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ABSTRACT Detecting outliers is a significant problem that has been studied in various research and
application areas. Researchers continue to design robust schemes to provide solutions to detect outliers
efficiently. In this survey, we present a comprehensive and organized review of the progress of outlier
detection methods from 2000 to 2019. First, we offer the fundamental concepts of outlier detection and
then categorize them into different techniques from diverse outlier detection techniques, such as distance-,
clustering-, density-, ensemble-, and learning-based methods. In each category, we introduce some state-of-
the-art outlier detection methods and further discuss them in detail in terms of their performance. Second,
we delineate their pros, cons, and challenges to provide researchers with a concise overview of each technique
and recommend solutions and possible research directions. This paper gives current progress of outlier
detection techniques and provides a better understanding of the different outlier detection methods. The
open research issues and challenges at the end will provide researchers with a clear path for the future of
outlier detection methods.

INDEX TERMS Outlier detection, distance-based, clustering-based, density-based, ensemble-based.

I. INTRODUCTION
Outlier detection remains to be an essential and extensive
research branch in data mining due to its widespread use
in a wide range of applications. By identifying outliers,
researchers can obtain vital knowledge which assists in mak-
ing better decisions about data. Also, detecting outliers trans-
lates to significant actionable information in a wide variety
of applications such as fraud detection [1], [2], intrusion
detection in cybersecurity [3], and health diagnosis [4].
Despite the ambiguity in providing a clear definition, an out-
lier is generally considered a data point which is signifi-
cantly different from other data points or which does not
conform to the expected normal pattern of the phenomenon it
represents.

Outlier detection techniques strive to solve the problem of
discovering patterns that do not adapt to expected behaviors.
Consider a scenario where we would want to define the
usual behavior and the normal region. This scenario can be
complicated because of:
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• inaccurate boundaries between the outlier and normal
behavior

• the high possibility of the normal behavior to continue
to evolve and perhaps it might not be a correct represen-
tation in the future

• different applications and conflicting notion make it
hard to apply techniques developed in one field to
another

• noise in the data which mimics real outliers and there-
fore makes is challenging to distinguish and remove
them.

Although outlier detection faces some challenges, sev-
eral outlier detection techniques have been proposed that
use different methodologies and algorithms to address these
issues [5]. Some of the commonly encountered difficulties
related to the nature of the input data, outlier type, data labels,
accuracy, and computational complexity in terms of the CPU
time andmemory consumption [6]–[9]. Researchers continue
to find better solutions to address these challenges, together
with problems associated with detecting outliers efficiently
in distributed data streams [10], RFID reading streams [11],
large multidimensional data [12], [13], wireless sensor
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TABLE 1. The different categories covered by our survey and other related survey.

networks [14], efficient trajectories [15], and in data quality
and cleaning [16].

For example, consider the challenges present in large mul-
tidimensional data, in which, whether the data is relatively
large or extremely large, it always contains some outliers.
In most cases, as the data increase in size, the number of
outliers also increases [17]. Therefore, with a large volume of
data, it is essential to design scalable outlier detection tech-
niques to handle large datasets (Volume). As data increase
in size, this proportionally influences the computational cost,
rendering the process slow and expensive. It is of great impor-
tance that these outliers are detected in a timely manner,
to minimize dirty data, prevent data infection, and for the
data to provide a well-timed value (Velocity and Value).
In another case, when varieties of data are present and some
of which are structured, mixed-valued, semi-structured and
unstructured data (Variety); computing outliers of this nature
can be daunting and complicated. Other areas that are con-
fronted with challenges include in application areas such as
mobile social networks, security surveillance [18], [239],
trajectory streams [19], and traffic management [20], [21].
These areas demand constant discovery of abnormal objects
to deliver crucial information promptly. Many other out-
lier detection areas share similar, and new challenges, and
they will be referred to in subsequent sections of this
paper.

As a result of the inherent importance of outlier detection
in various areas, considerable research efforts in the survey of
outlier detection (OD) methods have been made [22]–[34].
Despite the increasing number of reviews in outlier detec-
tion that are in existence, it remains to be an all-embracing
topic in the research domain. There are still newly proposed
methods and essential issues to be addressed. Therefore, this
article serves a vital role in keeping researchers abreast with
the latest progress in outlier detection techniques. To the

best of our knowledge, most surveys conducted so far only
address specific areas rather than providing in-depth coverage
and insights of up-to-date research studies, as can be seen
in Table 1. For example, the review in [25] only focuses
on data streams, [27] focuses on high dimensional numeric
data, [23], [33] on dynamic networks and the most recent
on deep learning [32]. The most comprehensive ones [28],
[33], [41], despite containing a lot of insights, they do not
review most of the primary state-of-the-art methods, with
most published at least five years ago.

In recent years, more contemporary studies have been
conducted, especially in the area of deep learning [35], [36]
and ensemble techniques [37], [38]. Therefore, more of these
recent studies and discoveries needs a review. Our survey
presents a comprehensive review of the most prominent state-
of-the-art outlier detection methods, including both conven-
tional and emerging challenges. This survey is different from
others because it captures and presents a more comprehensive
review of state-of-the-art literature, as well as consolidating
and complementing existing studies in the outlier detection
domain. In addition, we did extensive research to bring forth
significant categories of outlier detection approaches and
critically discuss and evaluate them. We further discussed
commonly adopted evaluation criteria, as well as the tools and
available public databases for outlier detection techniques.
We believe, this survey will significantly benefit researchers
and practitioners as it will give a thorough understanding of
various advantages, disadvantages, open challenges, and gaps
associated with state-of-the-art outlier detection methods.
This will provide them with a better insight into what needs
to be focused on in the future. In summary, the novel and
significant contributions of the paper are:
• We present the different up-to-date outlier definitions,
the different kinds, causes, contemporary detection
and handling process, and the latest challenges and
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application areas. Unlike other surveys, we add new
application areas that need more attention.

• We expand on the categories of outlier detection
algorithms with additional distinct methods to previ-
ous surveys. We introduce state-of-the-art algorithms,
discuss them with highlighting their strengths and
weaknesses. We mainly cite and discuss recent stud-
ies that were done after most of the significant
surveys [26], [33].

• We significantly expand the discussions for each of the
distinct categories, in comparison to previous surveys,
by presenting the pros, cons, open challenges, and short-
falls of recent methods. We also offer a summary of the
performance of some state-of-the-art algorithms, issues
solved, drawbacks, and possible solutions.

• We present some of the contemporary open challenges
in evaluating outlier detection algorithms.We then intro-
duce standard tools, and some benchmark datasets usu-
ally used in outlier detection research. We extend our
discussion with a discussion of the OD tools selection
and challenges in choosing suitable datasets.

• We identify some challenges and finally recom-
mend some possible research directions for future
studies.

The paper is organized as follows: In section 2, we com-
mence our study by providing a comprehensive background
on outlier detection. This is done through a detailed expla-
nation about their most significant outlining features and
foundations: the definition, characteristics, causes, and appli-
cation areas. In Section 3, we formally categorize the outlier
detection methods (OD) into distinct areas and then dis-
cuss these techniques briefly. We include the performances,
issues addressed, and drawbacks of these methods with
open research questions and challenges for future work.
Section 4 contains the discussion of some evaluation con-
straints in outlier detection, essential tools used for OD, and
some analysis of benchmark data sets. In Section 5, we con-
clude the paper with some open challenges and recommen-
dations for future work.

II. BACKGROUND
In this section, we present commonly used definitions of an
outlier, discuss the causes of outliers, new techniques on how
to identify and detect outliers, and what to do when an outlier
is detected. Finally, we introduce some new application areas
of outlier detection and provide additional references for
further studies in these application areas.

A. OUTLIER DEFINITION
Since the start of outlier detection research, there have
been many definitions of what an outlier is. In 2017,
Ayadi et al. [14] gave twelve different interpretations of
outliers from the perspective of different authors. This
demonstrates how complex it is to provide an accurate def-
inition of an outlier. Despite the vagueness and complexity
in defining an outlier, it can generally be described as a data

FIGURE 1. A simple example of outliers in the two-dimensional data set.

point that is significantly dissimilar to other data points or a
point that does not imitate the expected typical behavior of
the other points [5]. Data points that are contrary to out-
liers are called inliers. A simple illustrative two-dimensional
data set example that depicts an outlier status is shown
in Fig. 1.

The data contain two sections, S1 and S2. P1,P3,P4, and
the other section with very few data points P2, are far away
from the two large clustered regions. Therefore, as per the
definition above, they do not conform to the normal behavior
of the data and are dissimilar. Thus, they are referred to as
outliers.

B. CAUSES OF OUTLIERS, IDENTIFICATION PROCESS,
AND HANDLING PROCESS
1) WHAT GIVES RISE TO OUTLIERS AND HOW TO
IDENTIFY OUTLIERS
There are quite a lot of different issues that prompt the
occurrence of outliers. Some of the most common causes
of outliers are as a result of a mechanical fault, changes
in system behavior, fraudulent behavior, malicious activity,
human error, instrument error, setup error, sampling errors,
data-entry error, and environmental changes. For instance,
outliers from data errors are usually a result of human error,
such as in data collection entry and recording. The next issue
with the presence of outliers is how to identify and deal with
them.

Many researchers have tried to answer the question of how
to detect outliers. The necessary features that need to be
considered and the tests that need to be performed to identify
the outliers are equally important questions. Even with the
growing interest in this research field, there are still on-going
studies conducted to find the right answers to these questions.
Researchers continue to bring forward novel and innovative
ideas to answer them [28], [29]. Over the years, the process of
outlier identification carries many names in machine learning
and data mining, such as outlier mining, novelty detection,
outlier modeling, anomaly detection, etc. In the process of
detecting and eliminating outliers, it is important to be obser-
vant. Eliminating outliers in correct data might cause the loss
of vital hidden information. It is also crucial in the quest of
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detecting outliers to know the number of features that need to
be considered - a univariate or multivariate case. Also, for
a statistical-based approach scenario, whether the selected
features can make assumptions of the distribution of values
for parametric or non-parametric cases.

Many techniques have been designed to identify outliers,
and in Section 3, we will present and discuss further the dif-
ferent recent proposed methods for outlier detection. In this
paper, we categorize these outlier identification methods into
the following:
• Statistical-based methods

The fundamental idea of statistical-based techniques in label-
ing or identifying outliers depends on the relationship with
the distribution model. These methods are usually classified
into two main groups - the parametric and non-parametric
methods.
• Distance-based methods

The underlying principle of the distance-based detection
algorithms focuses on the distance computation between
observations. A point is viewed as an outlier it is far away
from its nearby neighbors.
• Density-based methods

The core principle of these methods is that an outlier can be
found in the low-density region, whereas inliers are in a dense
neighborhood.
• Clustering-based methods

The key idea for clustering-based techniques is the applica-
tion of standard clustering techniques to detect outliers from
given data. Outliers are considered as the observations that
are not within or nearby any large or dense clusters.
• Graph-based methods

Graph-based methods are based on the use of graph tech-
niques to efficiently capture the interdependencies of inter-
connected entities to identify the outliers.
• Ensemble-based methods

Ensemble methods focus on the idea of combining the results
from dissimilar models to produce more robust models to
detect outliers efficiently. They help to answer the question
of whether an outlier should be linear-model based, distance-
based, or another kind of model-based.
• Learning-based methods

Learning-based methods such as active learning and deep
learning, the underlying idea is to learn different models
through the application of these learning methods to detect
outliers.

2) HOW TO HANDLE OUTLIERS
There is still considerable discussion on what are consid-
ered outliers. The most applicable rule of thumb used by
many researchers is to flag a data point as an outlier when
the data point is three or more standard deviations from
the mean [39]. This, however, is a weak supporting idea
to discuss such argument further, since it cannot hold for
all other scenarios. This is especially true in recent times,
when we are faced with large dynamic and unstructured
data. Therefore, in modern times, it is imperative to further

deliberate on some crucial questions to determine how to
handle outliers. For example, whether it is prudent to remove
outliers or acknowledge them as part of the data. Outliers
in data can sometimes have a negative impact. In machine
learning and deep learning outlier detection processes, this
will consequently result in longer training process of the data,
less accurate models, and eventually degrading results.

With the recent development of new techniques to detect
outliers, new approaches have been proposed to deal with
outliers. In some cases [42], [43], visual examination of the
data is more preferred to get a clear picture of the degree of
outlierness of a data point. In another case [44], an approach
such as the univariate technique is used to search for data
points that contain extreme values on a single variable. While
other strategies such as the multivariate technique search
for the combinations on the entire variables and then the
Minkowski error minimizes prospective outliers during the
training phase. There is another great deal of controversy as
to what to do when outliers are identified. In many situations,
just answering why there are outliers in the data can boost
the decision of what can be done with these outliers. In some
scenarios, outliers are illegally included [45], while in some
other case, they might be part of the data [14]. In cases of
high dimensional numeric data computation [27], [46], [47],
there are some critical factors like the curse of dimensionality
that needs to be considered. Researchers recently tried to use
more accurate data that is uncontaminated and ones that are
suitable for an outlier detection process [48]–[52], before
they start the outlier detection procedure.

Generally, dealing with outliers is dependent on the appli-
cation domain. For example, in cases where the influ-
ence of outliers might cause serious issues such as errors
from instrument readings, critical environment safety sce-
narios, or in real-time situations (fraud detection/intrusion
detection). These outliers can be purged, or an alarm is set
up. While, in a no cause for alarm scenario, in a case like in a
population census survey where few people stand out in some
features like height, these outliers can be noted and verified
since they are just naturally occurring outliers. There is no
need to delete them as in the former case.

In most cases, to answer the question about how to handle
outliers, one has to use their intuition, analytic argument
through some experiments and also thoughtful deliberation
before making decisions. Other noteworthy questions in the
outlier detection process, include the significance of consid-
ering the context and scenario, and in deliberating the purpose
of detecting the outliers. It is essential to know the reason
why the outliers are to be identified and what they signify at
the end. In the subsequent sections, we will see that different
methods or application areas call for variousmeasures on how
to deal with outliers.

