when the theoretical
maximum obtained in the background light estimation pro-
cessing is used as a denominator in the computation of
transmission map, the artifacts in the background region
are caused due to a low transmission value [33], [39]–[41],
[44]–[45], [47], [52]–[53], [56]. In addition, the method
of color migration is greatly influenced by the reference

VOLUME 7, 2019 123643



M. Yang et al.: In-Depth Survey of Underwater Image Enhancement and Restoration

TABLE 2. Underwater image enhancement methods sorted by year.

image [52], [53]. Besides, for the underwater image in a
turbid underwater environment, it is very difficult to extract
salient regions [52].

B. UNDERWATER IMAGE ENHANCEMENT METHODS
Underwater image enhancement methods extract image
information without any prior knowledge about the environ-
ment. Therefore, these methods are more general than image
restoration methods. Various underwater enhancements are
included in underwater image processing and analysis assign-
ments, which are mainly inherited from the methods applied
to natural images [69]–[71]. In this section, we review under-
water image enhancement methods according to the aspects
they focus on, such as noise removal, contrast stretch, com-
bined improvement with multi-information and deep learn-
ing. Table 2 lists all the methods.

1) FILTERING BASED METHODS
Arnold-Bos et al. [72] proposed a pre-processing frame-
work for the luminance component of an underwater image.
They analyzed the possible range of noise in an underwater
image by using a combination of deconvolution and enhance-
ment methods. The plural Log-Gabor wavelet denoising was
used to suppress the remaining sensor noise, suspended par-
ticle noise and various quantization errors. This adaptive
smoothing filter improved the edge detection effect. Besides,
the proximity of the histogram distribution for enhanced
underwater image to the exponential form was analyzed,
but no quantitative comparison was provided. Bazeille [73]
proposed a method consisting of multiple filtering steps
to improve the non-uniform illumination, suppress noise,
enhance contrast, and correct color of an underwater image.
Jia and Ge [74] proposed a nonsubsampled contourlet
transform (NSCT) based adaptive total variation (ATV) for
underwater image denoising. Then, they used the partial

differential equation (PDE) to eliminate noise and recon-
structed the frequency components. The peak signal to noise
ratio (PSNR) and sharpness were used to evaluate the quality
of the enhanced underwater images, but there was no compar-
ative evaluation of image quality between this and the other
related methods.

2) COLOR CORRECTION BASED METHODS
Chambah et al. [75] applied the automatic color equalization
(ACE) on RGB channels separately, and weighted the outputs
of three channels to enhance the accuracy of fish recogni-
tion in the video taken by the remote-control camera of the
aquarium. The internal parameters of theACE algorithmwere
appropriately adjusted. Ghani and Isa [76], [77] proposed
a series of color correction schemes based on the Rayleigh
stretching. According to the characteristics of Rayleigh dis-
tribution, the blue histogram of an underwater image in RGB
space was stretched to a low grayscale, the red histogram
was stretched to a high grayscale, and the saturation and
value components of the underwater image in HSV space
were also stretched. Torres-Méndez and Dudek [78] treated
an underwater image as a Markov random field (MRF). The
nodes visible in the random field represented the color values
of a degraded underwater image, while the hidden nodes rep-
resented the true color values. They described the structural
relationship between pixels and their surrounding neighbor-
hoods by learning the corrected colors of sample pixels. The
difference in CIELab space of the pixels was used as a cost
function, and a belief propagation (BP) algorithmwas used to
estimate the true color of each pixel. The illumination source
was used to obtain the ‘‘ground-truth’’ image. However, it is
difficult to obtain the corrected and pre-processed underwater
image blocks to construct the training set, so this method
only enabled the color correction of the scenes included in
the training set.
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TABLE 3. Deep learning based underwater enhancement methods.

Iqbal et al. [79] proposed an image enhancement method
using an integrated color model for marine environment.
Their method is based on a series of sliding stretching, such
as contrast stretching in RGB space and saturation and bright-
ness stretching in the HSI space. However, there was no
quantitative analysis of the quality improvement.

Petit et al. [80] proposed an underwater image color cor-
rection method based on the optical attenuation inversion.
In this method, the geometric rotation of the quaternion space
was used to assign corresponding pixels of the background
region to gray or low saturation color, while keep the target
unchanged.

According to Retinex theory [88]–[90], the object color
perceived in human eyes is closely related to the reflection
characteristics of the object surface, but has a weak relation-
ship with the object illumination characteristics. Fu et al. [82]
proposed a variational Retinex model, wherein the CIELab
spatial luminance component of the color-corrected underwa-
ter image was decomposed by the linear domain variational
Retinex through 4-6 iterations. In [84], instead of Gaus-
sian filter, bilateral and triangular filters were utilized on L,
a and b components, respectively, and then fused according
to the ratio of the values in RGB space, which solved the edge
halo problem of classic Retinex model and reduced the color
distortion to a certain extent. However, the effect of defogging
and contrast enhancement for turbid water was not achieved.

3) IMAGE FUSION BASED METHODS
Based on an observation that various techniques contribute
differently to image quality improvements, the fusion strat-
egy was considered gradually. Ancuti et al. [81] proposed
a fusion-based underwater image enhancement method,
wherein the outputs of white balance color correction and
bilateral filtering were weighted with the result of histogram
equalization. Four fusion weights, including Gaussian con-
trast, local contrast, saliency and sensitometry, were com-
puted to obtain a pixel-level fusion output. Moreover, they
improved the white balance processing under the premise
that the red channel attenuation was the fastest [83]. Exper-
imental results showed that this method could improve the
exposure of dark area and the global contrast, and enhance
image edge details. However, for different underwater envi-
ronments, the weighted coefficients in the fusion process are
difficult to determine.

4) DEEP LEARNING BASED METHODS
Basically, underwater image enhancement based on deep
learning networks is limited by the requirement for a
large number of label images which are difficult to collect
in practice. Table 3 shows a list of deep learning based

enhancement models developed for underwater images.
A set of color-corrected underwater images [91] was used
as training data in [85], wherein the authors constructed an
underwater image enhancement model based on a CNN.
In the training process, 55 features were used, and fitted to
a 3D enhanced underwater image in the final step. To sim-
ulate the attenuation caused by the water body, a Water-
GAN network was proposed for underwater image color
correction [86]. Similar with the normal generative adver-
sarial networks (GANs) [92], two training sets were input
to the WaterGAN, one of which consisted of natural images
and the corresponding depth maps in the air, and the
other one consisted of the underwater images taken in the
laboratory and simulated underwater images obtained by
the Jaffe-McGlamery model. In the color correction net-
work, two improved end-to-end convolution SegNet [93]
networks were used to estimate depth map and correct
the color by using the estimated depth map. Three mod-
ules in the WaterGAN generator simulated the character-
istics of underwater imaging; namely, G-I simulated the
attenuation, G-II simulated the light scattering, and G-III
simulated the halo effect. The discriminator [94] in the
WaterGAN was designed based on CNN to classify the
real and simulated underwater images. Although the sim-
ulated underwater image generated by the WaterGan net-
work simulated the depth-dependent color and brightness
attenuations in underwater imaging under certain conditions
(depth 1-2 meters, fixed light source, water body, etc.),
it could not represent the degradation associated with the
imaging system, light source and seasonal water properties,
such as sea snow noise, contrast reduction, and foggy blurring
caused by complex scattering.

