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ABSTRACT A phasor measurement unit (PMU) is a device that can directly measure the phase angles of
voltages and currents, with high accuracy, using accurate time signals. Hence, PMUs have originally been
used to improve the accuracy of transmission system state estimation. The merit of PMUs, further, extends
the scope of its application to distribution system state estimation (DSSE), which has recently been studied
because of the growing needs for distribution system management due to high levels of distributed energy
resources. More importantly, the scarcity of measuring sensors in distribution systems highlights the role of
PMUs for the DSSE. However, the full deployment of PMUs in distribution systems is practically impossible
because of the high installation costs and geographically large size of these systems. Therefore, this paper
investigates the adequate and economic performance of PMUs to meet the DSSE requirement with respect
to the estimation accuracy. The accuracy of different PMU performance classes and the accuracy of various
measurement types are first defined. Different sets of measurements are then assigned to different meter
locations in a testbed that is a three-phase unbalanced, asymmetric system. Various performance metrics for
each case study are computed and compared from the numerical simulation results.

INDEX TERMS Distribution system state estimation, phasor measurement unit, power system state
estimation.

I. INTRODUCTION
In the electric power industry, the time synchronism of mea-
surement data is one of the most critical requirements for
wide area monitoring systems since it enables the determi-
nation of the phase angles of all buses. Traditionally, trans-
mission system operators have utilized state estimation (SE)
to compute these phase angles by collecting all measurements
from supervisory control and data acquisition (SCADA) sys-
tems; however, the collection of a set of measurements for a
specific time takes 2 s or longer, which leads to a low accuracy
of the SE results.

In coping with this issue, phasor measurement units
(PMUs) capable of directly and accurately measuring phasor
angles based on the global positioning system (GPS) have
been used to improve the SE performance in terms of the
estimation accuracy and computational speed [1], [2]. In addi-
tion to the improvement of the SE performance, the direct
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measurement of phase angles enables fast phasor sampling
(i.e., maximum of 120 samples per second), providing numer-
ous benefits such as dynamic SE [3], measurement-based
operation [4], and distributed SE [5].

The importance of distribution system state estimation
(DSSE) has recently grown because of the increasing penetra-
tion of distributed generations (DGs) and power-electronics-
based devices [6]–[10], as well as because of the need for
voltage regulations [11], [12]. Additionally, [13] presented
a multiarea state estimation approach to address numerous
nodes and different voltage levels. The approach was based
on two steps, with the first step being the use of local state
estimators and the second step being the integration of mea-
surement information from adjacent zones and performance
of the linear state estimation. The DSSE can also be applied
to AC-DC hybrid distribution systems using a three-stage
distributed state estimation with the SCADA and PMU mea-
surements [14].

The PMU can play an essential role in the DSSEwhen con-
sidering the lack of sensors in distribution systems. The time
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synchronism and the high sampling rate enhance the DSSE
performance in terms of the estimation accuracy and com-
putation time [15] and further evolve the grid analytics
by pairing with big data [16]. Meanwhile, [17] proposed
a state estimation based on the ensemble Kalman filter to
enhance the current estimation accuracy. The method uti-
lized a pseudo-measurement based on historical data and the
PMU measurement and detached the power flow equations
from the estimator. In [18], the authors analyzed factors for
the accurate estimation of voltage profiles from the DSSE
by mathematically showing how the estimation uncertainty
depends on the PMU or hybrid measurement systems.

However, given full employment of PMUs, the major chal-
lenges that lie in the PMU applications for the DSSE include
high installation costs caused by the size of the distributed
networks. A robust method for the placement of PMUs and
voltage magnitude meters based on the submodular satura-
tion algorithm was presented to cope with the worst case
of estimation at peak loads [19]. However, the method only
considered a single accuracy for the PMU; hence, selecting an
economic time-synchronism protocol and the corresponding
PMUs that can provide adequate performance ensuring grid
observability and obtaining sufficiently accurate, real-time
network models is highly important. For this purpose, this
study investigates the optimum level of accuracy of PMU
measurements for the DSSE to be able to provide the real-
time operating conditions of distribution systems with a high
accuracy.

This paper first defines the different levels of the PMU
accuracy based on time synchronism and then formulates the
measurement model for the DSSE based on the measurement
type. The impact of the PMU accuracy on the DSSE per-
formance is then evaluated by testing different measurement
sets (including PMUs with different accuracies, SCADA
measurements, and smart meters) at the various locations of
the distribution system. The performance criteria are studied
based on the experimental test results and compared with
each other in terms of the accuracy and the robustness against
realistic field conditions, which eventually enlarges a vision
of how to select adequate PMU accuracy.

The remainder of this paper is structured as follows. Firstly,
Section II investigates the requirements of the PMU accuracy
for the DSSE, and then Section III explains the mathematical
formulation of the DSSE. In Section IV, the test distribution
systems for the numerical simulations are described, followed
by observations on the case-study results. Finally, this paper
is concluded in Section V.

II. PMU ACCURACY REQUIREMENTS FOR THE DSSE
Many factors affect the accuracy of PMU measurements,
for example, installation of hardware equipment, distribution
methods of time signals, time-synchronism protocols, phasor
estimation algorithms, and filter designs. A dedicated GPS
receiver can provide a PMU with highly precise time signals,
but installing the GPS receiver for each individual PMU
may be impossible because of high installation costs and

spatial constraints. Therefore, time signals can be distributed
tomultiple PMUs through twisted pair wires or coaxial cables
in accordance with the inter-range instrumentation group B
time codes [20]. Alternatively, time information can also be
transferred via computer networks according to the network
time protocol [21] or the precision time protocol [22], [23].
The time accuracy can be the order of microseconds or a
few milliseconds depending on communication lines or
time-synchronism protocols with different precisions and
latencies. Even though a PMU acquires accurate time
information, phasor estimation algorithms or pre-processing
(or post-processing) filters definitely affect the accuracy
of finally-estimated phasor values. Moreover, these algo-
rithms or filters are quite vendor-specific.

Considering these various factors determining the PMU
accuracy, defining the PMU requirements for the DSSE with
the aforementioned factors is a time-consuming task; hence,
the request for keeping phasor values extracted by a PMU
within the required limits for the DSSE is more viable. As an
example, [24] and [25] defined a metric called the total
vector error (TVE) to test the PMU performance in various
environments. The TVE can be calculated as follows:

TVE ≡

∣∣∣ EVmeasured − EVtrue∣∣∣∣∣∣ EVtrue∣∣∣ , (1)

where EVmeasured is the phasor measured by a PMU, and EVtrue
is the true phasor.