C. APPLICATION AREAS OF OUTLIER DETECTION
Outlier detection, with its ever-growing interest, has several
applications areas in wide-ranging areas. The applications
areas where outlier detection is applied are so diverse, it
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is impossible to cover thoroughly in just a single survey,
because of space limitation. Therefore, in this paper, we list
and introduce existing and recent application areas. We will
refer our readers to some previous surveys that exhaus-
tively cover many application domains that OD methods are
applied in.

Chandola et al. [20] provided a broad outline and an
in-depth knowledge of outlier detection application domain.
Also, the survey [5] also presented an exhaustive list and
discussions of applications that adopt outlier detection.
Some existing application areas include credit card fraud
detection [53], [54], intrusion detection [55], defect detec-
tion from behavioral patterns of industrial machines [56],
sensor networks [14], finding unusual patterns in time-series
data [57], [58], trajectories [19], [59], e-commerce [60],
energy consumption [62], data quality and cleaning [16],
[45], textual outlier [61], in big data analysis [12], [63],
in social media [64], [65] and so on.

Recently, detecting outliers has become essential in these
application domains. We consider only a few new application
areas of interest for just a short introduction.

1) DATA LOGS AND PROCESS LOGS
Providing outlier detection solutions give companies the edge
in gaining concealed insights on their websites, which, if not
carried out, will necessitate more effort and additional cost.
In processing logs, some automated data mining techniques
are needed to search for unusual patterns in the large volume
of logs [66]. These logs provide a good source of information
for outlier detection monitoring.

2) FRAUD DETECTION AND INTRUSION DETECTION
In fraud detection, if a card is stolen, the purchasing behavior
of the card user usually changes; we will notice an abnormal
buying pattern. The same is valid for unauthorized access in
computer networks, which results in an unusual pattern [55].
Detecting these abnormal (outlier) patterns is essential for
security.

3) SECURITY AND SURVEILLANCE
Consider safety and surveillance in the field of cyberse-
curity. When we take into consideration computer net-
works, the processes of ensuring safe logging and log
administration are very significant as they improve authen-
ticity and security intelligence. Detecting outliers in
surveillance videos is a practical and exciting research
area [239].

4) FAKE NEWS AND INFORMATION, SOCIAL NETWORKS
In recent times, social media has given a platform for people
to spread fake news continually. Sometimes, it is difficult to
differentiate between real and fake news. However, from a
reliable source, false news reports can be seen as outliers,
since they stand out [237]. The spread of fake news has
negative influence on people and society at large, so it is also
crucial to be identified.

5) HEALTH CARE ANALYSIS AND MEDICAL DIAGNOSIS
In the health care system and medical applications, we usu-
ally get unusual patterns or readings from these devices,
which generally show a disease condition is diagnosed. The
detection and understanding of the abnormal patterns help
in the proper diagnosis of the disease and its underlining
consequences. It allows doctors to take adequate measures.

6) DATA SOURCES OF TRANSACTIONS
Audit logs for financial transactions contain information
about the database operations. The audit logs help in verifying
the accuracy, legality, and in reporting the risks. It is essential
to monitor the audit logs constantly to identify and report
unusual behaviors [67].

7) SENSOR NETWORKS AND DATABASES
Detecting outliers in sensor environments such as in a
wireless sensor environment [68], [69], target tracking envi-
ronment [70], and body sensor networks [71] has helped
in ensuring quality network routing and in giving accurate
results from sensors. It helps in monitoring the computer
network performance, for example, to detect network bottle-
necks.

8) DATA QUALITY AND DATA CLEANING
Data from different application areas may contain and gen-
erate measurement errors and dirty data. Thus, the process
of outlier detection [16], [45], can enhance data quality and
cleaning. The method of cleaning and correcting data is
essential for training high-quality model and the fast com-
putation and prediction of accurate results.

9) TIME-SERIES MONITORING AND DATA STREAMS
Detecting outliers in time series data [31], [57] and in detect-
ing abnormal patterns in data streaming [10], [25], [72]–[74]
is essential. This is because the abnormal pattern will influ-
ence the fast computation and estimation of correct results.

10) INTERNET OF THINGS (IOT)
IoT devices are made of a lot of sensors that unceasingly
sense environmental parameters. These sensors are success-
fully fused to obtain information on a specific area or region,
depending on the desired task. Before carrying out this task,
it is essential to check the quality of data, since the data might
be polluted with outliers. It is important to identify or detect
these outliers in order not to limit the overall efficiency.

III. OUTLIER DETECTION METHODS
Outlier detection methods have been classified into differ-
ent techniques such as statistical-based methods, distance-
based methods, graphical-based methods, geometric-based
methods, depth-based methods, profiling methods, model-
based and density-based methods in a wide range of
surveys [23], [24]. In this paper, we categorize our out-
lier detection techniques into six key groups - statistical-
based, distance-based, density-based, clustering-based,
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ensemble-based, and learning-based techniques. We give a
short overview of the different methods and the research
progress that has been made in the following categories.
Also, we present the advantages, disadvantages, challenges,
and some possible future research directions for the different
methods. In some approaches, we offer a concise summary
in a table format (Tables 2-5) of the various method perfor-
mances, and issues addressed.

A. DENSITY-BASED APPROACHES
Applying density-based methods to outlier detection is one
of the earliest known approaches to outlier detection prob-
lems. The core principle of the density-based outlier detection
methods is that an outlier can be found in a low-density
region, whereas non-outliers (inliers) are assumed to appear
in dense neighborhoods. The objects that differ considerably
from their nearest neighbors, i.e., those that occur far from
their closest neighbors, are flagged and always treated as
outliers. They compare the local point’s densities with their
local neighbor, densities. In density-based outlier detection
methods, more complex mechanisms are applied to model
the outliers, when compared to distance-based methods.
Notwithstanding this, the simplicity and effectiveness of
density-based methods have made them widely adopted to
detect outliers. Some algorithms designed using this approach
have served to be the baseline algorithms [8], [75] for many
new algorithms [76]–[78].

Breunig et al. [8] proposed the Local Outlier Factor (LOF)
method, which is one of the first fundamental loosely related
density-based clustering outlier detection methods. The tech-
nique makes use of the k-nearest neighbor. In the KNN set of
each point, LOF makes use of the local reachability density
(lrd) and compares it with those of the neighbors of each
participant of that KNN set. The local reachability density
(a density estimate that reduces the variability) of an object p
is defined as:

lrd(p) = 1/

∑
o∈kNN (p) reach− distk (p← o)

|kNN (p)|
(1)

where

reach− distk (p← o) = max{k − dist(o), d(p, o)} (2)

The final local outlier factor score is given as:

LOFk (p) =
1

|kNN (p)|

∑
o∈kNN (p)

lrdk (o)
lrdk (p)

(3)

where lrdk (p) and lrdk (o) are the local reachability density
of p and o, respectively. The main focus of the approach is
that the outlier degree of the observation is defined by its
clustering structure in an adjacent neighborhood. The LOF
score is at its peak if the lrd of the test points is smaller
when compared to the nearest neighbors’ estimates. Storing
the KNN and lrd values simultaneously when computing the
LOF scores of all data points will incur O(k) additional oper-
ation in each point. Therefore, it is prudent to apply a valid
index, because in the absence of the useful index, for a data

set of size n, it will incur (n2) time when a sequential search is
applied. Because of these shortcomings, Schubert et al. [79]
found that the LOF density estimate can be simplified, and
they proposed a simplifiedLOF to replace the LOF’s reacha-
bility distance with the KNN distance.

dens(p) =
1

k − dist(p)
(4)

where k-dist(p) replaces k-dist(o) in (3). Even though the
SimplifiedLOF showed improved performance, it has a com-
putational complexity similar to LOF.

In a later study, an improvement to LOF [8] and sim-
plifiedLOF [79], is introduced by Tang et al. [80], which
they called the Connective-based Outlier Factor (COF). The
method is closely similar to the LOF with the only differ-
ence being the way the density estimation of the records
is computed. COF uses a chaining distance as the shortest-
path to estimate the local densities of the neighbors while
LOF uses the Euclidean distance in selecting the K-nearest
neighbors. The drawback to this approach is the indirect
assumption made towards the data distribution, which results
in incorrect density estimation. The key idea proposed by
the authors is based on differentiating ‘‘low density’’ from
‘‘isolativity’’. The isolativity is defined as the degree of an
object’s connectivity to other objects. The COF value at p
with respect to its k-neighborhood is expressed as

COFk (p) =
|Nk(p)|ac− distNk(p)(p)∑
o∈Nk(p) ac− distNk(o)(o)

(5)

where ac-distNk(p) is the average chaining distance from p
to Nk (p). COF adjusts the SimplifiedLOF’s density estimate
to justify the ‘connectedness’ via a minimum spanning tree
(MST) of the neighborhood. The cost of O(k2) is incurred
when computing the MST of the KNNs. Their method still
maintains a similar time complexity as the LOF except in
cases where connective data patterns characterize the data
sets.

After a couple of techniques, it is still confusing which
threshold score can be considered as an outlier in LOF.
Kriegel et al. [81], then formulated a more robust local den-
sity estimate for an outlier detection method called the Local
Outlier Probabilities (LoOP) which combines the idea of pro-
viding an outlier ‘score’ with a probabilistic and statistical-
oriented approach. It makes use of a density estimation that
is based on the distance distribution, and the local outlier
score is defined as a probability. LoOP tries to address the
issue of LOF outputting an outlier score instead of an outlier
probability. The advantage of using the LoOP’s probability
score is that it may give a better comparison of the outlier
records for different datasets. The LoOP showing that a point
is an outlier is given as:

LoOPS (O) = max
{
0, erf

(
PLOFλ,S (O)

nPLOF .
√
2

)}
(6)

where PLOFλ,S (O) is the probabilistic local outlier factor of
an object with respect to the significance of λr a context
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set S(o) ⊆ D and nPLOF is the aggregated value. Points
within the dense region will have a LoOP value close to 0
while those that are closer to 1 will be for density-based
outliers. Similar to simplifiedLOF [79], the LoOP normalizes
its outlier detection score, which gives it the same com-
plexity of O(k) per point as in [79]. The LoOP, like other
previous local outlier algorithms, computes the local density
estimation using the neighborhood set. However, comput-
ing the density is different. It follows the assumption of a
‘‘half-Gaussian’’ distribution and applies the probabilistic set
distance (standard deviation).

In LOF [8] and COF [80], these methods fall short
of handling the issue of multi-granularity correctly.
Papadimitriou et al. [82] proposed a technique with the LOcal
Correlation Integral called LOCI and its outlier metric -
the multi-granularity deviation factor (MDEF), to handle
this drawback. Points that deviate at least three standard
deviations away from MDEF’s neighbor are marked as an
outlier. It deals well with the local density variations in
the feature space and also detects both distant clusters and
secluded outliers. The MDEF of a point pi at a radius r is
mathematically defined as:

MDEF(pi, r, α) = 1−
n(pi, αr)
n̂(pi, r, α)

(7)

where n(pi, αr) and n̂ (pi, r,α) are the number of αr neigh-
borhood objects and the average of all the objects p in the
r-neighborhood of pi. For the faster computation of the
MDEF, if we estimate the value of the numerator and denom-
inator of the fraction on the right-hand side, this gives a
better result. All the previous algorithms have shown that it
is crucial to choose an appropriate k for excellent detection
performance. In the LOCI, a maximization approach is used
to address this issue. The method adopts the half Gaussian
distribution to estimate the local density; similar to LoOP.
However, instead of using the distance, the aggregate of the
records in the neighborhood are used. Another point worth
noting is that the LoOP has a different way to estimate
the local density. It differs from that of LOCI. Instead of
comparing the local density’s ratio, it examines two differ-
ent sized neighborhoods. Even though the LOCI showed
good performance, however, it has a longer runtime and
Papadimitriou et al. [82], proposed another method, an
approximate version of LOCI called aLOCI. To increase the
counting speed of the two neighborhoods, the quad-trees are
applied with some constraints.

Another technique when compared with existing methods,
LOF [8] and LOCI [82], that performs more efficiently as a
result of its pruning ability for data points that are deep in
a cluster was proposed by Ren et al. [83]. It shows better
scalability with an increase in data size. They proposed a
method called the Relative Density Factor (RDF) method,
and which uses a vertical data model (P-trees) to detect
outliers. The RDF is the degree of the measure of outlierness
and outliers are points with high RDF values. The RDF of
point p is the ratio of the neighborhood density factor of point

p divided by its density factor.

RDF(p, r) =
DFnbr (P, r)
DF(P, r)

(8)

where DF(P,r) is the density factor that is defined as the ratio
of the number of neighbors of P and the radius r, whileDFnbr
(P,r) is the neighborhood density factor of the point p.

Jin et al. [75] proposed INFLuenced Outlierness (INFLO),
which is another technique for local outlier detection similar
to that of LOF and uses the symmetric neighborhood rela-
tionship to mine outliers. In LOF, for a dataset with closely
related clusters of different densities, correctly computing
the score of the instances at the cluster borders is not given.
INFLO addresses this shortcoming. It solves the problem
of inaccurate space representation in the LOF. INFLO uses
different descriptions of the neighborhood for the reference
set and context set. The INFLO score is computed using
both the k-nearest neighbors and the reverse nearest neighbor.
To achieve an enhanced estimation of the neighborhood’s
density distribution, both the nearest neighbors (NN) and
reverse nearest neighbors (RNNs) of data points are consid-
ered. INFLO is defined as the ‘‘ratio of the average density
of objects in ISk (p) to p′s local density’’:

INFLOk (p) =

∑
o∈ISk (p) den(o)

|ISk (p)|den(p)
(9)

where den(o) and den(p) are the densities of o and p respec-
tively, and ISk (p) is the average density of objects to p′s
local density. The higher the INFLO value, the higher the
probability that the object is an outlier. In 2014, still using
the density-based approach to tackle local outlier detection
problems, Cao et al. [84] proposed a novel density-based
local outlier detection (UDLO) notion on uncertain data that
are characterized by some discrete instances. Here, an exact
algorithm is recommended to compute the density of an
instance rather than using the naive method of finding all
k-neighbors to calculate the outliers, as in the LOF. However,
in their approach, they only applied the Euclidean distance
metrics. Using other distance computation methods to inves-
tigate the possibility of improving the performance of the
algorithm can be a future study.