Li et al. [87] proposed a weakly supervised color migra-
tion model inspired by cycle-consistent adversarial networks
(CycleGAN) [95] to correct the color distortion of deep-
sea underwater images. A forward mapping and a backward
mapping functions between an underwater image and the
air image, and the associated adversarial discriminators were
included in this model. Several distortion functions were
adopted in the forward and backward generators, including
the adversarial losses LossGAN, periodic continuity Loss-
Cyc, and structural similarity LossSSIM. The content and
details of the underwater image were unchanged, although
the color was corrected.

III. UNDERWATER IMAGE QUALITY EVALUATION AND
DATASETS
A. UNDERWATER IMAGE QUALITY EVALUTION
Image quality assessment (IQA) plays a very important
role in the adaptive optimization design of an optical
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imaging system, image transmission, image enhancement
and restoration, image retrieval and classification [96].
Objective image quality evaluation (IQE) methods can be
classified by whether a reference image exists or not. For
underwater images where a reference image cannot be
obtained, a no-reference image quality metric is needed
to measure the perceptual image quality. The traditional
objective evaluation methods evaluate the distortion (such
as Gaussian noise) of an image taken in air, rather than
the authentic mixed degradation caused by water body, so
they often fail to evaluate the quality of an underwater
image.

Several quantitative metrics have been used to evalu-
ate enhancement and restoration performance for grayscale
underwater images. For instance, Schechner and Karpel [97]
applied global contrast as a measure of underwater grayscale
image quality. Hou et al. [14] measured the quality of
a restored image by a metric based on the weighted
gray scale angle (WGSA) for scattering blurred underwater
images. Arnold-Bos et al. [10] defined a robustness index
to measure the closeness of the grayscale histogram to the
exponential distribution. This index was also applied by
Bazeille et al. [73]. Arredondo and Lebart [11] proposed a
methodology to assess the robustness of underwater image
noise removing quantitatively. The true motion of a sequence
of the underwater video was supposed to be known, and
the angular deviation between the estimated velocity and the
actual one was measured.

As for underwater color images, two prominent no-
reference underwater image quality evaluation metrics were
proposed [98], [99]. Panetta et al. [98] proposed an underwa-
ter image quality measure (UIQM) method, in which under-
water image colorfulness measurement (UICM), underwater
image sharpnessmeasurement (UISM) and underwater image
contrast measurement (UIConM) were combined to evalu-
ate the underwater image quality. The choice of weighted
coefficients depends on the application purpose. For instance,
when evaluating the correction result of the color deviation
of an underwater image, a larger weight value of UICM
should be allocated. The training data set used in [98] con-
tained 30 randomly selected underwater images captured
with different devices and under a different water depth. The
mean opinion scores (MOS) of the tested underwater images
were gathered from 10 researchers on image processing.
The UIQM was adopted in some enhancement/restoration
methods [49], [55], [84]. Yang and Sowmya [99] presented
an underwater color image quality evaluation (UCIQE) met-
ric to quantify the non-uniform color cast, blurring and
noise in the underwater engineering and monitor images, and
this metric has been widely applied in underwater enhance-
ments [47], [49], [50], [84]. Forty-four test images and
12 observers who were required to rate the tested images on
a 5-level scale were used to obtain the MOS. Both of the
two metrics were designed by combining the image quality
components in a linear manner, training the weights for better
evaluation.

In addition, the subjective evaluations [87], [100]
and methods designed for natural image quality eval-
uations, such as structural similarity index measure
(SSIM) [51], [70], [100], [102], patch-based contrast qual-
ity index (PCQI) [47], [48], [51], [83], mean square
error (MSE) [46], [51], [84], [102], [103], PSNR [19],
[49], [51], [70], [101]–[104], average E [105], contrast to
noise ratio (CNR) [19], entropy [70], [103], [106], discrete
entropy and contrast measure (DECM) [103], gradient ratio
at visible edges (GAVE) [107], global contrast factor (GCF)
[44], and visibility metric based on contrast-to-noise ratio
(VM) [44], [48], were commonly adopted. Also, the effective-
ness of the improvement for some specific processing such as
SLAM [19] and feature point matching [105] of underwater
images was also considered.

Underwater images are all dominated by the integrated
degradation, including chroma decreasing, low contrast, non-
uniform illumination, blurring, non-uniform color casting,
and noise from complicated factors. The mixed distortions
manifested in underwater image make it difficult to construct
a universal image quality metric that can be applicable to
all types of underwater environments. An inaccurate score
was obtained for an underwater image with dark area, over-
saturation and non-uniform brightness by using the existed
underwater image quality metric as analyzed in Section C.

B. UNDERWATER IMAGE DATASET
Underwater image datasets are significant in the development
of underwater image processing technology. This section
summarizes the underwater image datasets, which were used
by scholars in the underwater image restoration and enhance-
ment processes, as listed in Table 4. Examples of the images
of these datasets are shown in Fig. 4. However, there is no
relatively complete underwater image dataset due to difficulty
in collecting underwater images. The current underwater
image datasets face a series of problems, such as single target
object, little category and imperfect labeling information.
These problems severely restrict the development of intelli-
gent underwater image processing technology.

C. EVALUTION RESULTS AND ANALYSIS
In this section, several typical methods for underwater image
restoration and enhancement described in this paper were
tested to compare their subjective and objective perfor-
mances and operating time for various underwater images.
The experimental underwater images were divided into
5 groups, including blueish, greenish, and yellowish under-
water images, offshore (whitish), and deep-sea underwater
images. We compared several underwater image dehazing
methods: the DCP method proposed by He et al. [33],
the method of Galdran et al. [40], and methods combining
the DCPwith color correction: the method of Yang et al. [58],
themethod of Peng et al. [49], and themethod of Li et al. [50].
And the tested color enhancement methods included the
ACE [122] method, the method proposed by Iqbal et al. [79],
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TABLE 4. List of underwater image datasets
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FIGURE 4. Examples of images from different datasets. (a) Images from
the Wild Fish Marker dataset [108] and the OUC-VISION underwater
image dataset [110]. (b) Images from the underwater Photography-fish
database [111] and Underwater Rock Image Database [86], [109].
(c) Images from the Port Royal Underwater Image Database [86], [109]
and the HabCam underwater image dataset [112]–[114]. (d) Images from
the MOUSS underwater image dataset [113], [114] and the AFSC
underwater image dataset [113], [114]. (e) Images from MBARI
underwater image dataset [113]–[115] and NWFSC underwater image
dataset [113], [114]. (f) Images from RUIE underwater image
dataset [116], [117] and RGBD underwater image
dataset [34], [118], [120].