FIGURE 1. TVE for different magnitude errors (i.e., 0%, 0.1%, 0.2%, and
0.3%) and angle errors (from −0.5 to 0.5◦) [25].

Notice that the TVE simultaneously reflects the magnitude
errors and angle ones of phasors. As described in Fig. 1,
the TVE of a phasor is larger than the magnitude error of
the phasor unless the phase error is zero. The TVE increases
almost up to 1%, even with amagnitude error of 0.1%, when a
phase angle is deviated from its true value by 0.5◦, indicating
that the phase angle error has a considerable effect on the TVE
in most cases. Hence, the TVE is a practical metric for the
PMU performance.

This TVE metric was used to verify whether or not a
proposed phasor estimation algorithm or filter [26]–[28]
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meets the desired level of the PMU performance compliant
with [24] and [25]. Accordingly, [26] and [27] assured that
the proposed filters improved the PMU performance to meet
a basic requirement of the TVE (i.e., 1%), and [28] proposed
an adaptive algorithm of phasor estimation based on a Taylor-
Fourier transform, which extracted phasors within the TVE
limits.

In an attempt to assess the DSSE performance, this
paper utilizes the TVE metric in a way that investigates
whether or not the TVEs of all the estimated voltage phasors
are within the allowable range. In [24], a TVE of 1% is
defined as the allowed maximum steady-state error. Note
that 1% TVE corresponds to a phase error of 0.01 radians
(i.e., 0.57◦) and a time error of ±26 µs for a 60Hz system.
The requirement of the 1% TVE is a common standard at the
transmission level, but this study proposes a methodology of
finding the adequate accuracy of PMUs to meet the desired
criterion in the distribution system; hence, one must note that
the 1%TVE is not a strict criterion; rather, the criterion can be
selected in accordance with an operational requirement or a
DSSE application.

It is, however, necessary to point out that the TVE should
be lower than 1% at the boundary between the distribution
and transmission system because of the operational needs
for coordination between them. For example, accurate phasor
information can be used to reconnect an islanded microgrid
and the transmission side, which requires the resynchroniza-
tion [29]. In addition, the accurate estimation of the phase
angles is of prime importance for the computation of the
active power loss in distribution lines, real-time detection
of the reverse power flow of DGs [29], system reconfigura-
tion [30], and resynchronization and reconnection of the DG
to the grid.

The ultimate objective of this paper is to find the time-
synchronism accuracy of PMUs, which will be installed in
distribution systems, such that the DSSE performance crite-
rion is satisfied. As mentioned earlier, the performance of the
PMUs considerably relies on various factors, including time-
synchronism protocols and manufacturers; thus, referring to
the PMU performance classes defined in [31] on the basis of
the time-synchronism accuracy will be more practical than
defining the requirements for each individual factor. Table 1
lists the PMU performance classes in [31].

TABLE 1. Accuracy requirements defined in IEC 61850-5 [31].

Even though a PMU can provide the time measurement
accuracy on the order of microseconds, the measurement

errors are inevitably introduced from the instrumentation
channel including instrument transformers (e.g., poten-
tial or current transformers), burden resistances, attenuators,
and cables [32]. This error, which is a systematic bias,
corresponds to a phase error of up to ±277.8 µs, that is,
±6◦ in a 60 Hz system. Several efforts have been made
to address the error [33], [34]. Meliopoulos et al. proposed
an empirical approach to correct the errors induced from
the instrumentation channel by generating a single transfer
function containing all models along the channel from the
high voltage side to the measurement output [33]. A hybrid,
distributed state estimation that utilizes measurements from
both the SCADA system and the local PMU was presented
in [34]. The method considered the phase error caused by an
unknown delay and exchanged limited information between
adjacent areas, thereby reducing the communication burdens.

Although any systematic and unknown errors such as the
instrument channel error might be introduced to the PMU
measurements, the error can be dealt with using many cali-
brating methods. Moreover, the investigation on the impact of
the error on the PMU accuracy and, subsequently, the DSSE
performance is out of the scope of this paper. We instead
assume that the performance class in Table 1 refers to the
accuracy of the output measurement with respect to the true
value. That is to say, the accuracy reflects all the errors
generated from the high-voltage side to the output.

The cable distance between a GPS receiver and a PMU is
one of the significant sources of time signal errors because a
long cable distance causes the latency of the GPS signal deliv-
ery. However, as in the case of the instrumentation channel
error, the errors induced from the communication latency of
the GPS signals are reflected in the performance class.

III. DSSE FORMULATION
A. WLS STATE ESTIMATION
The SE algorithm used in this study is the well-known
weighted least-squares (WLS) method, which is a suitable
solver for the DSSE because the method has a consistent
and good-quality performance when applied on distributed
networks [35]. The measurement model can mathematically
be defined as follows:

z = h(x)+ η, (2)

where z ∈ Rm is the measurement vector; m is the num-
ber of measurements; x ∈ Rn is the state vector; n is the
number of states; h : Rn

→ Rm is the vector of functions
relating states to measurements; η v N (0,R) is the zero-
mean Gaussian noise vector with the error covariance matrix
R(= diag

{
σ 2(z1), σ 2(z2), . . . , σ 2(zm)

}
); and σ (zi) is the

standard deviation of the i-th measurement.
The WLS problem can be formulated to minimize the

following objective function:

min J (x) = ηTWη = [h(x)− z]T W [h(x)− z] , (3)

where W (= R−1) is the weight matrix. In the end, the states
can be estimated as follows using the Newton-Raphson
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iterative method:

x i+1 = x i − (HTWH )−1HTW
(
h(x i)− z

)
, (4)

where i is the iteration index, and H is the Jacobian matrix of
h(x).

B. DISTRIBUTION LINE MODEL
The major difference of the DSSE from the transmission
system SE is that the distribution systems have asymmetric
line structures and operate in unbalanced conditions. In this
sense, the distribution lines must be modeled in three phases,
considering mutual inductances and capacitances. Fig. 2
illustrates the three-phase π -model of the distribution lines
connecting two adjacent buses, which is used to formulate
the measurement models in the proposed approach.

FIGURE 2. Six-port π-model of the distribution lines.

TABLE 2. Measurement descriptions.