After the introduction of LOF [8], several variations of
LOF have been established, such as COF [80], INFLO [75],
and LOCI [82]. However, these algorithms are challenged
with the distance computations for high dimensional datasets.
Keller et al. [85] proposed a high contrast subspace method
(HiCS) to improve on evaluating and ranking of outliers
where outlier scores are closely related. Extending the
focus beyond only local outliers to include global outliers,
Campello et al. [86] proposed a new effective outlier detec-
tion measure algorithm called Global-Local Outlier Score
from Hierarchies (GLOSH). It is capable of simultaneously
detecting both global and local outlier types based on a
complete statistical interpretation. Generally, even though
the GLOSH result can’t perform better in all cases than
other techniques, it still has the strength of scaling well for
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different tasks. Since the study is based on a specific k-nearest
neighbor density estimate, it has some limitations. A future
study could be to investigate how other density estimates
would improve this work.

Momtaz et al. [87], deviate a little from the central focus
of most previous algorithms in computing the local outliers.
They introduced a novel density-based outlier detection tech-
nique that detects the top-n outliers by providing for every
object a score called the Dynamic-Window Outlier Factor
(DWOF). This algorithm is a modified and improved version
of Fan et al. [88] - Resolution-based Outlier Factor (ROF)
algorithm. ROF overcomes some setbacks, such as low accu-
racy and its high sensitivity to parameters in data sets.

With the massive flow of high-dimensional data, new
research motivations are linked with improving the effective-
ness and efficiency of algorithms in detecting outliers in big
data. Wu et al. [89] proposed an algorithm for the detection
of outliers in big data streams. They use a fast and accurate
density estimator called RS-Forest and a semi-supervised one
class machine-learning algorithm. Bai et al. [77], considered
a density-based outlier detection in big data and proposed a
Distributed LOF Computing (DLC) method, which detects
outliers in parallel. The main idea here is twofold. Initially,
the preprocessing stage uses the Grid-Based Partitioning
(GBP) algorithm and the DLC for the outlier detection stage.
However, despite the improved performance, it still does not
scale well when compared to Lozano et al. [90] - Parallel
LOF Algorithm (PLOFA). Improving the scalability of the
algorithm can be an interesting research problem for future
direction.

Tang and He [78] proposed an outlier detection method
using the local KDE. To measure the local outlierness, a Rel-
ative Density-Based Outlier Score (RDOS) is used. Here,
the local KDE method with an extension of the object’s near-
est neighbor is used to estimate the density distribution at the
object location. They pay more emphasis on the reverse and
shared nearest neighbors rather than the k-nearest neighbor
of an object for the density distribution estimation. In their
method, only the Euclidean distance metric is applied, similar
to UDLO in [84]. With a related extension for a future study,
there is a need to involve other distancemethods to investigate
its effect, and to extend their work in real-life applications.

Vázquez et al. [91] proposed a novel algorithm to detect
outliers based on low-densitymodels of the data called Sparse
Data Observers (SDO). SDO reduces the quadratic complex-
ity experienced by most lazy learner OD algorithms. It is an
eager learner and severely reduced the computational cost,
which in turn performs well when compared to other best-
ranked outlier detection algorithms. Ning et al. [92] pro-
posed a relative density-based OD method that uses a novel
technique to measure the object’s neighborhood density.
Su et al. [93] proposed an efficient density-based scheme
based on local OD approach for scattered Data called
E2DLOS. They rename the local outlier factor and called
theirs Local Deviation Coefficient (LDC) by utilizing the
full benefit of the object distribution and the distribution of

the neighbors. They then proposed a safe non-outlier object
removal method to preprocess the datasets to remove all non-
outlier objects. This process is named as rough clustering
based on multi-level queries (RCMLQ). This helps in reduc-
ing the amount of data that is required to be computed for
the local outlier factor. The proposed method is based on
LDC and RCMLQ, and from the experiment, it improves
on existing local outlier detection methods in both detection
accuracy and time efficiency.

We present a summary in Table 2, showing the progress
using this technique for some key algorithms mentioned
above. In our overview, it is essential to note that, when we
say this method outperforms the other, it does not neces-
sarily mean that it is superior to the other in all scenarios
and datasets. The analysis and summary presented here are
based on the experiment done in these papers, as reported
by the authors. While a method might outperform another
method, this might be for a set of parameters, the scenario
or assumptions used in the experiment. We cannot claim that
a method is superior to another in all cases since we did
not perform experiments under the same parameter settings
and environment. This is true for all the following tables
(Table 2-5) in this paper.

1) DENSITY-BASED APPROACHES-ADVANTAGES,
DISADVANTAGES, CHALLENGES, AND GAPS
a: ADVANTAGES
In density-based methods, the density estimates used are non-
parametric; they do not rely on assumed distributions to fit the
data.

Some of the density-based techniques [8], [75], [81], [82]
have served as a fundamental baseline for many subse-
quent algorithms. They have experimentally been shown to
work well for modern methods, often outperforming their
competitors like some existing statistical and distance-based
approaches [39], [94], [95]. Since outliers in these meth-
ods are often analyzed through the object’s neighborhood
density [8], [82], this, in turn, gives it more advantage in
identifying crucial outliers missed by most other outlier
detection-based methods. These methods facilitate the pro-
cess of efficiently ruling out outliers nearby some dense
neighbors. They require only minimum prior knowledge such
as the probability distribution and only a single parameter
tuning. They are also known for their ability to compute local
outliers efficiently.

b: DISADVANTAGES, CHALLENGES, AND GAPS
Even though some density-based methods are shown to
have improved performance, they are more complicated and
computationally expensive when compared especially to sta-
tistical methods in most cases [96]. They are sensitive to
parameter settings such as in determining the size of the
neighbors. They need to cautiously take into consideration
several factors, which consequently results in expensive com-
putations. For varying density regions, it becomes more
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TABLE 2. summary of density-based algorithms.
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complicating and results in poor performance. Density-based
methods, due to their inherent complexity and the lack of
update of their outlierness measures, some of these algo-
rithms, such as INFLO and MDEF, cannot resourcefully
handle data streams. In addition, they can be a poor choice
for outlier detection in data stream scenarios. It is also chal-
lenging for high dimensional data when the outlier scores are
closely related to each other.

To discuss further, in Table 2, we present a summary
of randomly handpicked (because of the space limita-
tion) well-known density-based outlier detection algorithms.
We included the performance, issues addressed, and draw-
backs of standard algorithms and show the progress of how
these algorithms have evolved. In one of the most popu-
larly known density-based methods, LOF [8], it is crucial
to note that in an outlier detection process where the local
outliers are not significant, the algorithm can create a lot of
false alarms. Generally, since density-basedmethods are non-
parametric, for high-dimensional data spaces, the sample size
is considered too small [27]. Additional re-sampling, to draw
new samples, can be adapted to enhance the performance.
We also note that, since most density-based methods rely on
nearest neighbor computations, this makes the choice of k
very significant for the evaluation of these algorithms. Usu-
ally, finding the nearest neighbor in nearest-neighbor outlier
detection algorithms, the computational cost is about O(n2).
A rare case is that in LOCI, where the radius r is extended
and thus summing its complexity to O(n3). This makes it
very slow for more massive datasets. An improved ver-
sion is the aLOCI, which shows a faster runtime depend-
ing on the amount of the quad-trees that are utilized.
Goldstein et al. [97], compared COF and LOF, and it was
found that the LOF spherical density estimation was a poor
choice for efficiently detecting outliers. COF estimated its
local density by connecting the regular records with each
other to solve the above drawback. INFLO shows improved
outlier scores when clusters with different densities are not
far from each other. Table 2 gives the remaining summary of
critical points for the different algorithms.

B. STATISTICAL-BASED APPROACHES
Detecting outliers using statistical techniques can be done
using supervised, semi-supervised, and unsupervised styles.
In statistical-based OD methods, the data points are some-
times modeled using a stochastic distribution, and some data
points can be labeled as outliers depending on the relationship
with the distribution model. Outliers and inliers are declared
depending on the data distribution model. Statistical-based
methods are usually classified into two main groups - the
parametric and non-parametric methods. The major differ-
ence between the two methods is that the former has an
assumption of the underlying distribution model in given
data, and from the known data, it estimates the parameters of
the distribution model. The latter method does not have any
assumption of prior knowledge of the distributionmodel [98].

In this paper, we classify some of the current research that has
been done using a statistical approach to detect outliers into

three categories - parametric methods, non-parametric
methods, and other kinds of statistical techniques.

1) PARAMETRIC METHODS
For this type of method that has an assumption of the under-
lying distribution model, two well-known methods adopted
for outlier detection are the Gaussian Mixture model and
Regression model.

a: GAUSSIAN MIXTURE MODEL METHODS
The Gaussian Model is one of the most prevalent statistical
approaches used to detect outliers. In this model, the train-
ing phase uses the Maximum Likelihood Estimates (MLE)
method [100] to perform the mean and variance estimates of
the Gaussian distribution. In the test stage, some statistical
discordancy tests (box-plot, mean-variance test) are applied.

Yang et al. [101], introduced an unsupervised outlier detec-
tionmethodwith the globally optimal Exemplar-BasedGMM
(Gaussian Mixture Model). In their technique, they first
realized the global optimal expectation maximization (EM)
algorithm to fit the GMM to a given data set. The outlier
factor for every data point is considered as the sum of the
weighted mixture proportions with the weight signifying the
relationship with other data points. The outlier factor Fk at
xk is mathematically defined as:

Fk = zk (th) =
∑n

j=1
skjπj(th) (10)

where skjπj(t) shows the depth of the point xk ‘s influence on
another point xj. skj, referring to the connection strength, th
the final iteration and πj the measure of the significance of
point j. The data point xk , is more likely to be flagged as an
outlier if Fk , is smaller. This technique is in contrast to other
existing methods [8], [80], [82], which focus solely on local
properties rather than global properties. Yang et al. [101]
technique can be applied to solve the problem of the
clustering-based technique’s inability to detect outliers in
the presence of noisy data, by fitting the GMM at every
data point in a given dataset. We note that, notwithstand-
ing the method’s capacity to identify unusual shapes faster,
it still has a high complexity (with O(n3) for single iteration
and O(Nn3) for N iterations). An algorithm that can reduce
such a computational complexity can serve to be more scal-
able for future study.

In 2015, for a more robust approach to outlier detection,
the use of GMM with locality preserving projections was
proposed by Tang et al. [102]. They combined the use of
GMM and subspace learning for robust outlier detection in
energy disaggregation. In their approach, the locality pre-
serving projection (LPP) of subspace learning is used to pre-
serve the neighborhood structure efficiently and then reveal
the intrinsic manifold structure of the data. The outliers are
kept far away from the normal sample, which happens to
be reversed when compared to Saha et al. [103] principal
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component analysis (PCA) method. This study addresses
the research gap of the previous methods, LOF [8] and
Tang et al. [80], which failed to detect outliers in multiple
state processes and multi-gaussian states. From the experi-
mental evaluation, even though the proposed method showed
improved performance (true-positive 93.8% to 97% and a
decrease of false-positive from 35.48% to 25.8%). However,
missing in the literature is the computational complexity
when compared to other techniques.

b: REGRESSION METHODS
Detecting outliers using regression models is one of the most
straightforward approaches to outlier detection problems.
The model chosen by the user can either be linear or non-
linear depending on the problem that needs to be solved.
Usually, when adopting this technique, the first stage, which
is the training stage, involves constructing a regression model
that fits the data. The test stage then tests the regression
model by evaluating every data instance against the model.
An outlier here is labeled when a data point with a remarkable
deviation occurs between the actual value and the anticipated
value produced by the regressionmodel. Over the years, some
standard approaches for outlier detection using the regression
techniques include thresholding using Mahalanobis distance,
robust least squares with bi-square weights, mixture models
and then an alternate vibrational Bayesian approach to regres-
sion [26]. These techniques use regression models to detect
outliers, and in contrast, a different method was proposed
by Satman [104] to detect outliers in linear regression. The
algorithm is centered on a non-interactive covariance matrix
and concentration steps applied in the least trimmed square
estimation. The algorithm has the advantage of detectingmul-
tiple outliers in a short time, which makes the computational
time to be cost-effective. However, for a better result of this
model, a future study can be to minimize the bias and the
variance of the intercept estimator because regression models
are sometimes characterized by minute preferences.

Park et al. [105], proposed another regression-based outlier
detection technique, but this time, it is centered on detecting
outliers in sensor measurements. The proposed technique
makes use of a weighted summation approach for building
a synthesized independent variable from the observed val-
ues. Since the method was only tested for a single envi-
ronment, we believe proposing techniques that will attain
precise model estimation for different sensor settings and
situation will be an interesting future study. Recently, in 2017,
Dalatu et al. [106] did a comparative study on linear and non-
linear regression models for outlier detection by analyzing
the receiver operating characteristic (ROC) curves in terms
of their misclassification rate and accuracy. The study gives
researchers insight into the predictive results of the two kinds
of regression models in outlier detection. The non-linear
models (93% accuracy) tend to fitmore than the linearmodels
(68% accuracy) for outlier detection, which gives researchers
better reasons why adopting a non-linear model can be more
effective in a more general situation.

2) NON-PARAMETRIC METHODS
Kernel Density Estimation Methods: Kernel Density Esti-
mation (KDE) is a common non-parametric approach for
detecting outliers [107]. An unsupervised approach to outlier
detection using kernel functions was presented in [108] by
Latecki et al. The outlier detection process is performed by
comparing each point’s local density to that of the neighbor’s
local density. The experimental evaluation of the proposed
techniques when compared to some popular density-based
methods [8], [82] results in better detection performance in
most cases. However, the method still lacks applicability in
very large and high dimensional real-life databases. This can
be an extension of the current study for the future. Later,
Gao et al. [109] proposed a better approach to address some
of the previous shortcomings. The method shows improved
performance, and good scalability for broad data sets using
kernel-based techniques with less computational time when
compared to LOF and Latecki et al. [108] proposed meth-
ods. To address the issue of inaccurate outlier detection in
complex and large data sets, they adopted the variable kernel
density estimation to tackle this problem. Another issue to
address is related to the LOF, which is the dependability of
the parameter k – which measures the weight of the local
neighborhood. To salvage this issue, they adopted a weighted
neighborhood density estimate. Overall, the method shows
improved performance and good scalability for large data
sets with less computational time. Kumar and Verma [110]
use KDE to estimate the sensor data distribution to detect
malicious nodes.