Retinex based method [82], and method based on deep learn-
ing model [87].

1) SUBJECTIVE INSPECTION
The experimental results are shown in Figs. 5-9. It can be
seen that the outputs of the method of Galdran et al. [40],
the method of Peng and Cosman [49], the ACEmethod [122],
the method of Li et al. [50], the method of Yang et al. [58]
and the method of Fu et al. [82] recovered color visually
to a certain extent for all the five groups of underwater
images, among which the ACE method [122], the method of
Li et al. [50], the method of Yang et al. [58], and the
method of Fu et al. [82] had better applicability. However,
blurring of the dark regions and color artifacts existed in the
results produced by the method of Li et al. [50], as shown
in Figs. 5-6(e), the third image in Fig. 7(e), and the first

FIGURE 5. Comparison of the results for blueish underwater images.
(a) The original images. (b) The results of the method of He et al. [33].
(c) The results of the method of Galdran et al. [40]. (d) The results of the
method of Peng and Cosman [49]. (e) The results of the method of
Li et al. [50]. (f) The results of the method of Yang et al. [58]. (g) The
results of the ACE method [122]. (h) The results of the method of
Iqbal et al. [79]. (i) The results of the method of Fu et al. [82]. (j) The
results of the method of Li et al. [87].

FIGURE 6. Comparison of the results for yellowish underwater images.
(a) The original images. (b) The results of the method of He et al. [33].
(c) The results of the method of Galdran et al. [40]. (d) The results of the
method of Peng and Cosman [49]. (e) The results of the method of
Li et al. [50]. (f) The results of the method of Yang et al. [58]. (g) The
results of the ACE method [122]. (h) The results of the method of
Iqbal et al. [79]. (i) The results of the method of Fu et al. [82]. (j) The
results of the method of Li et al. [87].

image in Fig. 9(e). The method of Fu et al. [82] improved
the color saturation but produced blurred details in the out-
put images, as shown in Figs. 5-9(i). The other DCP based
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FIGURE 7. Comparison of the results for greenish underwater images.
(a) The original images. (b) The results of the method of He et al. [33].
(c) The results of the method of Galdran et al. [40]. (d) The results of the
method of Peng and Cosman [49]. (e) The results of the method of
Li et al. [50]. (f) The results of the method of Yang et al. [58]. (g) The
results of the ACE method [122]. (h) The results of the method of
Iqbal et al. [79]. (i) The results of the method of Fu et al. [82]. (j) The
results of the method of Li et al. [87].

FIGURE 8. Comparison of the results for whitish underwater images.
(a) The original images. (b) The results of the method of He et al. [33].
(c) The results of the method of Galdran et al. [40]. (d) The results of the
method of Peng and Cosman [49]. (e) The results of the method of
Li et al. [50]. (f) The results of the method of Yang et al. [58]. (g) The
results of the ACE method [122]. (h) The results of the method of
Iqbal et al. [79]. (i) The results of the method of Fu et al. [82]. (j) The
results of the method of Li et al. [87].

underwater restoration methods had a problem in processing
the images with the bright targets, as shown in the second
images in Fig. 5(b) and Figs. 5(d)-(f).

FIGURE 9. Comparison of the results for deep-sea underwater images.
(a) The original images. (b) The results of the method of He et al. [33].
(c) The results of the method of Galdran et al. [40]. (d) The results of the
method of Peng and Cosman [49]. (e) The results of the method of
Li et al. [50]. (f) The results of the method of Yang et al. [58]. (g) The
results of the ACE method [122]. (h) The results of the method of
Iqbal et al. [79]. (i) The results of the method of Fu et al. [82]. (j) The
results of the method of Li et al. [87].

More specifically, the adoption of the red channel prior
in the method of Galdran et al. [40] had a negative
effect on the image color restoration under bluish water,
because it greened the yellow target in the underwater image
due to the compensation of red channel, and produced
more blue chroma for the yellowish underwater images,
as shown in Figs. 5-6. The restoration methods proposed
by Peng and Cosman [49] and Li et al. [50] reduced
the contrast of dark areas, as shown in the first images
in Figs. 5-6 and 8(d)-(e). Besides, the application of the
color migration in the method of Li et al. [87] was
prone to incur color spots in the enhancement results,
as shown in Figs. 5-7(j). The enhanced images by the
ACE method [122] exhibited color deviation for the offshore
images, which contained red and green target, as shown in
the second image in Fig. 8(g). In general, the method pro-
posed by Yang et al. [58], which was based on the Retinex
composition on dark channel and local background light esti-
mation, had a better color restoration effect for all the kinds
of the underwater images: it improved the contrast of dark
regions, and clarified the details in the underwater images
significantly.

2) OBJECTIVE EVALUATION
The restoration results were evaluated by the PCQI, UIQM,
and UCIQE metrics, since these metrics were widely used
to qualify the comprehensive performance of underwater
images. The PCQI was proposed to compare the difference
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TABLE 5. Image quality evaluations for blueish underwater images
in Fig. 5.

between the original and the enhanced grayscale images.
A value of 1 represented no difference between the processed
image and the original image. The values less or greater than 1
indicated a change, but the change did not necessarily denote
an improvement on image quality. The higher the values of
UCIQE and UIQM of an underwater image were, the better
the image quality was. The values of the three metrics of the
five groups of underwater images are listed in Tables 5-9.

In Table 5-9, the PCQI values were close to 1, which
indicated that differences between the processed images and
original images were less obviously because no color infor-
mation evaluation was included in the PCQI. The minimum
values in Tables 5-9 corresponded to the output images whose
overall brightness changed greatly, such as images shown
in Figs. 5 and 7(e), Figs. 6 and 8(j), and Fig. 9(g). For the
images presented in Figs. 6-8(d), and Fig. 9(j), the output
images contained very dark areas, which induced abnormally
high global contrast, average saturation, and then induced
high UCIQE values as listed in Tables 5-9. In Tables 5-9,
it also can be seen that the UIQM values of images obtained
by the method of Li et al. [87] were influenced by the
color deviations in the enhanced images, which was repre-
sented as higher chroma variance and local contrast. The
Pearson’s linear correlation coefficient (PLCC), Spearma’s
rank ordered correlation coefficient (SROCC), and root mean
square error (RMSE) of the MOS and the UCIQE and
UIQM values of the images presented in Figs. 5-9 are shown
in Table 10, wherein it can be observed that the performance
of UCIQE was better than that of UIQM when the fifteen

TABLE 6. Image quality evaluations for yellowish underwater images
in Fig. 6

TABLE 7. Image quality evaluations for greenish underwater images
in Fig. 7.

underwater images were used for testing. TheMOS value was
obtained by using the subjective underwater image quality
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TABLE 8. Image quality evaluations for whitish underwater images
in Fig. 8.

evaluation procedure, which was proposed in our another
work [123].