C. MEASUREMENT TYPE
Table 2 shows the following three types ofmeasurements con-
sidered for the DSSE: branch, injection, and virtual measure-
ments. The tilde superscript notation represents the phasor
value. First, the branch measurements are typically located
in the distribution lines to monitor the voltage, current,
and real/reactive power. SCADA systems have previously
obtained the voltage magnitude (|Ṽ |) and the real/reactive
power (P, Q). Now, PMUs, including transmission-level
PMUs and µPMUs [4], [16], [29], [36], [37], can replace

the measurements by directly measuring voltage and current
phasors (Ṽ and Ĩ ).
Smart meters or PMUs can be employed as the injection

measurements. Smart meters measure the voltage magnitude
and real/reactive power like SCADA systems, but its accuracy
is generally lower than that in SCADA systems because the
functional capabilities of smart meters may be limited when
it comes to many radial (or meshed) distribution feeders and,
as a result, the consideration of their economic installation
costs. The loads and generators in the general SE are modeled
as equivalent power injections with real/reactive power [38];
therefore, the same rules apply on DGs and loads for the
DSSE.

Lastly, virtual measurements are introduced based on phys-
ical laws such as Kirchhoff’s current law (KCL). For exam-
ple, a virtual measurement based on KCL is applicable to any
buses without power injections.

D. MEASUREMENT MODEL FORMULATION
GivenNb buses, n state variables corresponding to the voltage
phasors (i.e., Ṽ1, Ṽ2, . . . , ṼNb ) are defined as x1, x2, . . . , xn,
where n = 2Nb. Note that a pair of state variables refers to
the real and imaginary numbers of the corresponding voltage
phasor.

Before formulating themeasurementmodels, the equations
of the branch current and real/reactive power must first be
defined based on the distribution line model in Fig. 2. When
the device model of a distribution line j is expressed as
follows:

[̃Ia, Ĩb, Ĩc, ĨA, ĨB, ĨC ]T = Y [Ṽa, Ṽb, Ṽc, ṼA, ṼB, ṼC ]T , (5)

where Y is the admittance matrix; Ĩa, Ĩb, Ĩc, ĨA, ĨB, and ĨC are
the current phasor at nodes a, b, c, A, B, and C, respectively;
and Ṽa, Ṽb, Ṽc, ṼA, ṼB, and ṼC are the voltage phasors at
nodes a, b, c, A, B, and C, respectively. A current phasor at
node k toward line j is denoted by Ĩj(= Ij,r + jIj,i), which is
expressed as (6).

Ij,r =
n∑

a=1

yaxa, Ij,i =
n∑

b=1

ybxb, (6)

where ya and yb are the coefficients determined by (5).
Denoting a phasor voltage at node k by Ṽk (= xr + jxi),

the real and reactive power at bus k toward line j (i.e., Pj and
Qj) can be obtained by (7) and (8), respectively.

Pj = xr Ij,r + xiIj,i =
n∑

a=1

yaxrxa +
n∑

b=1

ybxixb, (7)

Qj = xiIj,r − xr Ij,i =
n∑

a=1

yaxixa −
n∑

b=1

ybxrxb. (8)

One can now formulate a measurement model for the
DSSE according to its measurement type and quantity as
described in the sub-sections that follow.
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1) VOLTAGE MAGNITUDE SQUARED (BRANCH & INJECTION)
Ṽk is expressed in Cartesian coordinates with xr and xi; hence,
|Ṽk |2 is used as a measurement such that the square root is not
involved in its measurement model. The measurement model
of |Ṽk |2 is expressed as follows:

z
|Ṽk |2 = x2r + x

2
i + η, (9)

where xr and xi are the states referring to the real and imagi-
nary parts of Ṽk , respectively. The standard deviation of z|Ṽk |2
can be computed as follows based on the classical uncertainty
propagation theory [39]:

σ (z
|Ṽk |2 ) = 2|Ṽk |σ (|Ṽk |). (10)

2) REAL/REACTIVE POWER (BRANCH)
The measurement models for Pj and Qj are formulated as
follows based on (7) and (8), respectively:

zPj = Pj + η, zQj = Qj + η. (11)

3) REAL/REACTIVE POWER (INJECTION)
Measurement models for real/reactive power injection mea-
surements (i.e., zPinj and zQinj ) obtained by smart meters can
be created based on KCL, yielding the following equations:

zPinj = −
l∑
j=1

Pj + η, zQinj = −
l∑
j=1

Qj + η, (12)

where l is the number of adjacent lines at bus k . The direction
of the injections is toward the injections themselves.

4) VOLTAGE PHASOR
A PMU is capable of directly measuring Ṽk , formulating the
following measurement models:

zVr = xr + η, zVi = xi + η, (13)

where Vr and Vi are the real and imaginary values of Ṽk ,
respectively, and their measurements can be calculated by
the voltage magnitude (|Ṽk |) and the phase angle (θVk ) that
are normally provided by a PMU. In other words, Vr =
|Ṽk |cos(θVk ) and Vi = |Ṽk |sin(θVk ). Hence, the standard
deviation of zVr and zVi can be computed as follows:

σ (zVr ) =

√(
∂zVr
∂|Ṽk |

)2

σ 2(|Ṽk |)+
(
∂zVr
∂θVk

)2

σ 2(θVk ), (14)

σ (zVi ) =

√(
∂zVi
∂|Ṽk |

)2

σ 2(|Ṽk |)+
(
∂zVi
∂θVk

)2

σ 2(θVk ). (15)

5) CURRENT PHASOR (BRANCH)
The measurement models for Ĩj are created as follows based
on (6):

zIj,r = Ij,r + η, zIj,i = Ij,i + η. (16)

6) CURRENT PHASOR (INJECTION)
When a phasor of a current injection is denoted by
Ĩinj(= Iinj,r+jIinj,i), its measurementmodel can be formulated
based on KCL as (17), consisting of adjacent branch currents
(i.e., Ĩj).

zIinj,r = −
l∑
j=1

Ij,r + η, zIinj,i = −
l∑
j=1

Ij,i + η. (17)

Notice that the direction of the current injections is toward the
injections themselves. As is the case of the voltage phasor
measurements, the current phasor measurements, including
zIj,r , zIj,i , zIinj,r , and zIinj,i , are computed by the current magni-
tude and phase angle that the PMUs provide. Their standard
deviations can be obtained based on the uncertainty propaga-
tion theory.

7) VIRTUAL MEASUREMENT (KCL)
The measurement models for the KCL virtual measurements
are formulated as follows:

zIKCL,r =
l∑
j=1

Ij,r + η, zIKCL,i =
l∑
j=1

Ij,i + η, (18)

where zIKCL,r = 0 and zIKCL,i = 0 by the KCL definition.
In general, the standard deviation of the virtual measurements
are manually selected with high accuracy.