In another study, Boedihardjo et al. [111] adopt the KDE
based approach in a data stream environment despite the
challenges of directly applying the KDE methods in a data
stream environment. The KDE methods in outlier detection
approaches show improved performance in some aspects.
However, they are known for their extensive computational
cost. Uddin et al. [112] then use KDE for outlier detection in
different application area - power grid. The authors in [111]
proposed an approximation approach of the adaptive kernel
density estimator (AKDE) for robust and accurate estimates
of the probability density function (PDF). Although it shows
that the technique produces a better estimation quality than
the original KDE - with a (O(n2)) computational cost. How-
ever, it still shows a better performance in most areas when
compared to the original KDE. The authors were able to
propose a technique that met the stringent constraints in
this kind of environment, and we believe further studies
for multivariate streams can be done. Zheng et al. [10] in
another study, use KDE on distributed streams in a multi-
media network for detecting outliers. Smrithy et al. [113]
proposed a non-parametric online outlier detection algorithm
to detect outliers in big data streams. An adaptive kernel
density-based technique using the Gaussian kernel was also
studied by Zhang et al. [114] for detecting anomalies in non-
linear systems. Qin et al. [115] proposed a novel local outlier
semantics that makes excellent use of KDE to detect local
outliers from data streams effectively. Their work addresses
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the shortcoming of existing works that are not well furnished
to tackle current high-velocity data streams owing to high
intricacy and their unpredictability to data updates. They
designed KELOS, an approach to unceasingly identify the
top-N KDE-based local outliers over streaming data.

To conclude, one big setback of most KDE methods is
that they usually suffer from a high computational cost and
curse of dimensionality, which makes them very unreliable in
practice. Despite KDE’s better performance when compared
to other non-parametric OD approaches, there is a relatively
low number of reports that adopt KDE based phenomenon to
approach this problem.

3) OTHER STATISTICAL METHODS
Many statistical approaches have been proposed, but among
the more straightforward statistical methods to identify out-
liers are the histogram [116] and other statistical tests [40]
such as the Boxplot, Trimmed mean, Extreme Studentized
Deviate and the Dixon-type test [40]. The Trimmed mean
among the others is more comparatively resistance to outliers,
while to identify single outliers, the Extreme Studentized
Deviate test is the right choice. The Dixon-type test has
the advantage of performing well with a small sample size
because there is no need to assume the normalcy of the data.
Barnett et al. [39] discuss several tests for the optimization
of different distributions model to effectively detect outliers.
Optimization could depend on the actual parameters of con-
forming distributions, that is, the expected space for outliers
and the number of outliers. Rousseeuw and Hubert [117]
also gave a broader discussion of statistical techniques for
outlier detection. Using a histogram-based approach, Gold-
stein and Dengel [116] proposed a Histogram-Based Outlier
(HBOS) detection algorithm that uses static and dynamic
bin width histograms to model univariate feature densities.
These histograms are then used to calculate the outlier score
for each of the data instances. Though the algorithm showed
improved performance in some performance metrics like the
computational speed when compared to some other popular
OD methods such as LOF [8], COF [80], and INFLO [75].
However, it falls short in local outlier detection problems
because the algorithm cannot model local outliers using the
proposed density estimation.

Hido et al. [95], proposed a new statistical approach for
inlier-based outlier detection problems by using the directed
density ratio estimation. The main idea is to utilize the
ratio of the training and test data densities as outlier scores.
Themethod of unconstrained least-squares importance fitting
(uLSIF) was applied because it is more suitable with natural
cross-validation measures that allow it to accurately opti-
mize the tuning parameter’s value; such as the kernel width
and regularization parameter. The proposed technique, when
compared to the non-parametric KDE, is more advantageous
because it has provision to escape the hard density estimation
computation. The method also showed an improved perfor-
mance in accuracy, even though not in all cases, they showed
a better performance than the other methods. Nevertheless,

it demonstrates that the approach ismore efficient in a broader
perspective. Improving the accuracy of the density ratio esti-
mation can be an important future work to consider this
approach.

Du et al. [118], proposed another robust technique with
statistical parameters to solve the problem of local outlier
detection called the Robust Local Outlier Detection (RLOD).
This study was motivated by the fact that most OD methods
focus on identifying global outliers, and most of these meth-
ods [119], [120] are very sensitive to parameter changes. The
whole idea of the framework is in three stages. In the first
stage, the authors propose a method to initially find density
peaks in the dataset using the 3σ standard. In the second
stage, in the dataset, each remaining data object is then allo-
cated to its identical cluster to be labeled as to its nearest
neighbor with a higher density. In the final stage, they use
Chebyshev’s inequality and then the density peak reachability
to recognize the local outliers in each group. The method
supports both the detection of local and global outliers as
in Campello et al. [86] technique, and they experimentally
proved that themethod outperforms othermethods [8], [26] in
terms of the running time and detection rate. The authors rec-
ommend further experiments on how to improve efficiency
through the use of a robust method for distributed and parallel
computing.

Other studies have been done using statistical methods for
computing outliers. In Table 3, we present a summary show-
ing the progress using this technique for some key algorithms
mentioned above.

4) STATISTICAL-BASED APPROACHES-ADVANTAGES,
DISADVANTAGES, CHALLENGES, AND GAPS
Advantages

i. They are mathematically acceptable and have a fast
evaluation process once the models are built. This is
because most models are made in a compacted form,
and they showed improved performance given the prob-
abilistic model.

ii. The models generally fit quantitative real-valued data
sets or some quantitative ordinal data distributions. The
ordinal data can be changed to an appropriate value for
processing, which results in improved processing time
for complex data.

iii. They are easier to implement even though limited to
specific problems.

Disadvantages, Challenges, And Gaps:

i. Because of their dependency and the assumptions of a
distribution model in parametric models, the quality of
the results produced is mostly unreliable for practical
situations and applications due to the lack of preceding
knowledge regarding the underlying distribution.

ii. Since most models apply to univariate feature space,
they are characteristically not applicable in a multi-
dimensional scenario. They incur high computational
costs when dealing with multivariate data and this,
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in turn, makes most of the statistical non-parametric
models a poor choice for real-time applications.

iii. In the histogram technique, one fundamental shortcom-
ing for multivariate data is the ineptitude of capturing
the interactions between different attributes. This is
because they cannot simultaneously analyze multiple
features. In general, some prevailing statistical methods
are not applicable to handle very high dimensional
data. There is a need to design statistical techniques
to support high dimensional data that are capable of
simultaneously analyzing multiple features.

iv. When faced with problems of increased dimensional-
ity, statistical techniques adopt different methods. This
results in increase in the processing time and misrepre-
sentation of the distribution of the data.

Discussing further on a more global view, statistical
methods comes with lots of advantages and drawbacks.
In outlier detection problems, the importance of outlier-
free data is significant for building reliable systems. This
is because outliers can have a drastic effect on the system
efficiency, so it’s prudent to identify and remove those that
affect the system’s accuracy. Most of the drawbacks from
statistical methods are centered around the outlier detec-
tion accuracy, lack of efficient techniques for very high
data sets, the curse of dimensionality, and computational
cost.

Statistical-based methods can be effective in the outlier
detection process when the correct distribution model is
captured. In some real-life situations, for instance, in sen-
sor stream distribution, there is no prior knowledge avail-
able to be learned. In such a scenario, when the data does
not follow the predetermined distribution, it may become
impractical. Therefore, non-parametric methods are mostly
appealing since they do not depend on the assumption of
the distribution characteristics. This is also true for big data
streams, where the data distribution cannot be assumed.
For evenly dispersed outliers in a dataset, using statisti-
cal techniques becomes complicating. Therefore, paramet-
ric methods are not applicable for big data streams, but
for non-parametric methods, they are. In addition, defin-
ing the threshold of a standard distribution to differen-
tiate the outliers has a higher probability of inaccurate
labeling.

For parametric cases, using the Gaussian mixture models,
a worth noting point is the daunting task in adopting Gaussian
techniques for computing outliers in both a high dimensional
data subspace and data streams. Yang et al. [101] method, for
instance, has high complexity. An algorithm that can reduce
such a computational complexity can serve to be more scal-
able. Regression techniques also are not suitable to support
high dimensional subspace data. For a more efficient and
robust solution in finding and discovering outliers, it’s more
appropriate to apply robust regressions rather than ordinary
regressions because outliers can impact the latter. For the non-
parametric case, KDE performs better in most cases, despite
its sensitivity to outliers and the complexity in determining

a good estimate of the nominal data density in polluted data
sets. In multivariate data, they scale well and are computa-
tionally inexpensive. The histogram models work well for
univariate data but not suitable for multivariate data. This is
because it cannot capture the relations between the different
attributes.

Some statistical techniques are not well adapted in recent
times because of the kinds of data and application areas.
However, they are considered to be great practical approaches
to outlier detection problems. Tang et al. method [102],
when compared to the PCA method [103], gives a robust
improvement for outlier and noise detection problems.
In HBOS [116], their approach shows a good computational
speed even more than some clustering-based algorithms and
other types of algorithms (LOCI, LOF, INFLO) and thus
makes it a suitable for large scale near real-time applications.
While Hido et al. [95] method is more scalable for massive
data sets and Du et al. [118] method has a more robust
analysis.

C. DISTANCE-BASED APPROACHES
Distance-based methods detect outliers by computing the
distances between points. A data point that is at a far dis-
tance from its nearest neighbor is regarded as an outlier. The
most commonly used distance-based outlier detection defi-
nition is centered on the concept of the local neighborhood,
k-nearest neighbor (KNN) [121], and the traditional distance
threshold. One of the earliest studies of computing distance-
based outliers by Knorr and Ng [122] defined distance-based
outliers as:
Definition: In a dataset T, an object O is a DB (p, D)-outlier

if minute fraction p of the objects in the dataset lies beyond
the distance D from O.

Other well-known definitions of distance-based outliers
given the distance measure of feature space, define outliers
as:

i. Points with less than p different samples within the
distance d [99].

ii. The top n examples whose distance to thekth nearest
neighbor are the greatest [123].

iii. The top n examples whose average distance to the k
nearest neighbors are the greatest [7].

The abbreviation DB(p,D) is the Distance-Based outlier
detected using the parameters p and D.
DB outlier detection methods are moderate non-parametric

approaches that scale well for large data sets with a medium
to high dimensionality. In comparison with statistical tech-
niques, they tend to have a more robust foundation and are
more flexible and computationally efficient. In our subse-
quent section, we classify the distance-based methods into
the following groups - distance-based computation method
using k-nearest neighbor computation, pruning techniques,
and data stream related works. Some of the most commonly
used distance-based approaches to detect outliers are as
follows:
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1) K-NEAREST NEIGHBOR METHODS
Using these methods for computing outliers have been one
of the most popular ways adopted by many researchers to
detect outliers. It is not the same as the k-nearest neighbor
classification. These methods are mostly used for detecting
global outliers. Initially, a search for the k-nearest neighbor
of every record, and then these neighbors are used to compute
the outlier score. They mainly examine the nature of a given
object neighborhood information to determine whether they
are close to their neighbors or have a low density or not. The
key concept is to exploit the neighborhood information to
detect the outliers.

Knorr and Ng [122] and Ramaswamy et al. [123] were
among the first to propose techniques for detecting outliers
in large data sets that shows significant progress in the
already state-of-the-art existing studies. Knorr and Ng [122],
proposed a non-parametric approach, which is in contrast
to some previous statistical techniques [101], [104]. The
users lack knowledge about the underlying distribution.
The indexed-based and nested-loop based algorithms were
the two algorithms proposed with the computational com-
plexity of O(kN2); with k as the dimensionality and N as
the number of datasets. Later Ramaswamy et al. [123], pro-
posed a cell-based algorithm that is linear with respect to N
and exponential with respect to K to optimize the previous
algorithm [122]. It has a computational complexity lower
than the two previous methods. Ramaswamy et al. [123]
tried to improve on several of the shortcomings of [122] such
as specifying the distance, the ranking method adopted and in
minimizing the computational cost. To address the problem of
determining the distance, they defined their approach as one
that does not require the users to specify the distance param-
eter but adopts the kth nearest neighbor. In the expanded ver-
sion of [122], to find the nearest neighbor of each candidate
spatial indexing structures, the KD-tree, X-tree, and R-tree
are used [99]. This is done by querying the index structure
for the closest k points in each example and finally, in line
with the outlier definition, the top n candidate is selected.
One main concern of this method is that the index structures
breakdown with an increase in the dimensionality.

Angiulli et al. [7] differ a bit from the traditional approach
of targeting the development of techniques to detect out-
liers in an input dataset, to that which can learn a model
and predict outliers in an incoming dataset. They designed
a distance-based algorithm that detects top outliers from a
given unlabeled dataset and predicts if an undetected data
point is an outlier. The outlier detection process involves
detecting the top n outliers in a given dataset, which means
the n objects of the dataset with the highest weight. This is
done by determining whether an incoming object’s weight in
the dataset is greater than or equal to the nth highest weight.
This process results in a O(n2) complexity.
Ghoting et al. [124] proposed an algorithm called the

Recursive Binning and Re-Projection (RBRP) to enhance
the computational speed for high-dimensional datasets and
improve on the drawbacks of previous methods [122], [123].

The key difference from the earlier algorithms is that it sup-
ports the fast merging of a point’s approximate nearest neigh-
bors. In terms of its efficiency, only the points’ approximate
nearest neighbors are of value. It scales linearly as a function
of the number of dimensions and log-linear for the number of
data points. One key difference from other methods is, instead
of using the nearest neighbors, the approximate nearest neigh-
bor is used, which makes the computation faster.

In 2009, instead of following the trend in outlier detection
for global outliers using distance-based computation tech-
niques, the authors decided to divert to local outlier detection.
Zhang et al. [76] proposed a local distance-based outlier
detection method called the Local Distance-based Outlier
Factor (LDOF). Their study shows improved performance
over the range of neighbor size when compared to LOF [8].
The demand for a pairwise distance computation is (O(k2)),
similar to COF [80]. It is comparable to that of the k-nearest
neighbor outlier detection techniques in performance; how-
ever, it is less sensitive to parameter values. Liu et al. [125],
in a later study, extended the traditional LOF to uncertain
data.