In summary, the accuracy of the state-of-the-art underwater
image quality evaluation methods was not satisfactory due
to the complexity of imaging environment of the underwater
image (there was a lighting source) and degradation types
(color deviation, lower contrast and noise, blurring, etc.).
In particular, the authenticity of color restoration and the
degree of detail restoration in dark areas were not in line
with the quality evaluation criteria of subjective visual judg-
ment. The average execution time of the UCIQE, UIQM
and PCQI for underwater images shown in Table 11. The
size of the test image was 778 × 1037 × 3, and tests were
conducted on 3.2 GHz frequency Intel i5 double-core CPU
and 8GB of RAM by using Matlab 2012b software. The data
in Table 11 shows that UCIQE has the fastest execution speed,
and it is applicable to the real-time underwater applications.
The download links for some available codes are shown
in Appendix B.

IV. DISCUSSION
In the future research on underwater image processing,
researchers should consider the following aspects to carry out
relevant work.

A. ALGORITHM ADAPTIVITY
The comparison and analysis presented in this paper prove
that a satisfactory result can be obtained by adopting an

TABLE 9. Image quality evaluations for deep sea images in Fig. 9.

TABLE 10. Correlation between the underwater image quality evaluation
metrics and mos.

TABLE 11. Average execution time of the UCIQE, UIQM and PCQI.

appropriate enhancement method for various underwater
tasks and environments. The ideal algorithm should be able
to analyze the information of the input underwater image
automatically, and make an adaptive adjustment for different
scenes and lighting conditions to meet the requirements of
complex situations. There is still a lack of research on the
selection of an appropriate underwater enhancement method.
In addition, the influence of uneven illumination from artifi-
cial lighting sources is less discuss. Besides, motion blurring
is a degradation which exists in almost every underwater
image, but it is rarely considered in enhancement or restora-
tion methods.

B. BEYOND WORKING WITH SINGLE IMAGE
The research on the underwater video processing needs to
be expanded; namely, most researches focus on a single
underwater image and pay little attention to underwater video
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TABLE 12. Underwater image defogging based on DCP.
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TABLE 12. (Continued.) Underwater image defogging based on DCP.

TABLE 13. Download links for some codes.

processing, but the underwater video processing has a crucial
role in practical applications. Presently, there are many prob-
lems which need urgent solutions: for instance, underwater
video processing efficiency and inter-frame consistency need
to be addressed.

C. UNIVERSALITY OF OBJECTIVE QUALITY EVALUTION
OF UNDERWATER IMAGE
The contrast and partial color enhancements cannot be
correctly evaluated by the existing underwater image qual-
ity evaluation methods. Establishment of a significant stan-
dardized objective evaluation method for underwater image
enhancement is a challenge. Although the existing natu-
ral image databases play an important role in advancing
the field of image quality prediction, image distortion in
these databases is either single distortion simulated man-
ually or distortion of an image taken by mobile devices.
The images in the databases are scarcely underwater images.
Furthermore, the performance of an image quality evaluation

method based on the training using only one database is
often poor when that method is applied to another database.
However, it is very difficult to collect all kinds of dis-
torted underwater images at all levels to produce meaningful
evaluation results since underwater images are taken in an
environment that is uncontrollable and unpredictable. The
deep learning offers a potentially powerful framework
for achieving sought-after gains in performance. However,
the deep learning progress is limited by a lack of adequate
amount of distorted picture data and ground-truth subjective
quality scores. To the best of authors’ knowledge, currently,
there is no subjective quality benchmark database for under-
water images. The measurement of color image enhancement
or restoration results for different underwater assignments is
difficult but important for automatic and real-time underwater
processing.

V. CONCLUSION
In this paper, the existing methods for underwater image
enhancement and restoration were introduced and the com-
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mon problems in these methods were summarized. The
effects of the typical underwater image enhancement and
restorationmethods on blueish, greenish, yellowish, offshore,
and deep-sea images were compared, which provided a refer-
ence for the selection of most suitable method for underwater
image enhancements under various cases. Besides, the limita-
tions and accuracy of thewidely-used underwater image qual-
ity evaluation metrics were analyzed. We also summarized
the mostly used underwater image datasets and suggested
possible research directions for future research.

APPENDIX A
See Table 12.

APPENDIX B
See Table 13.

REFERENCES
[1] C. S. Tan, G. Seet, A. Sluzek, and D. He, ‘‘A novel application of

range-gated underwater laser imaging system (ULIS) in near-target turbid
medium,’’ Opt. Lasers Eng., vol. 43, no. 9, pp. 995–1009, Sep. 2005.

[2] Y. W. Huang, F. Cao, W. Jin, and S. Qiu, ‘‘Underwater pulsed laser range-
gated imagingmodel and its effect on image degradation and restoration,’’
Opt. Eng., vol. 53, no. 6, Dec. 2013, Art. no. 061608.

[3] F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, ‘‘An AUV-
deployable pulsed laser line scan (PLLS) imaging sensor,’’ in Proc. IEEE
Oceans, Sep./Oct. 2007, pp. 1–5.

[4] Z. P. Xu, H. H. Shen, and Y. Yao, ‘‘Scannerless laser active imaging
validating system by directly ranging,’’ Opt. Precis. Eng., vol. 24, no. 2,
pp. 251–259, 2016.

[5] K. Ingrid, ‘‘Underwater Imaging and the effect of inherent optical prop-
erties on image quality,’’ M.S. thesis, Dept. Bio., Norwegian Univ. Sci.
Technol., Trondheim, Norway, 2014.

[6] G. Johnsen, Z. Volent, E. Sakshaug, F. Sigernes, and L. H. Pettersson,
‘‘Remote sensing in the Barents Sea,’’ in Ecosystem Barents Sea,
E. Sakshaug, G. Johnsen, and K. Kovacs, Eds. Trondheim, Norway:
Academic, 2009, pp. 139–166.

[7] H. Lu, Y. Li, Y. Zhang, M. Chen, S. Serikawa, and H. Kim, ‘‘Underwater
optical image processing: A comprehensive review,’’Mobile Netw. Appl.,
vol. 22, no. 6, pp. 1204–1211, 2017.

[8] R. Schettini and S. Corchs, ‘‘Underwater image processing: State of the
art of restoration and image enhancement methods,’’ EURASIP J. Adv.
Signal Process., vol. 2010, no. 1, Dec. 2010, Art. no. 746052.

[9] M. Boffety, F. Galland, and A. G. Allais, ‘‘Color image simulation
for underwater optics,’’ Appl. Opt., vol. 51, no. 23, pp. 5633–5642,
Aug. 2012.

[10] A. Arnold-Bos, J. P. Malkasse, and G. Kervern, ‘‘Towards a model-free
denoising of underwater optical images,’’ in Proc. IEEE Eur. Oceans
Conf., vol. 1, Jun. 2005, pp. 527–532.

[11] M. Arredondo and K. Lebart, ‘‘A methodology for the systematic assess-
ment of underwater video processing algorithms,’’ in Proc. IEEE Eur.
Oceans Conf., vol. 1. Jun. 2005, pp. 362–367.