E. CONSIDERATION OF THE MODEL UNCERTAINTY
The system model accuracy is critical in the DSSE perfor-
mance. This study depends on the assumption that the accu-
rate system model (i.e., network impedances) is provided,
and thus, the uncertainty in the model might significantly
affect the accuracy of the DSSE results. In this sense, the net-
work model integrity must be continuously checked along
with the DSSE. The parameter estimation and the topology
processor play an essential role in obtaining accurate infor-
mation on the system model [6]. The network impedance is
reflected in the computation of current and active/reactive
power as expressed in (6) to (8), which are used for the
formulation of measurement models of real/reactive power
branches/injections, current branches/injections, and virtual
measurements. The study on the effect of uncertainty in the
network model is out of the scope of this paper but left in
further research.

IV. CASE STUDY
A 15-bus test system with three-phase asymmetric structures
and unbalanced operations is used to investigate the effect
of the PMU accuracy on the DSSE performance. This test
system is similar to those tested in [15] and [40]. Fig. 3 depicts
this test system, with the marking meter locations having
red/blue and circles/stars/triangles/squares.

A. TEST CONDITIONS
The distribution line parameters per mile used in this study
(Fig. 2) are nearly identical to those of configuration 300 in
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FIGURE 3. Distribution system under testing. For clarification, POC, L, PV,
and WG denote the point of connection, load, photovoltaic, and wind
generator, respectively.

TABLE 3. Distribution line parameters per mile.

TABLE 4. Distribution line length (mile).

the IEEE 34 node test feeder [41] (Table 3). Table 4 also
shows the line length of each section. Table 5 lists the power
injection parameters, including the electric loads and the
DGs. The positive direction of the real/reactive power is
toward the corresponding injection unit.

The nominal parameters of the test system are 24.9 kV,
400 kVA, and 60 Hz, which are applied on the branch mea-
surements. The maximum three-phase rating of the power
injections is approximately 108 kVA according to the given
load and generation conditions in Table 5; therefore, a rating
of 150 kVA is given to the injection measurements.

TABLE 5. Power injection parameters.

Four meter locations are used (Fig. 3), and test cases
(Table 6) are designed in such a way that each location has
a different type of a measuring unit (e.g., SCADA systems,
smart meters, and PMUs) with different accuracies. Different
performance classes defined in Table 1 are selected in the case
of the PMUs. Note that the virtual measurements based on
KCL are applied to buses 2, 8, 10, and 12 for all cases.

However, the branch measurements at the point of con-
nection (POC) are highly crucial because at least a refer-
ence measurement is needed in order for the distribution
management systems (DMSs) to autonomously operate the
distributed networks and because the transmission system
operators monitor voltages and currents at the point near-
est to the transmission side. The re-synchronization of an
islanded microgrid to the main grid, followed by the seamless
reconnection between them, also highly relies on the accurate
measurement of the phase angle at the POC. In this manner,
a T5-class PMU is assumed to be always installed at the
POC, providing highly accurate, time-synchronized branch
measurements.

As specified in [25], the desired accuracy of the voltage and
the current magnitude measured by the PMU is 0.1%, which
is, thus, given to the standard deviations of |Ṽk |, |̃Ij|, and
|̃Iinj|. Regarding the phase angle measurement that the PMU
provides, its standard deviation can be obtained by dividing
its maximum deviation (Table 1) by

√
3 [39].

The typical standard deviations for the SCADA measure-
ments are given to the voltage magnitude and power flows
of 1% and 2%, respectively [1]. The standard deviations for
the remainder are 0.1% for the virtual measurements, 1%
for the voltage magnitude from the smart meters, and 3%
for the power injections from the smart meters. The SCADA
measurement and the smart meter have a non-GPS time
tagging, thereby introducing larger measurement errors than
the PMU measurement. Hence, the standard deviations of
the measurement errors of the SCADA and the smart meter
reflect less accurate time synchronization. More specifically,
the standard deviations of the SCADA measurement and the
smart meter vary by practical conditions such as communica-
tion network latency, time-tagging protocols, and filters.
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In reality, the zero-mean Gaussian noises are added to all
the measurements with the corresponding standard devia-
tions. Furthermore, 300 samples with different measurement
noises are tested for each test case and evaluated based on the
performance metrics. As long as the DSSE uses the SCADA
and smart meters, the time interval of the state estimation is
in the order of minutes.

B. PERFORMANCE METRICS
Several metrics are computed to evaluate the DSSE perfor-
mance after estimating the present states using the DSSE.

1) CONFIDENCE LEVEL
The confidence level, which can be quantified by the well-
known chi-square test, indicates the probability of the good-
ness of fit of measurements to a system model (i.e., how
well the measurements are consistent with the model). The
confidence level is computed as follows with the degree of
freedom, ν, and the chi-square critical value, ζ :

Pr
[
χ2
≥ ζ

]
= 1.0− Pr

[
χ2
≤ ζ

]
= 1.0− Pr(ζ, ν), (19)

such that

ν = m− n, ζ =

m∑
i=1

(
hi(x̂)− zi
σ (zi)

)2

,

where χ2 denotes the chi-square random variables; Pr(ζ, ν)
is the cumulative distribution function of χ2 with ν; and x̂ is
the best estimate of the states.

If the confidence level maintains at 100% during the oper-
ation, the real-time measurements are consistent with the
system model, thereby indicating that no bad data exist as
long as the model is accurate. On the other hand, the low
confidence level implies the existence of any bad data, which
must be followed by the bad data detection process.

2) TVE
Considering the necessary conditions of the PMUs (i.e., the
TVE of the phasors measured by the PMUs should be
within 1%) specified in [25], applying a TVE requirement
on the voltage phasors estimated by the DSSE could be a
reasonable criterion of the DSSE performance evaluation.

3) ROOT MEAN SQUARE ERROR (RMSE)
The RMSE between the estimated states and their true values
over all the samples indicates how close the estimation is to
its true value. The RMSE of a specific state x is calculated as
follows:

RMSEx =

√√√√ Ns∑
i=1

(xi − x̂i)2, (20)

where Ns is the total number of samples (i.e., 300).

4) ABSOLUTE ERROR OF THE TOTAL LINE-LOSS
ESTIMATION (|EPloss |)
For an efficient operation of the distribution systems,
the DMSs must keep monitoring the real power loss con-
sumed by the distribution lines. In other words, the DMSs
should accurately estimate the total real power loss (Ploss)
unless all the branches are monitored by the measuring units.
In this context, the absolute error of Ploss can be a perfor-
mance metric for the DSSE.