Huang et al. [126] proposed a method called Rank-Based
Detection Algorithm (RBDA) to rank the neighbors. It pro-
vides a feasible solution and ensures that the nature of
high-dimensional data becomes meaningful. For illustration,
in [17], the fundamental assumption will be that objects will
become close to each other or share similar neighbors when
they are produced from the samemechanism. TheRBDAuses
the ranks of individual objects that are close as the degree of
proximity of the object. It does not take into consideration the
objects distance information with respect to their neighbors.
Bhattacharya et al. [127] propose a method that further uses
both the ranks of the nearest neighbors and the reverse nearest
neighbors. This ensures each candidate object outlier score is
effectively measured.

In another study, Dang et al. [121] applied k-nearest neigh-
bor to detect outliers in daily collected large-scale traffic data
in some advanced cities. Outliers are detected in data points
by exploiting the relationship among neighborhoods. An out-
lier here is a data point that is farther from its neighbors.
Notwithstanding the good results shown concerning the suc-
cess detection rate of 95.5% and 96.2% respectively, which
outperforms those of statistical approaches such as KDE
(95%) and GMM (80.9%). However, a shortcoming of their
work is they only considered a single distance-based metric,
so a future study with more complicated variations like that
of different weights on multiple distances, can improve the
outlier detection rate. In another study, to improve on the
search effectiveness of the KNN neighbors, Wang et al. [128]
applied a minimum spanning tree.

Radovanovi’c et al. [129] presented a reverse nearest
neighbor approach to tackle one of the biggest challenges
in computing outliers in high-dimensional data sets, that
is, ‘‘the curse of dimensionality.’’ They showed that their
approach could be effectively applied in both low and
high-dimensional settings. When compared with the original
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KNN method [123], it showed an improved performance
in the detection rate. Their primary focus is centered on
the influence of high dimensionality and the hubness phe-
nomenon. An antihub technique was then proposed, which
optimized the perception between scores. Huang et al. [130]
implemented the concept of natural neighbor to acquire the
information of the neighborhood. Ha et al. [131] proposed
a heuristic approach to determine a suitable value for k
by employing iterative random sampling. To this end, most
recently, Tang et al. [78] proposed a method to determine the
outlier scores in local KDE. They examine different types
of neighborhoods, including the reverse nearest neighbor,
shared nearest neighbors and the k nearest neighbor. The
neighbor-based detection methods are independent of the
data distribution model and can be easily understood and
interpreted. However, they are sensitive to parameter settings
and sometimes deficient in performance.

2) PRUNING METHODS
Bay et al. [132], presented an algorithm based on a nested
loop that uses the randomization and pruning rule. By mod-
ifying the nested loop algorithm, which is recognized for its
quadratic performanceO(N 2), they were able to obtain a near
linear time on most of the data sets that previously showed a
quadratic performance in the previous method [122]. How-
ever, the algorithm makes a lot of assumptions which will
consequently lead to poor performance. Angiulli et al. [133],
since most previous research [99], [122], [123] were unable
to simultaneously meet the demand of both the CPU cost
and in minimizing the I/O cost, the authors presented a
novel algorithm called Detecting OutLiers PusHing data into
an Index (DOLPHIN) to address these challenges. In the
proposed algorithm, only two sequential scans of the data
set are performed, while that of [132] implements a block-
nested loop analysis of the disk pages, which results in a
quadratic input and output cost. Ren et al. [134], presented
an improved version of Ramaswamy et al. technique [123],
a vertical distance-based outlier detection method to detect
outliers in large data sets by also applying the pruningmethod
and a ‘‘by-neighbor’’ labeling technique. In their study, as an
alternative to the outdated horizontal structures, the vertical
structure is adopted to facilitate the efficient detection of
outliers. The technique is implemented in two phases (with
and without pruning) with P-Trees for the outlier detection.
According to the authors, a future study can be to discover the
use of P-Trees in other ODmethods, such as the density-based
approach. In another work, Vu et al. [135] introduced the
MultI-Rule Outlier (MIRO) that adopts a similar technique
as in [134] by using the pruning technique to speed up the
process of detecting outliers.

3) IN DATA STREAMS
Lately, most incoming data are in the form of continuous
flow, and storing these data can be impractical because they
need to be computed fast. In data streams, for distance-
based approaches, researchers continue to face significant

challenges such as the notion of time, multi-dimensionality,
concept drift, and uncertainty problems [72]. Researchers
have seen these as interesting challenges, and they have
focused on designing algorithms to detect outliers in the data
stream environment. The data stream is considered to be a
large volume of unlimited incoming sequence data. Since
the mining of these kinds of data is highly dependent on
time intervals, usually the computation is done in windows.
The two well-known data stream window models are the
landmark and sliding window [136]. In the former, a time
point in the data stream is identified, and the points within
both the last time point and the current time are then analyzed.
While in the latter, the window is marked by the two sliding
endpoints.

Angiulli et al. [136] propose a novel idea for the one-time
query of outliers in data streams that is different from the
continuous queries approach presented by authors in [137],
[138]. They proposed three kinds of Stream Outlier Miner
(STORM) algorithms to detect outliers in data streams using
the distance-based method. The first one is based on com-
puting the exact outlier query and the other two focus on
retrieving the approximate results of the queries. The exact
algorithm (Exact-Storm) makes use of the stream manager
(which collects the incoming streams) and a suitable data
structure (that is used by the query manager to answer outlier
queries). One shortcoming of this algorithm is the cost of
storing all the window objects. It is also not suitable in cases
of colossal memory since it cannot fit into the memory. To
tackle this issue, the approximate algorithm (Approx-Storm)
is applied to improve the Exact-Storm. This is done by adjust-
ing two approximations, that is, by reducing the number of
data points stored in eachwindow and by decreasing the space
for every data point neighbor’s storage. The final algorithm
(Approx-fixed-memory) aims to minimize memory usage by
keeping only a controlled fraction of the safe inliers.

Yang et al. [139], proposed some methods (Abstract-C,
Abstract-M, Exact-N, and Extra-N) to deal with the incre-
mental detection of neighbor-based patterns in the sliding
window scenarios over data streams. The old static approach
of pattern detection is costly and results in high complexity.
Therefore, in this technique, the authors address the issue
of handling sliding windows, which was not supported in
earlier incremental neighbor-based pattern detection algo-
rithms such as the incremental DBSCAN [26]. From their
experimental studies, it shows less CPU usage, and it main-
tained a linear memory usage for the number of objects in
the window. Among these algorithms, Abstract-C is the only
related algorithm using distance-based while the other two
are more linked with density-based cluster methods. Table 3
gives further details and summaries of these methods.

Kontaki et al. [140], proposed algorithms that tackle
some issues in event detection in data streams [141] and
in sliding window scenarios over data stream [139], which
are both characterized by continuous outlier detection.
In Angiulli et al. technique [141], two of the algorithms
use the sliding window in parallel with the step function
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TABLE 3. summary of statistical-based algorithms.

in the process of detecting the outliers. The main objective
in [140] is to minimize the storage consumption, improve
the algorithm efficiency, and to make it more flexible. The
authors designed three algorithms to support their aim, and
they include Continuous Outlier Detection (COD), Advance
Continuous Outlier Detection (ACOD), and Micro-Cluster-
Based Continuous Outlier Detection (MCOD). The first algo-
rithm, COD, has double versions that support a fixed radius
and multiple k values, while ACOD supports multiple k
and R values. The final algorithm, MCOD, minimizes the
range queries and thereby reduces the amount of distance
computation that needs to be done. K is the parameter for

the number of neighbors, and R is the distance parameter for
the outlier detection. The key dissimilarity between STORM
and COD is the decline in the number of examined objects
in each slide, while for Abstract-C and COD, they are the
speed and memory consumption. That is, it is much faster
and requires less space. Another algorithm that is designed
specifically for a high-volume of data streams was proposed
by Cao et al. [142] called ThreshLEAP. It is a technique
that tries to mitigate the expensive range queries. This is
achieved by not storing data points in the same window
like those in the same index structure. Leveraging modern
distributed multi-core clusters to improve the scalability of
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detecting the outliers can be an exciting direction for future
studies.

In Table 4, added to the survey done by Tamboli et al. [25]
in comparing some distance-based outlier detection algo-
rithms using the Massive Online Analysis tool [143],
we added other methods that were not included in their work.
In addition, Tran et al. [73], performed an evaluation study
with detailed experiments of outlier detection methods in the
data stream. Among all the algorithms presented, they con-
clude that MCOD in most settings has the best performance.

4) DISTANCE-BASED APPROACHES-ADVANTAGES,
DISADVANTAGES, CHALLENGES, AND GAPS
Advantages:

i. They are straightforward and easy to comprehend as
they mostly do not rely on an assumed distribution to
fit the data.

ii. In terms of scalability, they scale better in a multi-
dimensional space as they have a robust theoreti-
cal foundation, and they are computationally efficient
when compared to statistical methods.

Disadvantages, Challenges, And Gaps:

i. They share some similar drawbacks as statistical and
density-based approaches in terms of high dimensional
space, as their performance declines due to the curse
of dimensionality. The objects in the data often have
discrete attributes, whichmakes it challenging to define
distances between such objects.

ii. The search techniques such as the neighborhood
and KNN search in high-dimensional space when
using a distance-based approach is an expensive task.
In large data sets, the scalability is also not cost
effective.

iii. Most of the existing distance-based methods that can-
not deal with data streams are because it is difficult for
them tomaintain the data distribution in the local neigh-
borhood and in finding the KNN in the data stream.
This is an exception for methods that were specially
designed to tackle data streams.

Discussing further, in Table 4, we present a comprehen-
sive well-known distance-based outlier detection algorithm.
We give a summary of different techniques in terms of
their computational complexity (running time and memory
consumption), address issues, and their drawbacks. Distance-
based methods are widely adopted approach since they have
a strong theoretical basis and are computationally effective.
However, they are faced with some challenges. One of
the critical underlining drawbacks of most distance-based
methods is their inability to scale well for very high dimen-
sional data sets [144]. Issues like the curse of dimension-
ality continue to be an evolving challenge. When the data
dimension grows, this influences the descriptive ability of
the distance measures and makes it quite tricky to apply
indexing techniques to search for the neighbors. In multivari-
ate data sets, computing the distance between data instances

can be computationally demanding and consequently
resulting in a lack of scalability. Even though researchers
have focused on solving these problems, we still believe
better algorithms can be designed, which can simultaneously
address the problem of both a low memory cost and compu-
tational time. To address the issue of quadratic complexity,
researchers have focused in proposing several significant
algorithms and optimizations techniques such as applying
compact data structures [124], [145], using pruning and ran-
domization [132], among the many others. Another challenge
worth noting is the inability of distance-based techniques to
identify local outliers. Distance-based calculations are often
done with respect to global information. For K-nearest neigh-
bor approaches, the dataset plays a vital role in determining
the perfect KNN score. From most of the algorithms men-
tioned, choosing an appropriate threshold when it is required
is one of themost complex tasks. Another important thing that
also influences the results obtained in these outlier detection
processes is the choice of k and in choosing appropriate input
parameters.

Furthermore, in terms of detecting outliers in the data
streams, the fundamental requirement is related to its com-
putational speed. We believe that designing algorithms that
can support fast computation in both single and multiple data
streams using distance-based techniques will be an exciting
challenge for future directions. For current growing interest
research areas like that of big data which demands the com-
putation of more massive data sets, it is imperative to design
robust algorithms using distance-based techniques that can
scale well with a low computational cost (running time and
memory) for large up-to-date real data sets for both batch and
stream processes.

D. CLUSTERING-BASED APPROACHES
Clustering-based techniques generally rely on using cluster-
ing methods to describe the behavior of the data. To do this,
the smaller size clusters that comprise significantly fewer
data points than other clusters are labeled as outliers. It is
important to note that the clustering methods are different
from the outlier detection process. The main aim of clustering
methods is to recognize the clusters while outlier detection
is to detect outliers. The performance of clustering-based
techniques is highly dependent on the effectiveness of the
clustering algorithm in capturing the cluster structure of
the normal instances [146]. Clustering-based methods are
unsupervised since they do not require any prior knowledge.
So far, numerous research studies are using clustering-based
techniques, and some of them are furnished with mechanisms
to minimize the adverse influence of the outliers. Zhang [26],
in his work introduced many clustering-based algorithms
and divided them into different groups. As most of these
clustering-based algorithms have not been proposed within
this decade, we deem it unnecessary to repeat them in our
work and refer our readers to [26] or the original references of
the studies for a detailed introduction of the listed algorithms
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TABLE 4. summary of distance-based algorithms.
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TABLE 4. (Continued.) Summary of distance-based algorithms.
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TABLE 5. summary of ensemble-based algorithms.

below. Clustering-based outlier detection algorithms have
been grouped into the following subgroups.

i. Partitioning Clustering methods: are also known as
distance-based clustering algorithms. Here, the number of
clusters are either randomly chosen or initially given.
Some examples of algorithms that fall under this group
include PAM [147], CLARANS [148], K-Means [149],
CLARA [147], etc.

ii. Hierarchical Clustering methods: They partition the set
of objects into groups of different levels and form a tree-like
structure. To group into different levels, they usually require

the maximum number of clusters. Some examples include the
MST [150], CURE [151], CHAMELEON [152]

iii. Density-based clustering methods: They do not require
the number of clusters to be initially given as in the
case of partitioning methods; such as K-Means. Given the
radius of the cluster, they can model the clusters into
dense regions. Some examples of density clustering methods
include DBSCAN [153] and DENCLUE [154].