[12] Z. Liu, Y. Yu, K. Zhang, and H. Huang, ‘‘Underwater image transmission
and blurred image restoration,’’ Opt. Eng., vol. 40, no. 6, pp. 1125–1131,
Jun. 2001.

[13] W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand,
‘‘Automated underwater image restoration and retrieval of related optical
properties,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2007,
pp. 1889–1892.

[14] W. Hou, A. D. Weidemann, D. J. Gray, and G. R. Fournier, ‘‘Imagery-
derived modulation transfer function and its applications for underwater
imaging,’’ Proc. SPIE, vol. 6696, Sep. 2007, Art. no. 669622.

[15] W. Hou, D. J. Gray, A. D. Weidemann, and R. A. Arnone, ‘‘Comparison
and validation of point spread models for imaging in natural waters,’’Opt.
Express, vol. 16, no. 13, pp. 9958–9965, Jun. 2008.

[16] V. A. Del Grosso, ‘‘Modulation transfer function of water,’’ in Proc. IEEE
Oceans, Sep. 1975, pp. 331–347.

[17] V. A. Del Grosso, ‘‘Optical transfer function measurements in the sar-
gasso sea,’’ Proc. SPIE, vol. 0160, pp. 74–101, Nov. 1978.

[18] K. J. Voss and A. L. Chapin, ‘‘Measurement of the point spread function
in the ocean,’’ Appl. Opt., vol. 29, no. 25, pp. 3638–3642, Sep. 1990.

[19] Y. Cho and A. Kim, ‘‘Visibility enhancement for underwater visual
SLAM based on underwater light scattering model,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May./Jun. 2017, pp. 710–717.

[20] A. Davis, ‘‘Light emitting diode source modeling for optical design,’’
Reflexite Display Opt., pp. 1–66, Oct. 2004.

[21] S. Ishibashi, ‘‘The study of the underwater camera model,’’ in Proc. IEEE
Oceans, Jun. 2011, pp. 1–6.

[22] E. Nascimento, M. Campos, and W. Barros, ‘‘Stereo based structure
recovery of underwater scenes from automatically restored images,’’ in
Proc. 22th Brazilian Symp. Comput. Graph. Image Process. (SIBGRAPI),
Oct. 2009, pp. 330–337.

[23] Y. Chen, B. Yang, M. Xia, W. Li, K. Yang, and X. Zhang, ‘‘Model-
based super-resolution reconstruction techniques for underwater imag-
ing,’’ Proc. SPIE, vol. 8332, Nov. 2012, Art. no. 83320G.

[24] Y. Chen, K. Yang, X. Zhang, M. Xia, and W. Li, ‘‘Modelling of beam
propagation and its applications for underwater imaging,’’ Frontiers
Optoelectron. China, vol. 4, no. 4, pp. 398–406, Dec. 2011.

[25] L. Xu, G. Seet, and D.-M. He, ‘‘The effect of illumination volume
in underwater camera image,’’ Proc. SPIE, vol. 5852, pp. 886–894,
Apr. 2005.

[26] B. L. Mcglamery, ‘‘Computer analysis and simulation of underwater
camera system performance,’’ SIO Ref, vol. 75, no. 2, Jan. 1975.

[27] B. L. McGlamery, ‘‘A computer model for underwater camera systems,’’
Proc. SPIE, vol. 208, pp. 221–231, Mar. 1980,

[28] J. S. Jaffe, ‘‘Computer modeling and the design of optimal underwater
imaging systems,’’ IEEE J. Ocean. Eng., vol. 15, no. 2, pp. 101–111,
Apr. 1990.

[29] E. Trucco and A. T. Olmos-Antillon, ‘‘Self-tuning underwater image
restoration,’’ IEEE J. Ocean. Eng., vol. 31, no. 2, pp. 511–519,
Apr. 2006.

[30] A. Olmos and E. Trucco, ‘‘Detecting man-made objects in uncon-
strained subsea videos,’’ in Proc. Brit. Mach. Vis. Conf., Sep. 2002,
pp. 1–10.

[31] A. Olmos, E. Trucco, and D. Lane, ‘‘Automatic man-made object detec-
tion with intensity cameras,’’ in Proc. IEEE Conf. Oceans, vol. 3,
Oct. 2002, pp. 1555–1561.

[32] Y. Wang and B. Wu, ‘‘Fast clear single underwater image,’’ in Proc. Int.
Conf. Comput. Intell. Softw. Eng. (CISE), Dec. 2010, pp. 1–4.

[33] K. He, J. Sun, and X. Tang, ‘‘Single image haze removal using dark
channel prior,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341–2353, Dec. 2011.

[34] D. Akkaynak and T. Treibitz, ‘‘Sea-thru: A method for removing water
from underwater images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2019, pp. 1682–1691.

[35] R. E. Hufnagel and N. R. Stanley, ‘‘Modulation transfer function asso-
ciated with image transmission through turbulent media,’’ J. Opt. Soc.
Amer., vol. 54, no. 1, pp. 52–60, Jan. 1964.

[36] H. Zhang, Y.-R. Xu, L. Wan, X.-D. Tang, and H.-P. Cai, ‘‘Processing
method for underwater degenerative image,’’ J. Tianjin Univ., vol. 43,
no. 9, pp. 827–834, 2010.

[37] M. Yang and Z. Q. Wei, ‘‘Underwater image adaptive restoration and
evaluation by turbulence degradation model,’’ Ocean Technol., vol. 31,
no. 4, pp. 26–31, Apr. 2012.

[38] N. Carlevaris-Bianco, A. Mohan, and R. M. Eustice, ‘‘Initial results in
underwater single image dehazing,’’ in Proc. IEEE Oceans, Sep. 2010,
pp. 1–8.

[39] J. Y. Chiang and Y.-C. Chen, ‘‘Underwater image enhancement by wave-
length compensation and dehazing,’’ IEEE Trans. Image Process., vol. 21,
no. 4, pp. 1756–1769, Apr. 2012.

[40] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila, ‘‘Automatic red-
channel underwater image restoration,’’ J. Vis. Commun. Image Repre-
sent., vol. 26, pp. 132–145, Jan. 2015.

[41] P. Drews, Jr., E. do Nascimento, F. Moraes, S. Botelho, and M. Campos,
‘‘Transmission estimation in underwater single images,’’ in Proc. IEEE
Int. Conf. Comput. Vis. Workshops, Jun. 2013, pp. 825–830.

123654 VOLUME 7, 2019



M. Yang et al.: In-Depth Survey of Underwater Image Enhancement and Restoration

[42] Y.-T. Peng, X. Zhao, and P. C. Cosman, ‘‘Single underwater image
enhancement using depth estimation based on blurriness,’’ in Proc. IEEE
Int. Conf. Image Process., Sep. 2015, pp. 4952–4956.

[43] X. Zhao, T. Jin, and S. Qu, ‘‘Deriving inherent optical properties from
background color and underwater image enhancement,’’ Ocean Eng.,
vol. 94, pp. 163–172, Jan. 2015.