TABLE 6. Definition of the test cases.

C. BASE AND BEST CASES
Table 6 shows that Case 1, which is a base case, has no PMU,
except for the branch measurements at the POC, while all
measurements in Case 2 are obtained by the T5-class PMUs.
Table 7 presents the test results of these two cases indicating
that all the T5-class PMU measurements drastically reduce
the DSSE errors, including the TVEs of the voltage pha-
sors, RMSEs, and power loss estimation errors. Additionally,
the confidence level of Case 2 is 99.86%, which is much
higher than that of Case 1.

Figs. 4 and 5 illustrate the TVEs of the voltage phasors
at all buses and phases for Cases 1 and 2, respectively. The
voltage TVEs in Case 1 slightly differ by buses, unlike in
Case 2, because various meters with different accuracies are
installed in Case 1.

Figs. 6 and 7 describe the absolute error of the P loss
estimation at each branch for Cases 1 and 2, respectively,
indicating that Case 2 yields a more accurate estimation of
the P loss compared to Case 1. These figures illustrate that
the absolute error of the P loss estimation at each branch
depends on the meter accuracy near the branch. For example,
in Case 1, the T5-class PMU at the POC considerably reduces
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TABLE 7. Performance metrics of the case studies.

FIGURE 4. TVE of the voltage phasors at each bus in Case 1.

FIGURE 5. TVE of the voltage phasors at each bus in Case 2.

the absolute error of the P loss estimation at bus 1–2 and 2–3
branches compared with the other branches.

D. CONFIDENCE LEVEL CRITERION
Among all the test cases, the best case (i.e., Case 2) with all
the T5-class PMUs installed shows the highest confidence

FIGURE 6. Absolute error of the P loss estimation at each branch in
Case 1.

FIGURE 7. Absolute error of the P loss estimation at each branch in
Case 2.

level of 99.86%. From this best case, the confidence level
decreases to 98.12%, 47.82%, and 44.36% (refer to Table 7)
when the T5-class PMUs are excluded and replaced by
SCADA or smart meters at branches, load injections, and
DG injections, respectively (i.e., Cases 3, 9, and 10, respec-
tively). These results highlight that the T5-class PMUs must
be installed at both the load and DG injections to obtain a
confidence level of more than 95%, regardless of the type of
branch measurements.

The results of Cases 4–8 show that the PMUs at the load
and DG injections with an accuracy lower than that of the
T5 class cannot improve the confidence level. In spite of the
additional installation of the T5-class PMUs at the branches,
it still needs to deploy the T5-class PMUs at both the load and
DG injections to obtain high confidence levels (please refer
to the results of Case 11 in Table 7).

The measurement redundancy in distribution systems is
not enough to ensure high confidence levels [6]. Therefore,
the accuracy of the PMUs is highly critical for obtaining
estimation results with a high confidence level. The intro-
duction of supplementary pseudo-measurements can improve
the confidence level. Meanwhile, despite the low confidence
levels, Cases 4 and 9–13 can still provide operating condi-
tions with a relatively higher accuracy than the base case
(i.e., Case 1), which can be observed from the TVEs, RMSEs,
and |EPloss | metrics in Table 7.

E. TVE CRITERION OF THE VOLTAGE PHASORS
When the PMUs are installed only at the load injections,
the minimum class that can meet the TVE requirement of 1%
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FIGURE 8. TVE of the voltage phasors at each bus in Case 15.

as regards the voltage phasors is T2 according to the simu-
lation results of Cases 12–15 in Table 7. Fig. 8 shows the
TVEs of the voltage phasors at all buses and phases for
Case 15 with the T2-class PMUs, indicating that all of them
are nearly 0.6%. However, at least a T4-class performance
is required to obtain more accurate estimation results than
the base case without the PMUs at the injections (refer to
the results of Cases 2–4 and 9–13 in Table 7). Furthermore,
a comparison of Cases 3–6 with Cases 12–15 depicts that
the additional installation of the PMUs at the DG injections
certainly reduces the TVE.

F. RMSE CRITERION
No specific requirement is provided for the RMSEs of the
state variables, but one can observe a relative accuracy among
various test cases using the RMSE metric. Table 7 presents
the RMSE averaging in the states, noting that the RMSE
considerably decreases with more PMUs installed or with the
more accurate time-synchronization of the PMUs.

Similar to the TVE metrics, the test-cases with
T4- or T5-class PMUs result in less RMSEs than the
base case. The RMSE further significantly grows when the
performance class of the PMUs becomes lower than T2
(i.e., T1 and T0). This trend is proven by the results of
Cases 7, 8, 16, and 17 presented in Table 7.

G. CRITERION FOR |EPloss
|

Table 7 shows that the absolute error of the total line-loss
estimation decreases when compared with the base case in
most of the test cases, except for Cases 7, 8, 16, and 17,
whose PMU performance is T0 or T1. The installation of
the PMUs at both load and DG injections (i.e., Cases 3–8)
also substantially improve the line-loss estimation in com-
parison with the PMU installations at only the load injections
(i.e., Cases 12–17).

H. OBSERVATION ON THE IMPACT OF
NON-GAUSSIAN PMU ERRORS
Thousands of field data have demonstrated that the PMU
measurement error followed a non-Gaussian distribution with

TABLE 8. Performance metrics of the case studies with the PMU
measurement errors of the logistic distributions.

thick and long tails, such as the Student’s t-distribution and
the logistic distribution [42]. In this sense, we re-evaluate
all the test-cases, with the PMU measurements whose errors
obey the logistic distribution. Table 8 displays the test results,
indicating that the three metrics (i.e., TVE, RMSE and
|EPloss |) are increased. These increases are natural because
the PMU measurement errors follow the long- and thick-
tailed distribution. Nevertheless, the observations on the
TVE, RMSE, and |EPloss | are the same as those explained in
Sections IV-E, -F, and -G. In other words, at least T4-class
PMU installations at the load injections improve the TVE
and RMSE metrics compared with the base case. Moreover,
the installations of at least the T2-class PMU at both the
load and DG injections considerably reduce the line-loss
estimation error. Meanwhile, the confidence level degrades
with the measurement errors under the logistic distribution
compared with the Gaussian error cases. As aforementioned,
a sufficient number of pseudo-measurements are required to
improve the confidence level.