Other groups include the:
iv. Grid-based clustering methods:
STING [94], Wavecluster [155], DCluster [156]
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v. Clustering methods for High-Dimensional Data:
CLIQUE [157], HPStream [158]
In addition to the following algorithms, which have

been covered in existing literature [5], [22], [26], [33],
a two-phase algorithm called DenStream was proposed by
Cao et al. [9] and D-Stream by Chen et al. [159]. The
authors make use of the density clustering-based technique
to address the problems of both online and offline outlier
detections. In DenStream, the initial phase records the sum-
mary information of the data streams, and the latter phase
clusters the already summarized data. Outliers are detected
by introducing potential micro-cluster outlier to differen-
tiate between the real data points and outliers. The main
distinction between the two is weight. If the weight is less
than the density threshold of the outlier microcluster, then
the microcluster is a real outlier. The algorithm, therefore,
removes the outlier micro-clusters. To show the effectiveness
of the algorithm, it was evaluated against CluStream [160].
The algorithm’s efficiency showed improved performance
over that of CluStream in terms of memory since they save
snapshots on a disk rather than in memory. However, the
method still falls short in some areas, for example, in finding
arbitrary shape clusters at multiple levels of granularity and
in adapting to dynamic parameters in the data streams. Even
though the proposed technique was done in 2006, we still
believe some future work can be done to address these issues,
since, to the best of our knowledge, the problems continue
to exist. In the other technique, D-Stream [159], it is similar
to DenStream with an online and offline component, except
that it is a density grid-based clustering algorithm. Detecting
outliers here is not as difficult as in the previous method due
to the introduction of sparse, dense and sporadic grids that
define the noise. Outliers are considered to be grids whose
sparse grids are less than the defined density threshold. The
algorithm also shows better performance over CluStream in
terms of time performance and clustering performance. Since
the algorithms in [9] and [159] use damped window mod-
els, Ren et al. [161] proposed SDstream, an algorithm that
uses the sliding window model. Assent et al. [162] proposed
AnyOut to compute and detect outliers anytime in streaming
data quickly. To identify the outliers in the form of constant
varying arrival rates at a given time, AnyOut uses ClusTree
to build a precise tree structure. The ClusTree is appropriate
for anytime clustering.

Elahi et al. [163], using k-means, a clustering-based outlier
detection technique was proposed for the data stream that
splits the data stream into chunks for processing. However,
it does not fit well for grouped outliers. The experimental
results illustrated that their method achieved a better perfor-
mance than some existing techniques [141], [164] for dis-
covering significant outliers over the data stream. However,
the authors still believe that by integrating distance-based
methods more firmly with the clustering algorithm, it can
yield a better result. Moreover, finding other ways to assign
the outlierness degree to the detected outliers in the data
stream is another good research quest to investigate.

In another study, using a similar concept of k-means as in
MacQueen et al. [149] together with a rule for the weight,
the authors proposed a clustering-based framework to detect
outliers in changing data streams [165]. They assign a weight
to the feature with respect to their relevance. The weighted
attributes are significant because they curb the effect of noise
attributes in the algorithm process. When this technique is
compared to LOF [8], it has less time consumption, shows a
higher outlier detection rate, and also a low false alarm rate.
Even though the work showed improved performance over
the other baseline algorithm (LOF), it falls short in extending
the algorithm for real-world data sets and in investigating its
effects. Extending the algorithm to address this issue and in
designing new scales for the outlierness degree in the data
stream can be an exciting future study. Hosein et al. [166]
proposed a clustering-based technique, which is an advance
k-mean incremental algorithm for detecting outliers in big
data streams.

In another work, an unsupervised outlier detection scheme
that uses both density-based and partitioning-based schemes
for streaming data was proposed by Bhosale et al. [167].
The main idea is based on partitioning clustering tech-
niques [168], [148], which assign weights (using weighted
k-means clustering) to attributes based on their relevance
and adaptivity. The technique is incremental and can adapt
to the concept of evolution. It has a higher outlier detec-
tion rate than [163]. The authors in this study suggested
extending the work for mixed and categorical data for future
research.

Moshtaghi et al. [169] used a clustering approach to
propose a model which labels objects outside the cluster
boundaries as outliers. The mean and covariance matrix
are incrementally updated to observe the fundamental dis-
tribution changes in the data stream. Similar to [169],
Moshtaghi et al. in another work, proposed eTSAD [170],
an approach that models streaming data with established
elliptical fuzzy rules. The fuzzy parameters of incoming data
are updated as in [169]. This helps in the detection of outliers.
Salehi et al. [171] proposed an ensemble technique for evolv-
ing data streams. Instead of modeling and updating the data
streams over time, they proposed using ensemble to generate
clustering models. The outlierness value of an incoming data
point is calculated by utilizing only the applicable set of
clustering models. Chenaghlou et al. [172] proposed an effi-
cient outlier detection algorithm, where the concept of active
clusters is presented for better time and memory efficient
outlier detection result. The input data is split into chunks, and
for each current arriving data chunk, active clusters are identi-
fied. Here, the models of the underlying distributions are also
updated. Rizk et al. [173] proposed an optimized calculation
algorithm that enhances the process of searching for outliers
in both large and small clusters. Chenaghlou et al. [174]
extend their work in [172] by proposing an algorithm that can
detect the outliers in real-time. The algorithm detects outliers
in real time and also discovers the sequential evolution of the
clusters.
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Yin et al. [175], proposed some new and effective meth-
ods in the context of cluster text outlier detection. In their
approach, documents with a low prospect of identifying an
existing cluster are referred to as outliers. They conclude that
the clusters that possess only one document in the result of
Gibbs Sampling of Dirichlet Process Multinomial Mixture
(GSDPMM) are classified as outliers in the data set. Since
GSDPMM has a great potential for incremental clustering,
how to relate GSDPMM in incremental clustering will serve
to be an interesting research direction for future work.

When designing clustering-based algorithms for outlier
detection, usually the following questions are taking into
consideration.

i. Whether the object belongs to a cluster or not, and
whether the objects outside the cluster can be regarded
as an outlier.

ii. Whether the distance between the cluster and the object
is distant or closer. If it is at a distant, can it be regarded
as an outlier?

iii. Whether the object belongs to an insignificant
smaller or sparse cluster, and how to label the objects
within the cluster?

1) CLUSTERING-BASED APPROACHES-ADVANTAGES,
DISADVANTAGES, CHALLENGES, AND GAPS
Advantages:

i. They are unsupervised methods which make them suit-
able choice, and very useful for outlier detection in data
streams. After learning from the clusters, additional
new points can be inserted and then tested for outliers.
This makes them adaptable to an incremental mode.
Also, since no prior knowledge is required for the data
distribution, this makes it more suitable for incremental
mode.

ii. They are robust to different data types. The hierarchical
based methods are versatile, they maintain a good per-
formance on data sets containing non-isotropic clusters
and also produce multiple nested partitions that give
users the option to choose different portions according
to their similarity level.

iii. In partitioning cluster related techniques, they are said
to be relatively simple and scalable, and thus qualify
them for datasets with compact spherical clusters that
are well-separated.

Disadvantages, Challenges, And Gaps

i. In clustering settings, outliers are binary; that is, there
is no quantitative indication of the object’s outlierness.
They are also known for their lack of back-tracking
ability; therefore, they can never undo what has already
been done.

ii. Most clustering methods rely and depend on the users
to specify the number of clusters in advance, which is
a difficult task. In clustering methods, arbitrary shape
clusters also cause some difficulties in realizing the
exact clusters of the data. Therefore, most existing

clustering algorithms require several, in advance and
the shape of the clusters to be defined. However, in data
stream scenario to assume several clusters in advance
is very daunting.

iii. Partitioning methods are said to be highly sensitive
to the initialization phase, outliers, and noise. Sim-
ilar to the density-based clustering techniques, they
also carry some setbacks with regard to the fact that
they are highly sensitive to the setting of the input
parameters. They have inadequate cluster descriptors
and mostly unsuitable for very large high-dimensional
datasets because of the curse of dimensionality. Fur-
thermore, in some of the hierarchical methods [150],
[152], the cost of clustering is enormous for high
dimensional andmassive datasets. The vagueness in the
criteria for termination and the severe dilapidation of
the effectiveness in high dimensional spaces as a result
of the curse of dimensionality is another drawback.

Despite the challenges and drawbacks, clustering based
techniques are useful in outlier detection, more especially
in data streams. Clustering-based algorithm for the process
of outlier detection in data streams has drawn the attention
of researchers and is seen as an interesting domain. The
challenges of choosing appropriate cluster width and calcu-
lating the distance between objects in multivariate data are
among the obstacles researchers try to solve. The detection
rate is high in most cases, but they are also challenged with
high false positives. The density clustering-based techniques
handle noise while the partitioning and hierarchical methods
do not. These techniques have their strength and weaknesses;
it is challenging to decide which one is superior to the other.
Interesting work in the future will be to choose a suitable
dataset and evaluate these methods using different evaluation
metrics. Also, a hybrid approach using the pros of different
techniques. For instance, density-based clustering methods
are suitable to cluster arbitrary shapes. Reducing the com-
putational cost, the speed in the complex and large dataset
for partitioning-based methods and hierarchical methods is
also another interesting future work. Other interesting future
studies will be to propose algorithms to detect outliers in low-
density regions or where outliers are within clusters with a
small number of data points. In addition, suggesting methods
that calculate the distance of the data point to the nearest
cluster centroid to detect the outliers efficiently.

From the selected clustering-based techniques mentioned,
we can see that not much work has been done recently. To the
best of our knowledge, using a thorough analysis of this
technique for outlier detection. Therefore, we do not include
any summary table of this technique, unlike in the other
previous approaches.

E. ENSEMBLE-BASED APPROACHES
Ensemble-based methods are generally used in machine
learning as a result of their comparatively better per-
formance when compared to other related methods.
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Although ensemble-based techniques for outlier detection
when compared to other OD methods have had very few
reports [37], [38], [176]–[182]. However, they are often
used in recent outlier detection problems [183], [184], and
have more open challenges. Ensemble techniques are used
in cases where one is prompted to answer the question of
whether an outlier should be a linear-model based, distance-
based, or other kinds of model-based. They are usually
applied in classification and clustering problems. They com-
bine the results from dissimilar models to produce more
robust models and then reduce the dependency of one model
to a particular dataset or data locality. However, ensemble
methods in the context of outlier detection are known to
be very difficult. In recent years, several techniques have
been introduced, including the following: (I) Bagging [37]
and boosting [184] for classification problems (ii) Isolation
forest [192] for parallel techniques. (iii) for sequential meth-
ods [185] and Extreme Gradient Boosting Outlier Detec-
tion (XGBOD) [183] and a Bagged Outlier Representation
Ensemble (BORE) [186] for the hybrid methods.

Lazarevic et al. [37], proposed the very first known ensem-
blemethod on improving outlier detection using the ensemble
method. It makes use of the feature bagging approach to
handle very large high dimensional datasets. The technique
combines the outputs of multiple outlier detection algorithms,
each of which is created through a random designated subset
of features. Each of the algorithms randomly selects a small
subset of its real feature set and then assigns an outlier score.
The score is assigned to all the data records that match upwith
the probability of them being considered outliers. Each of the
outlier score obtained from the different algorithms is then
combined to get better quality outliers. From their experi-
ment, it shows that the combined method can produce a better
outlier detection performance because it focuses on smaller
feature projections from the combined multiple outputs and
distinct predictions. However, considering how to fully char-
acterize these methods for very large and high dimensional
datasets would be motivating future work. Also, examining
the impact of shifting the data distributions in detecting the
outliers for each round of the combined methods (not limited
to only distance-based approaches but other approaches) is
worth considering.

Aggarwal [178], presented a study on outlier ensemble
analysis, which has recently provoked great interest in lit-
erature [187], [236]. He discusses various outlier ensemble
methods and how such outlier ensemble analyses can be
more effective. He further explained how these methods are
connected to ensemble-methods in data mining problems.
Some examples of outlier ensembles in the context of classi-
fication and clustering were then given. In the classification
context, boosting [187] and bagging (Bootstrap Aggregat-
ing) [37] are two examples of ensemble-based methods that
have been proposed. In the context of clustering, the Multi-
view [188] and alterative clustering [189] serve as examples.
Another critical study in their work is how to categorize
ensemble outlier analysis problems, whether they are

independent or sequential ensembles, data-centered, ormodel-
centered ensembles. The ensemble algorithms are classified
by the ‘‘component independence’’ which tries to answer
to the question of whether the different components of the
ensemble are independent or dependent on one another. For
example, in boosting where the results depend on a prior
execution, such a method is not independent of the other,
while bagging is the opposite; they are independent of one
another. For the ‘‘component type,’’ each component of an
ensemble is described according to its model choice or data
choice. The ‘‘model-centered’’ is independent, while the
‘‘data-centered’’ is sequential. However, one cannot give an
ultimate conclusion because it might depend on the founda-
tion of the data and models.

Other succeeding studies [38], [190], [191] in later years
that focused on using ensembles for outlier detection faced
numerous challenges. Some of these challenges include
the issue of comparing the scores using different functions
and mixture models to fit the outlier scores and to give a
score combination. In addition, issues of how to support the
combination of different detectors or methods to form one
ensemble arise. Schubert et al. [191], compared the out-
lier ranking based on the scores using similarity measures.
A greedy ensemble technique was proposed as an applica-
tion, which shows the significance of the performance of
ensembles through diversifying approaches. Earlier in 2010,
Nguyen et al. [38] studied the difficulties of ensemble OD
methods for high dimensional datasets. They proposed a
unified framework that combines non-compatible methods
of different outlier detection algorithms. Instead of apply-
ing the same approach each time to determine the outlier
score, various detection methods are applied to approximate
the outlier score. Using the formal concept of the outlier
score, they propose Heterogeneous Detector Ensemble on
random Subspaces (HeDES) through the combination of
functions, to address the issue of heterogeneity. Unlike the
Lazarevic et al. [37] framework, HeDES can bring together
different techniques that produce different outlier scores and
score types; for instance, a real-value against that of the
binary-value. Even though from their experimental studies,
the framework shows effectiveness in the detection of outliers
in a real-world data set, we believe considering an orderly
extension in doing a further experiment on all possible com-
bined functions. In addition, extending the analysis to larger
and higher dimensional datasets could be interesting future
work.

Zimek et al. [176] proposed a random subsampling tech-
nique to estimate the nearest neighbors and then its local
density. Usually, applying subsampling techniques from a set
of given datasets, it will obtain the training objects with-
out replacement. This can improve and enhance the outlier
detection method performance. Using other outlier detection
algorithms coupled with a subsampling technique can give a
different set of results and higher efficiency.