[44] S. Emberton, L. Chittka, and A. Cavallaro, ‘‘Hierarchical rank-based
veiling light estimation for underwater dehazing,’’ in Proc. Brit. Mach.
Vis. Conf., vol. 125, Jan. 2015, pp. 1–12.

[45] Y.-T. Peng and P. C. Cosman, ‘‘Single image restoration using scene
ambient light differential,’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2016, pp. 1953–1957.

[46] Y. Cho, Y.-S. Shin, and A. Kim, ‘‘Online depth estimation and applica-
tion to underwater image dehazing,’’ in Proc. IEEE Oceans, Sep. 2016,
pp. 1–7.

[47] C. Li, J. Guo, S. Chen, Y. Tang, Y. Pang, and J. Wang, ‘‘Underwater
image restoration based on minimum information loss principle and
optical properties of underwater imaging,’’ inProc. IEEE Int. Conf. Image
Process., Sep. 2016, pp. 1993–1997.

[48] C. Ancuti, C. O. Ancuti, C. De Vleeschouwer, R. Garcia, and
A. C. Bovik, ‘‘Multi-scale underwater descattering,’’ in Proc. 23rd Int.
Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 4202–4207.

[49] Y.-T. Peng and P. C. Cosman, ‘‘Underwater image restoration based on
image blurriness and light absorption,’’ IEEE Trans. Image Process.,
vol. 26, no. 4, pp. 1579–1594, Apr. 2017.

[50] C. Li, J. Guo, C. Guo, R. Cong, and J. Gong, ‘‘A hybrid method for
underwater image correction,’’Pattern Recognit. Lett., vol. 94, pp. 62–67,
Jul. 2017.

[51] X. Ding, Y. Wang, J. Zhang, and X. Fu, ‘‘Underwater image dehaze using
scene depth estimation with adaptive color correction,’’ in Proc. IEEE
Oceans, Jun. 2017, pp. 1–5.

[52] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, L. Neumann, and
R. Garcia, ‘‘Color transfer for underwater dehazing and depth estima-
tion,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2017, pp. 695–699.

[53] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and R. Garcia, ‘‘Locally
adaptive color correction for underwater image dehazing and matching,’’
in Proc. IEEE Comput. Vis. Pattern Recognit. Workshops, Jul. 2017,
pp. 1–9.

[54] Y. Wang, H. Liu, and L.-P. Chau, ‘‘Single underwater image restoration
using attenuation-curve prior,’’ in Proc. IEEE Int. Symp. Circuits Syst.,
May 2017, pp. 1–4.

[55] Y. Wang, H. Liu, and L.-P. Chau, ‘‘Single underwater image restoration
using adaptive attenuation-curve prior,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 3, pp. 992–1002, Mar. 2018.

[56] S. Emberton, L. Chittka, and A. Cavallaro, ‘‘Underwater image and
video dehazing with pure haze region segmentation,’’Comput. Vis. Image
Understand., vol. 168, pp. 145–156, Mar. 2018.

[57] M. Hou, R. Liu, X. Fan, and Z. Luo, ‘‘Joint residual learning for under-
water image enhancement,’’ in Proc. IEEE Int. Conf. Image Process.,
Oct. 2018, pp. 4043–4047.

[58] M.Yang, A. Sowmya, Z.Wei, and B. Zheng, ‘‘Offshore underwater image
restoration using reflection-decomposition-based transmission map esti-
mation,’’ IEEE J. Ocean. Eng., to be published.

[59] K. Wang, E. Dunn, J. Tighe, and J.-M. Frahm, ‘‘Combining semantic
scene priors and haze removal for single image depth estimation,’’ inProc.
IEEE Winter Conf. Appl. Comput. Vis., Mar. 2014, pp. 800–807.

[60] S. Ghosh, S. R. K. Vadali, R. Ray, and S. N. Shome, ‘‘Light-particle
interaction in underwater: A modified PSF,’’ in Proc. Int. Conf. Commun.
Signal Process. (ICCSP), Apr. 2014, pp. 1557–1562.

[61] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[62] M. J. Huiskes and M. S. Lew, ‘‘The MIR flickr retrieval evaluation,’’ in
Proc. 1st ACM Int. Conf. Multimedia Inf. Retr., Oct. 2008, pp. 39–43.

[63] Q. Zhu, J. Mai, and L. Shao, ‘‘A fast single image haze removal algorithm
using color attenuation prior,’’ IEEE Trans. Image Process., vol. 24,
no. 11, pp. 3522–3533, Nov. 2015.

[64] L. Breiman, ‘‘Random forest,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[65] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[66] A. Saxena, M. Sun, and A. Y. Ng, ‘‘Make3D: Learning 3D scene structure
from a single still image,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 5, pp. 824–840, May 2009.

[67] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[68] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, ‘‘Indoor segmentation
and support inference from RGBD images,’’ in Proc. Eur. Conf. Comput.
Vis., Oct. 2012, pp. 746–760.

[69] K. R. Rai, P. Gour, and B. Singh, ‘‘Underwater image segmentation using
CLAHE enhancement and thresholding,’’ Int. J. Emerg. Technol. Adv.
Eng., vol. 2, no. 1, pp. 118–123, Jan. 2012.

[70] S. Vasamsetti, N. Mittal, B. C. Neelapu, and H. K. Sardana, ‘‘Wavelet
based perspective on variational enhancement technique for underwater
imagery,’’ Ocean Eng., vol. 141, pp. 88–100, Sep. 2017.

[71] H. W. Han, X. H. Zhang, and W. L. Ge, ‘‘A mixed noise reduction algo-
rithm for underwater laser images based on soft-morphological filter,’’
Acta Photonica Sinica, vol. 40, no. 1, pp. 136–141, 2011.

[72] A. Arnold-Bos, J.-P. Malkasse, and G. Kervern, ‘‘A preprocessing frame-
work for automatic underwater images denoising,’’ in Proc. Eur. Conf.
Propag. Syst., Brest, France, Mar. 2005, pp. 15–18.

[73] S. Bazeille, I. Quidu, L. Jaulin, and J.-P. Malkasse, ‘‘Automatic under-
water image pre-processing,’’ in Proc. Caracterisation Du Milieu Marin,
Oct. 2006, pp. 16–19.

[74] D.-X. Jia and Y.-R. Ge, ‘‘Underwater image de-noising algorithm based
on nonsubsampled contourlet transform and total variation,’’ in Proc. Int.
Conf. Comput. Sci. Inf. Process., Aug. 2012, pp. 76–80.

[75] M. Chambah, D. Semani, A. Renouf, P. Coutellemont, and A. Rizzi,
‘‘Underwater color constancy: Enhancement of automatic live fish recog-
nition,’’ in Proc. Electron. Imag., Int. Soc. Opt. Photon., Dec. 2003,
pp. 157–168.

[76] A. S. A. Ghani andN.A.M. Isa, ‘‘Underwater image quality enhancement
through composition of dual-intensity images and Rayleigh-stretching,’’
SpringerPlus, vol. 3, no. 1, p. 757, Dec. 2014.