I. OBSERVATION ON THE IMPACT OF PHASE IMBALANCE
Tables 3 and 5 show that the testbed is a three-phase system
with phase imbalance, which is characterized by an asym-
metric distribution line and an unbalanced load configuration.
Hence, the testbed can represent the general distribution sys-
tems. This imbalance is reflected in Fig. 9, indicating that the
RMSEs of the state variables certainly differ by buses and
phases.
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FIGURE 9. RMSE of the state variables at each bus in Case 1 (top) and 2 (bottom).

FIGURE 10. Comparison of the absolute errors of the line-loss estimation between Case 2 and the same case, except for the measurement loss at
different locations.

J. OBSERVATION ON THE IMPACT OF
MEASUREMENT LOSS
This section presents the results of the case studies
on the missing measurement caused by communication
delay or loss. The test cases are generated by subtracting
from Case 2 the measurement at different locations: bus 9,
bus 15, branch 5-to-6, and POC. Fig. 10 shows a comparison
of Case 2 with the cases of the missing measurement in terms
of the absolute error of the P loss estimation at each branch,

pointing out that the missing measurement at a specific bus
increases the error of the power flow through the bus and
nearby buses (e.g., themeasurement loss at the POC increases
the absolute error of the P loss estimation at branches 1-to-
2 and 2-to-3). Figs. 11 and 12 show the increased RMSEs of
the state variables and the increased TVEs of the voltage pha-
sors caused by the measurement loss at the POC, respectively.
When comparing themwith Figs. 5 and 9, the increased TVEs
and RMSEs are negligible, but all the buses and phases are
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FIGURE 11. Increased RMSE of state variables caused by the measurement loss at POC in Case 2.

FIGURE 12. Increased TVE of the voltage phasors caused by the
measurement loss at POC in Case 2.

affected by the missing measurement. All in all, the measure-
ment loss affects the accuracy of the P loss estimation near
the missing location but only slightly influences the TVEs of
the voltage phasors and the RMSEs of the state variables.

V. DISCUSSIONS AND CONCLUSION
The application of the PMUs at the distribution systems can
bring tremendous benefits to distribution systemmanagement
in a way that overcomes the scarcity of measurements and
improves the DSSE performance. However, a main obstacle
to be tackled is the PMUs being relatively more expensive
than smart meters due to GPS antennas and time-signal dis-
tributions. In this regard, this paper investigates the adequate
and economic performance class of PMUs that can meet
the proper performance of the DSSE by means of numerical
experiments with a 15-bus test distribution system character-
ized by an unbalanced operation and an asymmetric structure.

The well-known WLS method is used for the DSSE
implementation with a three-phase distribution line model
and various measurement types, including voltage magni-
tude squared, real/reactive power, voltage/current phasor, and
virtual measurements. This paper also defines the standard
deviations of the PMU measurements based on uncertainty
propagation theory to convert polar coordinates to Cartesian
coordinates. Four performance metrics are defined to eval-
uate the DSSE results with respect to accuracy: confidence
level, TVE, RMSE, and absolute error of the total line-loss
estimation.

Various test cases are set up according to the meter types
(i.e., PMUs, SCADA systems, and smart meters) at the spe-
cific locations of the test systems, such as the POC, branches,
and load/DG injections. The criteria for the PMU perfor-
mance classes that can meet the proper DSSE performance
are investigated after numerical simulations. Note that the
observability of the test system is guaranteed in all the case
studies because the system has a sufficient number of inde-
pendent measurements, which is larger than the number of
the state variables.

First, the high confidence level can be achieved by deploy-
ing T5-class PMUs, which is the most accurate among all the
classes, at both load and DG injections; otherwise, the con-
fidence level significantly declines mainly because of the
lack of redundancy in the measurements. However, if at least
T4-class PMUs are installed at the load injections, the TVEs
of the voltage phasors and the RMSEs reduce compared
to those in the base case without PMUs at the injections.
Finally, the absolute error of the total line-loss estimation
can decrease with the PMU installation, of which the classes
are above T1 at the load injections. The error can be further
reduced by additional deployment at the DG injections.

This paper further evaluates the criteria under realistic con-
ditions such as cases with non-Gaussian PMU errors, phase
imbalance, and measurement loss. The PMU measurements
with the non-Gaussian errors that follow the long- and thick-
tailed distribution degrade the confidence level but have little
influence on the other three metrics. The phase imbalance
has a moderate impact on the RMSE of the states, and the
measurement loss deteriorates the accuracy of the absolute
errors of the line-loss estimation.

Table 9 compares the performance metrics in various per-
spectives based on the test results. Among them, the TVE
of the voltage phasor is the most reliable, despite the non-
Gaussian PMU errors, phase imbalance, and measurement
loss. The confidence level is useful for obtaining the esti-
mation results with a high accuracy because of its high
sensitivity to the measurement errors. The RMSE and the
absolute error of the line-loss estimation can also be phase
imbalance indicators. Moreover, the absolute error of the total
line-loss estimation requires the minimum accuracy of the
T2-class to improve the performance from the base case,
which has no PMU. In the end, the distribution system
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TABLE 9. Comparison of the performance criteria.

operator must select proper performance criteria in light of
operational applications that use the DSSE results.

Note that the PMU performance criteria might vary in the
structure and parameters of distribution systems. The key
contribution of this paper is the methodology used to find the
adequate PMU accuracy and their installation sites that can
improve the DSSE performance and overall accuracy. In the
end, the PMU accuracy at specific sites can be selected in
accordance with the present PMU standards.

REFERENCES
[1] T. Wu, C. Y. Chung, and I. Kamwa, ‘‘A fast state estimator for systems

including limited number of PMUs,’’ IEEE Trans. Power Syst., vol. 32,
no. 6, pp. 4329–4339, Nov. 2017.

[2] L. Zhang, A. Bose, A. Jampala, V. Madani, and J. Giri, ‘‘Design, testing,
and implementation of a linear state estimator in a real power system,’’
IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1782–1789, Jul. 2017.

[3] E. Ghahremani and I. Kamwa, ‘‘Dynamic state estimation in power system
by applying the extended Kalman filter with unknown inputs to phasor
measurements,’’ IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2556–2566,
Nov. 2011.

[4] M. Jamei, A. Scaglione, C. Roberts, E. Stewart, S. Peisert, C. McParland,
and A. McEachern, ‘‘Anomaly detection using optimally placed µPMU
sensors in distribution grids,’’ IEEE Trans. Power Syst., vol. 33, no. 4,
pp. 3611–3623, Jul. 2018.