Zimek et al. [180] in another work, the authors consid-
ered their technique from the perspective of learning theory
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as another possible approach to ensemble outlier detection.
To construct the outlier detection ensemble, the authors pro-
posed a data perturbation technique that brings forth diversity
in different outlier detectors and a method that combines
distinct outlier rankings. The main focus of their approach
utilizes the notion of distance and density estimations in
Euclidean distance type dataspaces. To get a more consistent
density estimate, the attribute values at each point are altered
by adding small randomized amounts of noise. All the i
perturbed bootstrapped data sets then go through a selected
outlier detection algorithm, which helps in recording each
data point identity, aggregates the scores and then ranks the
positions. The i outlier scoring (or rankings) are then com-
bined to attain a steadier and dependable outlier scoring of
the data.

Pasillas-Diaz et al. [177] considered both subsampling and
feature bagging techniques. The feature bagging technique is
used to obtain the various elements at each iteration, while
the subsampling technique calculates the outlier scores of the
different subsets of data. One key drawback in their method is
the difficulty in obtaining the variance of the objects through
feature bagging. Also, the size of the subsampled dataset
influences the sensitivity of the final result.

Zhao et al. [227] proposed Dynamic Combination of
Detector Scores for Outlier Ensembles (DCSO) an unsuper-
vised outlier detector framework. DCSO tries to solve the
challenge of choosing and combining the outlier scores in
the absence of the ground truth for different base detectors.
It selects the most suitable base detectors, with focus on the
locality of the data. DCSO initially labels the local region
of a test instance with respect to its k nearest neighbors.
It then detects the base detectors that show the best perfor-
mance within the local region. Zhao et al. [228] proposed
Locally Selective Combination in Parallel Outlier Ensembles
(LSCP) framework to address the same issues in [227]. They
use a similar approach as in [227] and presented four varia-
tions of the LSCP framework.

For more details and broader discussions about outlier
ensemble techniques, theAggarwal et al. [229] outlier ensem-
ble book gives detailed discussions on outlier ensemble meth-
ods. Although most of the studies mentioned there were
done before 2017, however, the book itself is very compre-
hensive and rich in details for the understanding of outlier
ensemble methods. It presents the different types of ensemble
methods and categorize them into different types. In addi-
tion, it gives an overview of the outlier ensemble design
frameworks.

1) ENSEMBLE-BASED APPROACHES-ADVANTAGES,
DISADVANTAGES, CHALLENGES, AND GAPS
Advantages

i. They are more stable and give better predictive mod-
els. The availability of algorithms like boosting and
bagging enhances the ensemble methods to perform
more efficiently. They improve the robustness in the

data mining process by minimizing the dependence of
the model on a particular data set.

ii. They are suitable for outlier analysis in high dimen-
sional data; for example, Lazarevic et al. [37] applied
feature bagging for outlier detection in high dimen-
sional data.

iii. In noisy and streaming scenarios where an individual
classifier’s result is not very robust due to the process-
ing time and data quality problems, ensemble analysis
is instrumental.

Disadvantages, Challenges, And Gaps

i. Ensemble techniques in the context of detecting out-
liers when compared to other data mining problems are
poorly developed. This is as a result of the difficulties
in evaluating the features of the ensembles. Moreover,
selecting the right meta-detectors is a difficult task.

ii. For real datasets, the outlier analysis can be very com-
plex to evaluate due to the combination of a smaller
sample space and its unsupervised nature. This can
further result in the incorrect prediction of the steps
of the algorithm in making robust decisions without
triggering the over-fitting problem.

Although outlier ensemble techniques have shown promis-
ing results, they still have areas for improvement. Ensemble
analysis techniques can be very useful in areas where the data
is noisy and in streaming scenarios. This is mainly because in
these scenarios they are usually challenged with some draw-
backs, such as the quality of the data and the processing time
thatmakes the results produced from individual classifiers not
very robust. More techniques are being proposed to address
the challenge of model combinations.

To address these challenges and many others proposed by
Zimek et al. [181], several additional methods have been
proposed [38], [182], [190]–[192] to improve outlier detec-
tion using ensemble methods, but most of these methods are
meta methods except for those suggested by [37]. To further
discuss and delve deep into outlier ensembles techniques,
Zimek et al. [181] in their study have presented several
open questions and challenges in using ensemble methods
in the detection of outliers. Although some new emerging
research work has started to contribute to these open research
problems [180] however, topics about the issues of proposing
diversifying principles and how to combine outlier rankings
remains to be open and engaging for future research direc-
tions. Some techniques [181], [184] are static and do not
involve any detector selection methods. This kind of tech-
nique [184] that is characterized by the absence of a detector
selection process hinders the performance of the manner in
identifying the unknown outlier cases. Another significant
aspect that is not given much attention is the importance of
data locality. An open research problem will be to consider
the data locality. That is, instead of only focusing on evalu-
ating the competence of the base detector on a more global
view, the local region with respect to the test objects can be
considered as well. This will help in the detector selection and
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combination processes. Other essential problems for further
research, are in addressing the issue among ensemble outlier
methods for creating a variety of models and meaningful
ways of combining the outlier rankings.

F. LEARNING-BASED APPROACHES
Learning-based methods for the process of outlier detection
have been applied in different sub-disciplines in machine
learning - in active learning, graph-based learning, and deep
learning. In the subsequent section, we will introduce some
research in outlier detection that make use of these learning
methods.

1) ACTIVE LEARNING
Active learning is an example of a semi-supervised learn-
ing method in which designed algorithms interact with
the user or information source to get the desired out-
puts [193], [194]. For example, in cases of some real dataset
with huge unlabeled datasets, the task of manually labeling
these data is expensive. Such a scenario demands the learning
algorithm to query the information source or user actively.
When applying an active learning algorithm in such a sce-
nario, the algorithm will be able to discover those smaller
fractions of instances that were labeled by the user in the
training data set. This is done to boost the improvement of
the re-trained model. Active learning resembles a system
in which the learning algorithm can request the user for
input labels of the instances to give better predictions. Active
learning for outlier detection has recently been embraced in
different research domain [195]–[199]. Aggarwal et al. [6]
use the concept of active learning in outlier detection to solve
the ambiguity of giving clear reasons why outliers are flagged
and what prompts the relatively high computational demand
for density-estimation based OD methods. In their approach,
they initially apply the classification techniques to the labeled
dataset that contains potential outliers (artificially generated).
The active learning method is then applied to minimize the
classification problem through a selective sampling mech-
anism known as ‘‘ensemble-based minimum margin active
learning.’’ Gornitz et al. [200] proposed another work where
an active learning strategy is applied for anomaly detection.
To obtain a good predictive performance, they repeat the
process of alternating between the active learning process
and the update of the model. The active learning rule is
applied after the method is trained on unlabeled and improved
examples.

Das et al. [196], [197] used an active approach to query
the human analyst to obtain a better result. They avidly
select the best data instances for the querying process, but
no clear insight, explanation, and interpretation of the design
choice were given. In the next study, they try to address these
issues. In 2019, Das et al. [201] then proposed an active
outlier detection method via ensembles called GLocalized
Anomaly Detection (GLAD). They study how to automati-
cally fit ensemble outlier detectors in active learning prob-
lems. In GLAD, the end-users maintain the use of modest

and comprehensible global outlier detectors. This is attained
through learning automatically their local weight in particular
data instances by means of label feedback. The fine-tuning
of the ensemble helps in maximizing the number of correct
outliers discovered. This kind of framework is referred to as a
human-in-the-loop because the human analyst for each round
of iterations gives label feedback.

Even though active learning for outlier detection has
recently been embraced in the research domain, they still
lack in the literature, and there is still more work that needs
to be done. The process of discovering true outliers by the
human analyst can be difficult, the need for the techniques to
minimize the effect of false positives through the design and
configuration of an effective outlier detector is needed for the
human analyst in the future. In addition, better insights and
interpretations of outlier scores and related results obtained
through employing different algorithms are needed. Active
learning in the context of outlier detection needs solid inter-
pretations and explanations for it to be well understood in
the research community. Finally, the design of active learning
algorithms for handling data streams is also a promising
research challenge.

2) SUBSPACE LEARNING
Outlier detection methods mentioned to this point usually
detect outliers from the complete data space considering all
the dimensions. But most outliers are often denoted as rare
neighborhood activities in a declining dimensional subspace.
For objects with several attributes, Zimek et al. [179] denote
that, only subsets with important attributes give valuable
information. While characteristics like the residual attributes
contribute little or no importance to the task and might delay
the process of separating the OD model in solving such an
issue, it will be interesting to perceive the outliers from a
suitable subspace.

In the outlier detection field, subspace learning is widely
studied and applied in high dimensional problems. For
subspace learning-based OD approaches, the main objec-
tive is to discover meaningful outliers in a well-organized
way by examining dissimilar subsets of dimensions in the
dataset. Mostly, these approaches are divided into sparse
subspace [195], [196] and relevant subspace [126], [198],
[202] methods. The former project the high-dimensional data
points onto sparse and low dimensional subspaces. These
objects within the sparse subspace can then be labeled as
outliers since they are characterized with a lower density.
One big drawback of these methods is the time consumption
with regards to exploring the sparse projections from the
entire high-dimensional space. To address this drawback,
Aggarwal et al. [6] proposed a method that improves the
effectiveness of exploring the subspaces. The subspaces
are achieved through an evolutionary algorithm. However,
the performance evaluation of the algorithm is highly depen-
dent on the initial population.

An additional method that focuses on the path of the
sparse subspace approaches is the Zhang et al. [195] method.
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Here, the concept of the lattice is used to signify the sub-
space relationships. The sparse subspace here also is those
with low-density coefficients. Again, creating the idea of
lattice influences and hinders the efficiency of the method
because of its complexity, and this results in low efficiency.
Dutta et al. [196] proposed a way to achieve sparse space.
They applied sparse encoding to develop objects to multiple
linear transformation space. The OD method uses relevant
subspaces to examine the local information, which is use-
ful for identifying outliers since they are essential features.
Huang et al. [126] proposed Subspace Outlier Detection
(SOD), a kind of relevant subspace method. Here, every
objects correlation with its shared nearest neighbors is exam-
ined. They use the ranks of individual objects that are close
as the degree of proximity of the object, but not take into
consideration the objects distance information with respect
to their neighbors. SOD focuses mainly on the variances of
the features. Muller et al. [202] proposed another method to
determine the subspaces. They make use of the significant
relationships of the features; unlike SOD that only focuses on
the variances of the features. However, a significant drawback
of their method is its computational demand.

In a similar study, Kriegel et al. [17] applied principal
component analysis to get the relevant subspaces and Maha-
lanobis distance computation through gamma distribution to
detect the outliers. The key difference compared to the previ-
ous study [202], is that a large amount of local data is needed
to identify the deviation trend. This consequently affects the
flexibility and scalability of the method. To address the issue
of flexibility of the technique, Keller et al. [85] designed a
flexible OD technique which uses subspace searching and
outlier ranking process. Initially, using the Monte Carlo sam-
pling method, they obtained the High Contrast Subspaces
(HiCS) and then combined the LOF scores based on the
HiCS. Stein et al. [203] then proposed a local subspace
OD method by adopting global neighborhoods in another
study. Initially, the HiCS obtained all the relevant subspaces
and instead of LOF, and LoOP technique was used to calcu-
late the outlier scores.

Although subspace learning OD methods show high effi-
ciency and are useful in some cases, they are generally com-
putationally expensive. This is because, in subspace learning
methods, there is a prerequisite in exploring the subspace
high dimensional space. Discovering the relevant subspaces
for the outliers can also be another difficult task. Designing
and proposing effective methods to handle these challenges
can be exciting research in the future of subspace OD related
methods.

3) GRAPH-BASED LEARNING METHODS
The use of graph data is becoming universal inmany domains.
Using graph-based learning for OD methods has been the
focus of some researchers. In graphs, objects usually take
the form of long-range connections, and a set of new tech-
niques has been proposed for outlier detection in graph data.
Akoglu et al. [34], presented a comprehensive survey of

graph-based outlier detection techniques and descriptions.
They included state-of-the-art methods and some open
research challenges and questions. Furthermore, the impor-
tance of adopting graphs for outlier detection techniques was
given. The graph-based approach in outlier detection is vital
as they show the inter-dependent state of the data, show
insightful representations, and robust machinery.

Moonesinghe et al. [204] proposed Outrank, which is
among the first constructed graph-based outlier detection
framework. From the original data set, they developed fully
linked undirected graphs and applied the Markov random
walk method on the predefined graph. The stationary distri-
bution values of the random walk serve as the outlier scores.
In the most recent study, Wang et al. [205] proposed a novel
method that combines the representation of the graph together
with each object’s local information in its surroundings. They
address the problem of a high false-positive rates in the OD
methods, which is usually as a result of the neglect of the local
information around each node for graph-based methods. The
local information obtained from around each object helps in
the construction of a local information graph. The outliers
are detected by computing the outlier scores through the
process of a random walk on the graph. Wang et al. [206]
in another study proposed another OD method that captures
different local information from different standpoints. They
used multiple neighborhood graphs, and the outlier scores
are deduced through a random walk on the predetermined
graph. These methods all show improved performances as
claimed by the authors. However, since using graph-based
learning methods has not yet been widely embraced, it is
another domain for outlier detection research in the future.

4) DEEP LEARNING METHODS
Recently, more attention has been given to deep learning in
many areas including several studies related to outlier detec-
tion problems [35], [36] [30], [207]–[209]. Most recently,
Chalapathy and Chawla [32] in their survey presented a
comprehensive study of deep learning methods for outlier
detection. They review how deep learning methods are used
in various outlier detection applications and evaluate their
effectiveness. The use of deep learning techniques in detect-
ing outliers is important because of one or several of these
reasons. (1) the need for better ways of detecting outliers in
large-scale data. (2) better ways of learning the hierarchical
discriminative features from the data (3) better ways to set
the boundary between a normal and unusual behavior in
continuous evolving data sets. Deep learning can be based on
supervised, semi-supervised, and unsupervised approaches to
learning data representations. For example, employing the
deep learning concept in fraud and anti-money laundering
systems can detect and identify the relationships within the
data, and subsequently enable researchers to learn the data
points that are not similar to each other and then predict
outliers.

In the supervised deep OD methods, the binary or multi-
class classifier are trained by utilizing the labels of the
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normal and abnormal data instances. The supervised mod-
els, for instance, that are framed as multi-class classifiers,
help in identifying abnormal behaviors such as fraudulent
health-care transactions [32]. Although supervised methods
are shown to have improved performance, however, semi-
supervised and unsupervised methods are mostly adopted.
This is because, supervised methods lack the readiness of
labeled training data and also, there is a problem of class
imbalance, which makes it sub-optimal to the others.