[77] A. S. A. Ghani andN.A.M. Isa, ‘‘Underwater image quality enhancement
through integrated color model with Rayleigh distribution,’’ Appl. Soft
Comput., vol. 27, pp. 219–230, Feb. 2015.

[78] L. A. Torres-Méndez and G. Dudek, ‘‘Color correction of underwater
images for aquatic robot inspection,’’ in Proc. Int. Workshop Energy Min-
imization Methods Comput. Vis. Pattern Recognit., Nov. 2005, pp. 60–73.

[79] K. Iqbal, R. A. Salam, A. Osman, and A. Z. Talib, ‘‘Underwater image
enhancement using an integrated colour model,’’ Int. J. Comput. Sci.,
vol. 34, no. 2, pp. 1–6, Dec. 2007.

[80] F. Petit, A.-S. Capelle-Laize, and P. Carre, ‘‘ Underwater image enhance-
ment by attenuation inversionwith quaternions,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Apr. 2009, pp. 1177–1180.

[81] C. Ancuti, C. O. Ancuti, T. Haber, and P. Bekaert, ‘‘Enhancing underwater
images and videos by fusion,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pp. 81–88, Jun. 2012.

[82] X. Fu, P. Zhuang, Y. Huang, Y. Liao, X.-P. Zhang, and X. Ding,
‘‘A Retinex-based enhancing approach for single underwater image,’’ in
Proc. IEEE Int. Conf. Image Process., Oct. 2014, pp. 4572–4576.

[83] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, ‘‘Color
balance and fusion for underwater image enhancement,’’ IEEE Trans.
Image Process., vol. 27, no. 1, pp. 379–393, Jan. 2018.

[84] S. Zhang, T.Wang, J. Dong, and H. Yu, ‘‘Underwater image enhancement
via extended multi-scale Retinex,’’ Neurocomputing, vol. 245, Jul. 2017,
pp. 1–9.

[85] J. Perez, A. C. Attanasio, N. Nechyporenko, and P. J. Sanz, ‘‘A deep learn-
ing approach for underwater image enhancement,’’ in Proc. Int. Work-
Conf. Interplay Between Natural Artif. Comput., Jun. 2017, pp. 183–192.

[86] J. Li, K. A. Skinner, R. M. Eustice, and M. Johnson-Roberson, ‘‘Water-
GAN: Unsupervised generative network to enable real-time color correc-
tion of monocular underwater images,’’ IEEE Robot. Autom. Lett., vol. 3,
no. 1, pp. 387–394, Jan. 2018.

[87] C. Li, J. Guo, and C. Guo, ‘‘Emerging from water: Underwater image
color correction based on weakly supervised color transfer,’’ IEEE Signal
Process. Lett., vol. 25, no. 3, pp. 323–327, Mar. 2018.

[88] E. H. Land and J. J. McCann, ‘‘Lightness and Retinex theory,’’ J. Opt.
Soc. Amer., vol. 61, no. 1, pp. 1–11, 1971.

VOLUME 7, 2019 123655



M. Yang et al.: In-Depth Survey of Underwater Image Enhancement and Restoration

[89] E. H. Land, ‘‘The Retinex,’’ Amer. Sci., vol. 52, no. 2, pp. 247–253 and
255–264, 1964.

[90] E. H. Land, ‘‘The Retinex theory of color vision,’’ Sci. Amer., vol. 237,
no. 6, pp. 108–128, Dec. 1977.

[91] M. Bryson, M. Johnson-Roberson, O. Pizarro, and S. B. Williams, ‘‘True
color correction of autonomous underwater vehicle imagery,’’ J. Field
Robot., vol. 33, no. 6, pp. 853–874, 2016.

[92] I. Goodfellow, J. Pouget-Abadie, M. Mirza, D. Warde-Farley, B. Xu,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’
in Proc. Int. Conf. Neural Inf. Process. Syst., vol. 2, Dec. 2014,
pp. 2672–2680.

[93] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,’’ 2015,
arXiv:1511.00561. [Online]. Available: https://arxiv.org/abs/1511.00561

[94] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’ 2015,
arXiv:1511.06434. [Online]. Available: https://arxiv.org/abs/1511.06434

[95] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[96] Q. Xu, Q. Huang, and Y. Yao, ‘‘Online crowdsourcing subjective
image quality assessment,’’ in Proc. 20th ACM Int. Conf. Multimedia,
pp. 359–368, Nov. 2012.

[97] Y. Y. Schechner and N. Karpel, ‘‘Recovery of underwater visibility and
structure by polarization analysis,’’ IEEE J. Ocean. Eng., vol. 30, no. 3,
pp. 570–587, Jul. 2005.

[98] K. Panetta, C. Gao, and S. Agaian, ‘‘Human-visual-system-inspired
underwater image quality measures,’’ IEEE J. Ocean. Eng., vol. 41, no. 3,
pp. 541–551, Jul. 2015.

[99] M. Yang and A. Sowmya, ‘‘An underwater color image quality evaluation
metric,’’ IEEE Trans. Image Process., vol. 24, no. 12, pp. 6062–6071,
Dec. 2015.

[100] H. Lu, Y. Li, and S. Serikawa, ‘‘Underwater image enhancement using
guided trigonometric bilateral filter and fast automatic color correction,’’
in Proc. IEEE Int. Conf. Image Process., Sep. 2013, pp. 3412–3416.

[101] Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, ‘‘Non-uniform de-
scattering and de-blurring of underwater images,’’ Mobile Netw. Appl.,
vol. 23, pp. 352–362, Apr. 2018.

[102] J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi,
‘‘Depth and image restoration from light field in a scattering medium,’’
in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 2401–2410.

[103] G. Hou, Z. Pan, B. Huang, G. Wang, and X. Luan, ‘‘Hue preserving-
based approach for underwater colour image enhancement,’’ IET Image
Process., vol. 12, no. 2, pp. 292–298, Feb. 2018.

[104] Y. Wang, X. Ding, R. Wang, J. Zhang, and X. Fu, ‘‘Fusion-based under-
water image enhancement by wavelet decomposition,’’ in Proc. IEEE Int.
Conf. Ind. Technol., Mar. 2017, pp. 1013–1018.

[105] H. Lu, Y. Li, X. Xu, L. He, Y. Li, D. Dansereau, and S. Serikawa,
‘‘Underwater image descattering and quality assessment,’’ in Proc. IEEE
Int. Conf. Image Process., Sep. 2016, pp. 1998–2002.

[106] C. Akila and R. Varatharajan, ‘‘Color fidelity and visibility enhancement
of underwater image de-hazing by enhanced fuzzy intensification opera-
tor,’’Multimedia Tools Appl., vol. 77, no. 4, pp. 4309–4322, Feb. 2018.

[107] N. Wang, H. Zheng, and B. Zheng, ‘‘Underwater image restora-
tion via maximum attenuation identification,’’ IEEE Access, vol. 5,
pp. 18941–18952, 2017.