[5] W. Jiang, V. Vittal, and G. T. Heydt, ‘‘A distributed state estimator utilizing
synchronized phasor measurements,’’ IEEE Trans. Power Syst., vol. 22,
no. 2, pp. 563–571, May 2007.

[6] A. Primadianto and C.-N. Lu, ‘‘A review on distribution system state
estimation,’’ IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3875–3883,
Sep. 2017.

[7] K. Dehghanpour, Z. Wang, J. Wang, Y. Yuan, and F. Bu, ‘‘A survey on state
estimation techniques and challenges in smart distribution systems,’’ IEEE
Trans. Smart Grid, vol. 10, no. 2, pp. 2312–2322, Mar. 2019.

[8] S. Lefebvre, J. Prévost, and L. Lenoir, ‘‘Distribution state estimation:
A necessary requirement for the smart grid,’’ in Proc. IEEE PES Gen.
Meeting Conf. Expo., Jul. 2014, pp. 1–5.

[9] I. Džafić and R. A. Jabr, ‘‘Real time multiphase state estimation in weakly
meshed distribution networks with distributed generation,’’ IEEE Trans.
Power Syst., vol. 32, no. 6, pp. 4560–4569, Nov. 2017.

[10] X. Yang, Z. Wei, G. Sun, Y. Yuan, Y. Sun, and H. Shen, ‘‘Distribution
system state estimation considering the characteristics of power electronic
loads,’’ inProc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2014, pp. 1–5.

[11] W. Gu, G. Lou, W. Tan, and X. Yuan, ‘‘A nonlinear state estimator-
based decentralized secondary voltage control scheme for autonomous
microgrids,’’ IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4794–4804,
Nov. 2017.

[12] S. Deshmukh, B. Natarajan, and A. Pahwa, ‘‘State estimation and volt-
age/VAR control in distribution network with intermittent measurements,’’
IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 200–209, Jan. 2014.

[13] M. Pau, F. Ponci, A. Monti, S. Sulis, C. Muscas, and P. A. Pegoraro,
‘‘An efficient and accurate solution for distribution system state estimation
with multiarea architecture,’’ IEEE Trans. Instrum. Meas., vol. 66, no. 5,
pp. 910–919, May 2017.

[14] X. Kong, Z. Yan, R. Guo, X. Xu, and C. Fang, ‘‘Three-stage distributed
state estimation for AC-DC hybrid distribution network under mixed mea-
surement environment,’’ IEEE Access, vol. 6, pp. 39027–39036, 2018.

[15] S. Choi and A. P. S. Meliopoulos, ‘‘Effective real-time operation and pro-
tection scheme of microgrids using distributed dynamic state estimation,’’
IEEE Trans. Power Del., vol. 32, no. 1, pp. 504–514, Feb. 2017.

[16] H. Mohsenian-Rad, E. Stewart, and E. Cortez, ‘‘Distribution synchropha-
sors: Pairing big data with analytics to create actionable information,’’
IEEE Power Energy Mag., vol. 16, no. 3, pp. 26–34, May 2018.

[17] C. Carquex, C. Rosenberg, and K. Bhattacharya, ‘‘State estimation in
power distribution systems based on ensemble Kalman filtering,’’ IEEE
Trans. Power Syst., vol. 33, no. 6, pp. 6600–6610, Nov. 2018.

[18] C. Muscas, M. Pau, P. A. Pegoraro, and S. Sulis, ‘‘Uncertainty of voltage
profile in PMU-based distribution system state estimation,’’ IEEE Trans.
Instrum. Meas., vol. 65, no. 5, pp. 988–998, May 2016.

[19] M. G. Damavandi, V. Krishnamurthy, and J. R. Marti, ‘‘Robust meter
placement for state estimation in active distribution systems,’’ IEEE Trans.
Smart Grid, vol. 6, no. 4, pp. 1972–1982, Jul. 2015.

[20] IRIG Serial Time Code Formats, Standard 200-16, IRIG, White Sands
Missile Range, NM, USA, Aug. 2016, pp. 1–64.

[21] Network Time Protocol Version 4: Protocol and Algorithms Specification,
document RFC 5905, Jun. 2010, pp. 1–110.

[22] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE Standard 1588-2008,
New York, NY, USA, Jul. 2008, pp. 1–300.

[23] IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in
Power System Applications, IEEE Standard C37.238-2017, NewYork, NY,
USA, Jun. 2017, pp. 1–42.

[24] IEEE Standard for Synchrophasor Data Transfer for Power Systems, IEEE
Standard C37.118.2-2011, New York, NY, USA, Dec. 2011, pp. 1–53.

[25] IEEE Guide for Synchronization, Calibration, Testing, and Installation
of Phasor Measurement Units (PMUs) for Power System Protection
and Control, IEEE Standard C37.242-2013, New York, NY, Mar. 2013,
pp. 1–107.

[26] A. J. Roscoe, I. F. Abdulhadi, and G. M. Burt, ‘‘P and M class phasor
measurement unit algorithms using adaptive cascaded filters,’’ IEEE Trans.
Power Del., vol. 28, no. 3, pp. 1447–1459, Jul. 2013.

[27] A. J. Roscoe, ‘‘Exploring the relative performance of frequency-tracking
and fixed-filter phasor measurement unit algorithms under C37.118 test
procedures, the effects of interharmonics, and initial attempts at merging
P-class response with M-class filtering,’’ IEEE Trans. Instrum. Meas.,
vol. 62, no. 8, pp. 2140–2153, Aug. 2013.

[28] P. Castello, J. Liu, A. Monti, C. Muscas, P. A. Pegoraro, and F. Ponci,
‘‘Toward a class ‘P+M’ phasor measurement unit,’’ in Proc. IEEE Int.
Workshop Appl. Meas. Power Syst. (AMPS), Sep. 2013, pp. 91–96.

[29] A. von Meier, E. Stewart, A. McEachern, M. Andersen, and
L. Mehrmanesh, ‘‘Precision micro-synchrophasors for distribution
systems: A summary of applications,’’ IEEE Trans. Smart Grid, vol. 8,
no. 6, pp. 2926–2936, Nov. 2017.

[30] J. H. Eto, E. Stewart, T. Smith, M. Buckner, H. Kirkham, F. Tuffner, and
D. Schoenwald, ‘‘Scoping study on research and development priorities for
distribution-system phasor measurement units,’’ Ernest Orlando Lawrence
Berkeley Nat. Lab., Berkeley, CA, USA, Tech. Rep. SAND2016-3546R,
Apr. 2016.

[31] Communication Networks and Systems for Power Utility Automation—
Part 5: Communication Requirements for Functions and Device Models,
Standard IEC 61850-5:2013, Ed. 2.0, Jan. 2013, pp. 1–306.

VOLUME 7, 2019 106383



J. Kim et al.: Performance Criterion of PMUs for DSSE

[32] A. P. Meliopoulos. Synchrophasor Measurement Accuracy Characteriza-
tion. North American Synchrophasor Initiative Performance & Standards
Task Team, Aug. 2007. [Online]. Available: https://www.naspi.org

[33] A. P. S. Meliopoulos, G. J. Cokkinides, C. Hedrington, and T. L. Conrad,
‘‘The supercalibrator—A fully distributed state estimator,’’ in Proc. IEEE
Power Energy Soc. Gen. Meeting, Jul. 2010, pp. 1–8.

[34] J. Du, S. Ma, Y.-C. Wu, and H. V. Poor, ‘‘Distributed hybrid power
state estimation under pmu sampling phase errors,’’ IEEE Trans. Signal
Process., vol. 62, no. 16, pp. 4052–4063, Aug. 2014.

[35] R. Singh, B. C. Pal, and R. A. Jabr, ‘‘Choice of estimator for distribution
system state estimation,’’ IET Gener., Transmiss. Distrib., vol. 3, no. 7,
pp. 666–678, Jul. 2009.

[36] A. Shahsavari, A. Sadeghi-Mobarakeh, E. M. Stewart, E. Cortez,
L. Alvarez, F. Megala, and H. Mohsenian-Rad, ‘‘Distribution grid reliabil-
ity versus regulation market efficiency: An analysis based on micro-PMU
data,’’ IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2916–2925, Nov. 2017.

[37] X. Wang, X. Xie, S. Zhang, L. Luo, Y. Liu, G. Sheng, and X. Jiang,
‘‘Micro-PMU for distribution power lines,’’ CIRED-Open Access Proc. J.,
vol. 2017, no. 1, pp. 333–337, 2017.

[38] A. Abur and A. G. Expósito, Power System State Estimation: Theory and
Implementation. New York, NY, USA: Marcel Dekker, 2004.

[39] S. Chakrabarti and E. Kyriakides, ‘‘PMUmeasurement uncertainty consid-
erations in WLS state estimation,’’ IEEE Trans. Power Syst., vol. 24, no. 2,
pp. 1062–1071, May 2009.

[40] S. Choi, ‘‘Practical coordination between day-ahead and real-time opti-
mization for economic and stable operation of distribution systems,’’ IEEE
Trans. Power Syst., vol. 33, no. 4, pp. 4475–4487, Jul. 2018.

[41] W. H. Kersting, ‘‘Radial distribution test feeders,’’ IEEE Trans. Power
Syst., vol. 6, no. 3, pp. 975–985, Aug. 1991.

[42] S.Wang, J. Zhao, Z. Huang, and R. Diao, ‘‘Assessing Gaussian assumption
of PMU measurement error using field data,’’ IEEE Trans. Power Del.,
vol. 33, no. 6, pp. 3233–3236, Dec. 2018.

JONGHOEK KIM (M’18) received the B.S.
degree in electrical and computer engineering
from Yonsei University, South Korea, in 2006,
the M.S. degree in electrical and computer engi-
neering from the Georgia Institute of Technology,
USA, in 2008, and the Ph.D. degree from the Geor-
gia Institute of Technology, in 2011, co-advised
by Dr. F. Zhang and Dr. M. Egerstedt. He was a
Senior Researcher with the Agency for Defense
Development, South Korea, from 2011 to 2018.

He is currently an Assistant Professor with Hongik University, South Korea.
His research interests include target tracking, control theory, robotics, multi-
agent systems, and optimal estimation.

HYUN-TAE KIM received the B.E. degree in
electronic engineering from Gachon University,
South Korea, in 2016. He is currently pur-
suing the M.S. degree in electrical engineer-
ing with Korea University, Seoul, South Korea.
He was a Researcher with Hyundai Power Sys-
tem, South Korea, from 2015 to 2017. His
research interest includes microgrid operation and
planning.

SUNGYUN CHOI (M’14) received the B.E.
degree in electrical engineering from Korea Uni-
versity, Seoul, South Korea, in 2002, and the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2009 and 2013, respectively.
From 2002 to 2005, he was a Network and System
Engineer, and from 2014 to 2018, he was a Senior
Researcher with the Smart Power Grid Research
Center, Korea Electrotechnology Research Insti-

tute, Uiwang, South Korea. Since 2018, he has been an Assistant Professor
with the School of Electrical Engineering, Korea University. His research
interests include smart grid technology, microgrid operation, control, and
protection, power system state estimation, phasor measurement units, and
sub-synchronous oscillations.

106384 VOLUME 7, 2019


	INTRODUCTION
	PMU ACCURACY REQUIREMENTS FOR THE DSSE
	DSSE FORMULATION
	WLS STATE ESTIMATION
	DISTRIBUTION LINE MODEL
	MEASUREMENT TYPE
	MEASUREMENT MODEL FORMULATION
	VOLTAGE MAGNITUDE SQUARED (BRANCH & INJECTION)
	REAL/REACTIVE POWER (BRANCH)
	REAL/REACTIVE POWER (INJECTION)
	VOLTAGE PHASOR
	CURRENT PHASOR (BRANCH)
	CURRENT PHASOR (INJECTION)
	VIRTUAL MEASUREMENT (KCL)

	CONSIDERATION OF THE MODEL UNCERTAINTY

	CASE STUDY
	TEST CONDITIONS
	PERFORMANCE METRICS
	CONFIDENCE LEVEL
	TVE
	ROOT MEAN SQUARE ERROR (RMSE)
	ABSOLUTE ERROR OF THE TOTAL LINE-LOSS ESTIMATION (|EPloss|)

	BASE AND BEST CASES
	CONFIDENCE LEVEL CRITERION
	TVE CRITERION OF THE VOLTAGE PHASORS
	RMSE CRITERION
	CRITERION FOR |EPloss|
	OBSERVATION ON THE IMPACT OF NON-GAUSSIAN PMU ERRORS
	OBSERVATION ON THE IMPACT OF PHASE IMBALANCE
	OBSERVATION ON THE IMPACT OF MEASUREMENT LOSS

	DISCUSSIONS AND CONCLUSION
	REFERENCES
	Biographies
	JONGHOEK KIM
	HYUN-TAE KIM
	SUNGYUN CHOI