[108] G. Cutter, K. Stierhoff, and J. Zeng, ‘‘Automated detection of rockfish in
unconstrained underwater videos using Haar cascades and a new image
dataset: Labeled fishes in the wild,’’ in Proc. IEEE Winter Appl. Comput.
Vis. Workshops, vol. 1, Jan. 2015, pp. 57–62.

[109] Port Royal Underwater Image Database and Underwater Rock
Image Database. Accessed: Aug. 27, 2019. [Online]. Available:
https://github.com/kskin/WaterGAN/

[110] M. Jian, Q. Qi, J. Dong, Y. Yin, W. Zhang, and K.-M. Lam, ‘‘The OUC-
vision large-scale underwater image database,’’ in Proc. IEEE Int. Conf.
Multimedia Expo., Jul. 2017, pp. 1297–1302.

[111] Underwater Photography Fish Database. Accessed: Aug. 27, 2019.
[Online]. Available: http://www.fishdb.co.uk/

[112] HabCamUnderwater Image Dataset. Accessed: Aug. 27, 2019. [Online].
Available: https://habcam.whoi.edu/

[113] CVPR 2018 Workshop and Challenge (AAMVEM). Accessed:
Aug. 27, 2019. [Online]. Available: http://www.viametoolkit.org/cvpr-
2018-workshop-data-challenge/challenge-data-description/

[114] CVPR 2019 Workshop and Challenge (AAMVEM). Accessed:
Aug. 27, 2019. [Online]. Available: https://www.aamvem.com/data-
challenge

[115] MBARI Underwater Image Dataset. Accessed: Aug. 27, 2019. [Online].
Available: https://www.mbari.org

[116] R. Liu, X. Fan, M. Zhu, M. Hou, and Z. Luo, ‘‘Real-world under-
water enhancement: Challenges, benchmarks, and solutions,’’ 2019,
arXiv:1901.05320. [Online]. Available: https://arxiv.org/abs/1901.05320

[117] RUIE Dataset. Accessed: Aug. 27, 2019. [Online]. Available: https://git-
hub.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-RUIE-
Benchmark

[118] D. Berman, D. Levy, S. Avidan, and T. Treibitz, ‘‘Underwater sin-
gle image color restoration using haze-lines and a new quantitative
dataset,’’ 2018, arXiv:1811.01343. [Online]. Available: https://arxiv.
org/abs/1811.01343

[119] RGBD Underwater Image Dataset. Accessed: Aug. 27, 2019. [Online].
Available: http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_
forwardlooking/index.html

[120] Fish4Knowledge. Accessed: Aug. 27, 2019. [Online]. Available: http://
homepages.nf.ed.ac.uk/rbf/Fish4Knowledge/?tdsourcetag=s_pcqq_
aiomsg

[121] B. J. Boom, J. He, S. Palazzo, P. X. Huang, C. Beyan, H.-M. Chou,
F.-P. Lin, C. Spampinato, and R. B. Fisher, ‘‘A research tool for long-
term and continuous analysis of fish assemblage in coral-reefs using
underwater camera footage,’’Ecol. Inform., vol. 23, pp. 83–97, Sep. 2014.

[122] A. Rizzi, C. Gatta, and D. Marini, ‘‘A new algorithm for unsupervised
global and local color correction,’’ Pattern Recognit. Lett., vol. 24, no. 11,
pp. 1663–1677, Jul. 2003.

[123] M. Yang, Y. Du, Y. Huang, H. Liu, Z. Wei, J. Hu, K. Hu, and Z. Sheng,
‘‘Preselection based subjective preference evaluation for the quality of
underwater images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshop, Jun. 2019, pp. 34–43.

MIAO YANG (M’12) was born in Wuchang, Hei-
longjiang, China, in 1978. She received the B.S.
and M.S. degrees in electronic engineering from
Lanzhou University, Gansu, China, in 2004, and
the Ph.D. degree in information science and engi-
neering from the OceanUniversity of China, Qing-
dao, in 2009. From 2010 to 2013, she was a Post-
doctoral Fellow with the Internet of Things Engi-
neering Department, Jiangnan University, China.
Since 2009, she has been a Professor with the

Electronic Engineering Department, Jiangsu Ocean University. She is cur-
rently a Visiting Scholar with the Department of Biomedical Engineering,
the Department of Biomedical Engineering, and the Department of Elec-
trical and Computer Engineering, University of Virginia, USA. She is also
with Qingdao National Laboratory of Marine Science and Technology in
Underwater Image Understanding. Her research interests include underwater
vision, image processing, computer vision, and 3-D reconstruction.

JINTONG HU was born in Nantong, Jiangsu,
China, in 1993. He received the B.E. degree in
electronic information engineering from Jiangsu
Ocean University, Jiangsu, in 2016. He is currently
pursuing the master’s degree with the Depart-
ment of Mechanical and Ocean Engineering,
Jiangsu Ocean University, Lianyungang, Jiangsu.
His research interests include image processing
and the machine learning.

123656 VOLUME 7, 2019



M. Yang et al.: In-Depth Survey of Underwater Image Enhancement and Restoration

CHONGYI LI received the Ph.D. degree from the
School of Electrical and Information Engineering,
Tianjin University, Tianjin, China, in June 2018.
From 2016 to 2017, he took one-year study at the
Research School of Engineering, The Australian
National University (ANU), as a Visiting Ph.D.
Student, supported by the CSC. He is currently
a Postdoctoral Research Fellow with the Depart-
ment of Computer Science, City University of
Hong Kong. His current research interests include

image processing, computer vision, and deep learning, particularly in the
domains of image restoration and enhancement, such as images captured
under the bad weather (hazy, foggy, sandy, dusty, rainy, and snowy day)
and special circumstances (underwater and weak illumination). He also
focuses on other low-level vision problems, such as image/depth super-
resolution reconstruction, image deblurring, image denoising, and multi-
exposure image fusion.

GUSTAVO ROHDE received the B.S. and the
M.S. degrees in electrical engineering and
computer science from Vanderbilt University,
Nashville, TN, USA, in 1999 and 2001, respec-
tively, and the Ph.D. degree in appliedmathematics
and scientific computation from the University
of Maryland, College Park, MD, USA, in 2005.
He is currently an Associate Professor with the
Department of Biomedical Engineering and the
Department of Electrical and Computer Engineer-

ing, University of Virginia, USA. His current research interests include build
intelligent systems based on mathematical modeling of signal and image
data, with applications in biomedicine, mobile, and remote sensing.

YIXIANG DU is currently pursuing the joint mas-
ter’s degree with the China University of Mining
and Technology and Jiangsu Ocean University. He
studied electronics and information engineering
at Liaocheng University, from 2012 to 2016. His
research interests include image processing, 5G,
and machine learning.

KE HU was born in Changge, Henan, China,
in 1993. He received the B.E. degree in electronic
information engineering from Jiangsu Ocean Uni-
versity, Lianyungang, Jiangsu, China, in 2016,
where he is currently pursuing the master’s degree
with the Department of Mechanical and Ocean
Engineering. His research interests include image
processing and machine learning.

VOLUME 7, 2019 123657