In semi-supervised deepODmethods, the ease of obtaining
the labels of the normal instances compared to the outliers
makes it more widely appealing. They make good use of
prevailing normal positive classes to differentiate the outliers.
Semi-supervised techniques can be applied for training deep
autoencoders on data samples missing outliers. With enough
normal class training samples, the autoencoders will show
significant improvement for the normal instance, with fewer
reconstruction errors over the abnormal event.

In unsupervised deepODmethods, the outliers are detected
exclusively on the essential features of the data instances.
Here, the data samples are unlabeled, and unsupervised OD
techniques are used to label the unlabeled data samples.
In most of unsupervised deep OD models, autoencoders play
a central role [210], [238]. Most emerging research studies
adopting deep learning techniques for OD methods utilize
unsupervised methods. Using deep learning for unsupervised
outlier detection problems has shown to be effective [211],
[212]. They are mostly categorized into the model architec-
ture adopting autoencoders [213] and hybrid models [214].
The autoencoder related models assess the anomalies through
reconstruction errors, i.e., employing the magnitude of the
residual vector, whereas, in the later models, the autoencoder
is used as the feature extractor, and then the hidden layers
represent the input. In another study for deep learningmodels,
Dan et al. [215] proposed Outlier Exposure (OE) to improve
the outlier detection performance. They offered a method
through iterations to find a suitable classifier for the model
to learn the heuristics. This helps in differentiating between
the outliers and in-distribution sample.

In another study, Du et al. [216] proposed Deeplog, a uni-
versal framework that adopts a deep neural network approach
for online log outlier detection and analysis. The deeplog
utilizes Long Short-Term Memory (LSTM) to model the
system log. The whole log messages are learned and encoded
by the deeplog. Here, the anomaly detection process is done
for every log entry level, in contrast to other methods per ses-
sion level approach. Borghesi et al. [217] proposed a new
way of detecting anomalies in High-Performance Computing
Systems (HPCS) through adopting a kind of neural network
called autoencoder. They first choose a set of autoencoders
and train them to learn the normal pattern of the supercom-
puter nodes. After the training phase, they are applied to
identify abnormal conditions.

In deep OD methods, based on the training objec-
tives, these methods can employ Deep Hybrid Models
(DHM) or One Class Neural Networks (OCNN) [32].

The DHM uses deep neural networks. It focuses primarily
on autoencoders for feature extraction, and the hidden repre-
sentation of the autoencoders learned serves as the input for
detecting outliers for most OD algorithms such a One-Class
SVM. Although hybrid approaches maximize the detection
performance of outliers, however, a notable limitation is the
shortage of trainable objective solely designed for outlier
detection. Therefore, DHM is limited in extracting rich dif-
ferential features to detect the outliers. To solve this draw-
back, Chalapathy et al. [218] and Ruff et al. [219] proposed
One class neural networks and Deep one-class classification,
respectively. TheOne-Class Neural Networks (OC-NN) com-
bines the advantage of deep networks ability to extract rich
feature representations of the data and the benefit of one-class
creating a close-fitting structure around the normal data.

The deep learning OD based technique is still active to be
explored further and are promising for future work. In the
discussion section, we propose and recommend some open
challenges for future research work.

5) LEARNING-BASED APPROACHES-ADVANTAGES,
DISADVANTAGES, CHALLENGES, AND GAPS
a: ADVANTAGES
In OD based learning methods, such as in active learning,
the time-consumption in detecting outliers it reduced since
the technique is not passive learning. It helps to reduce the
number of labeled data needed for training the model to
discover the outliers. Graph-based methods show the vital
inter-dependent state of the data and provide an insightful rep-
resentation for detecting the outliers. The deep learning tech-
niques help in delivering and showing better ways of learning
the hierarchical discriminative features from the data. They
provide better ways of detecting outliers in large-scale data.
In addition, they offer better ways to set the boundary between
normal and unusual behavior in continuous evolving data
sets.

b: DISADVANTAGES, CHALLENGES, AND GAPS
Some learning-based techniques such as subspace learning,
can be computationally expensive and challenging to discover
the relevant subspaces for the outliers. In areas like deep
learning techniques, with an increase in the volume of data,
it becomes a big challenge for the possibility of traditional
methods to scale well to detect outliers. The need to design
deep learning OD techniques to capture complex structures
in large-scale data is crucial. In addition, the traditional man-
ual learning process to extract features from the data has
many disadvantages. Therefore, finding better ways through
learning the hierarchical discriminative features from the data
is vital. The lack of accurate representation of normal and
abnormal boundaries also presents challenges for both tradi-
tional methods and deep learning-based methods. Addressing
these challenges can be interesting work in the future. There
are still limited studies using unsupervised algorithms such
as Long Short-Term Memory networks (LSTM), Recurrent
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Neural Network (RNN), Deep Belief Network (DBN), etc.
in the area of outlier detection. For in-depth knowledge
and more references, we suggest Chalapathy et al. [32] and
Kwon et al. [30] surveys.

IV. EVALUATION TECHNIQUES, TOOLS, AND DATASETS
FOR OUTLIER DETECTION PROBLEMS
A. EVALUATION METHODS
Many outlier detection algorithms have been proposed over
the years, but one major challenge in data mining research
is how to evaluate these methods. Different techniques have
been proposed to tackle this problem. Over the years, with
the increasing flow of outlier detection algorithms, some
researchers have claimed that their method outperforms other
methods without a thorough analysis from a broader perspec-
tive. Therefore, researchers have seen this as an open research
direction to find ways of evaluating different algorithms.
In recent years, some research studies have concentrated on
the evaluation of OD methods, for example, for distance-
based, ensemble-based approaches, and unsupervised
methods.

Distance-based methods over the last decade have a con-
siderable amount of literature, and evaluating these methods
is very significant. However, there are many challenges in
assessing these techniques against each other. The main inter-
est of most researchers and practitioners in outlier detection
problems is the effectiveness and efficiency. For example,
in terms of the efficiency, evaluating the efficiency of dif-
ferent methods can be quite complicated because the per-
formance will depend on factors such as the size of the
data, the dataset dimensionality, parameter choice, and other
details related to the implementation.

Orair et al. [220], focused on evaluating several distance-
based methods for outlier detection approaches to infer
some useful guidelines in designing optimized outlier detec-
tion algorithms. An outlier detection framework was imple-
mented, and a factorial experiment was conducted on a cou-
ple of the optimization strategies that have been proposed
in recent times. It is done to evaluate the pros and cons
of these optimization techniques. The results obtained from
the factorial experiment is beneficial for giving significant
and interesting insights. For instance, they found that certain
combinations of optimizations work efficiently for real and
synthetic data sets. However, none of the combinations of
the optimization can claim to be superior to the other in
all types of data. The authors proposed three optimization
techniques

i. Approximate Nearest Neighbor Search (ANNS)
ii. Pruning: is the preprocessing step used by several algo-

rithms to facilitate the partitioning or clustering of data
points. The pruning scheme proposed by the authors
are:
• Pruning partitions during the search for
Neighbors (PPSN).

• Pruning partitions during the search for
outliers (PPSO).

iii. Ranking: The main objective is to improve the effi-
ciency of ANNS pruning rule. There are two sub-
categories of optimization strategies, which include:

• Ranking Objects Candidates for Neighbors
(ROCN)

• Ranking Objects Candidates for the Outlier
(ROCO)

The authors classified their work according to whether
these algorithms go through clustering preprocessing phase,
the type of pruning scheme use, and whether an object’s
candidates can be ranked according to neighbors and out-
liers. From their study, it is apparent that one cannot jus-
tify the effectiveness of any single optimization or the
combination of optimizations over the other, as it always
relies on the characteristics of the dataset. In another study,
Achtert et al. [43] propose a visualization tool [221], [222]
to compare and evaluate outlier scores for high dimensional
data sets. Over the years, many approaches have presented the
degree of an object being considered as an outlier through an
outlier score or factor. However, these outlier scores or factors
vary in their contrast, range, and definition among various
outlier models. This makes it quite difficult for a novice
user with OD methods to be able to interpret the outlier
score or factor. In some cases, even for the same or similar
outlier model, the same score within one or in the same
data set can depict a different outlier degree. For illustration,
the same outlier score x in database y and database z can
have a considerable degree of outlierness. This makes it also
very tedious to interpret and to compare the outlier scores.
In addition, we should consider that in different models, var-
ious assumptions are made, and therefore, this might directly
influence the interpretation of the degree of outlierness in the
data set and how to define an outlier in the same datasets or for
different datasets.

Not much provision for better evaluation techniques has
been proposed in recent studies, and most studies concen-
trate on introducing new methods to improve the detection
rate and computational time. In contrast to classification
problems, the evaluation of outlier detection algorithms per-
formance is more complicated. Researchers have provided
several adopted measurements to evaluate outlier detection
algorithm performance [223]. They are defined as follows:

i. Precision - this denotes the ratio of the number of correct
outliers m, divided by the whole number of outliers t . In a
particular application, setting t can be difficult. Therefore,
t is usually assigned as the number of outliers in the ground
truth.

ii. R-precision - this refers to the proportion of correct
outliers in the top number of ground truth potential outliers
identified. The R-precision does not contain enough infor-
mation because the number of true outliers is minimal when
compared to the total size of the data.

iii. Average precision - this denotes to the average of the
precision scores over the ranks of the outlier points. It com-
bines recall and precision.
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iv. Receiver Operating Characteristic (ROC) and Area
Under the Curve (AUC) - the ROC is a graphical plot that
shows the true positive rate against the false positive rate.
The true or false positive rate signifies the number of out-
liers or inliers ranked among the potential outliers in the
top number of outliers in the ground truth. The AUC shows
the numerical evaluation performance of the outlier detection
method.

v. Correlation coefficient - is a numerical measure of cor-
relation, i.e., a statistical relationship between two variables.
For instance, Spearman’s rank similarity or Pearson corre-
lation. More importance is placed on the possible outliers
ranked at the top.

vi. Rank power (RP)-it ranks the true outliers at the top and
normal ones at the bottom. It comprehensively evaluates the
ranking of true outliers.

Most of the evaluation methods are instead heuristic
and focus on precision, the receiver operating characteristic
(ROC) curve and area under the curve (AUC) in showing the
results. The drawback of these evaluation procedures is that
there is no provision for a similarity check among the meth-
ods. Knowing how similar or correlated the ranking of outlier
scores are is considered a very significant step towards con-
structing better OD methods. AUC completely disregards the
small variations among scores and only considers the ranking.
It is also inferior and not perfect for unbalanced class prob-
lems when compared to techniques such as the area under
the precision-recall curve, which shows a better possibility
in highlighting small detection changes. However, despite
these drawbacks, AUC, ROC, and precision-recall still serve
as the de facto standard in evaluating many outlier detection
problems. Since knowing how similar or correlated the rank-
ing of outlier scores are is a very significant step towards
constructing better OD methods, Schubert et al. [191]
in their study gave a global view that permits the evalua-
tion of the performance of different approaches against each
other. The proposed framework considers the problem of
class imbalance and then offers a new understanding about
the similarity and redundancy of prevailing outlier detection
techniques. To achieve the main objective in giving a better
evaluation for both the outlier rankings and scores, a suitable
correlation measure for comparing rankings by taking into
account the outlier scores was established.

In another study, Goldstein et al. [102] proposed a com-
paratively universal evaluation of nineteen different unsuper-
vised outlier detection algorithms with ten publicly available
datasets. The main aim was to address the lack of interesting
literature that exists [224], [225] that gives a better evaluation
of outlier detection algorithms. One notable trend with exist-
ing research literature is the comparison of newly proposed
algorithms with some previous or state-of-the-art methods.
However, most of these studies fail to publish the datasets
with appropriate preprocessing or indicate which application
scenarios they are most suitable. They also mostly lack a
clear understanding of the effect of the parameter k and the
established criteria of whether it is a local or global outlier.

The authors address these issues by performing an evaluation
study that reveals the performance of the effect of the parame-
ter settings, computational strength, and the overall strengths
andweaknesses of different algorithms. The list of algorithms
was categorized into nearest-neighbor based methods, sta-
tistical based methods, clustering based methods, subspace
methods, and classifier-based techniques. These algorithms
were then compared. For the KNN methods, the choice of
the parameter k is very significant as it influences the outlier
score. Other important things to consider are the dataset,
the dimensionality, and normalizations. They experimented
with investigating the influence of the parameter and then
evaluated the nearest neighbor algorithms. Key findings from
their study were that local outlier detection algorithms such
as LOF [8], INFLO [75], COF [80] and LoOP [81] are
not suitable for detecting global outliers since they showed
poor performance on datasets comprised of global outliers.
However, it is the opposite of the performance of global out-
lier detection problems on local outlier detection problems.
In addition, they found that the clustering-based algorithms
were in most cases inferior to the nearest-neighbor based
algorithms. Therefore, it is recommended for a global task
to apply the nearest-neighbor techniques, and for a local task,
the local outlier algorithms like LOF are more suitable than
other clustering-based methods.

Another issue with regard evaluating most OD models is
that there is a scarcity of rich knowledge about the strength
and weaknesses of these outlier detection models, suitable
benchmark datasets for outlier detection task and some biases
that are used in the evaluation process that are not well
understood. Campos et al. [226], similar to [97], did an
experimental study across a wide variety of specific datasets
to observe the performance of different unsupervised outlier
detection algorithms. In their study, they classified different
datasets and deliberated on how suitable they are as outlier
detection standard datasets. Also, they further discuss and
examine the commonly-known and used methods/measures
for comparing outlier detection performance. Some com-
mon misconceptions the authors clarify are, for instance,
the ground-truth datasets containing a large number of out-
liers. It is sometimes believed that these outliers will influence
the evaluation performance of these methods, but this does
not hold in all scenarios. Usually, the large proportions of out-
liers in datasets are not suitable to evaluate outlier detection
techniques because outliers are supposed to be less common
in the datasets. A small percentage of outliers and normalized
datasets usually produce a much better performance in most
cases. Another critical misconception held is concerning the
influence of the dimensionality. An increase in the dimen-
sionality often results in a high computational cost but is not
directly proportional to the overall performance, especially in
terms of the detection rate.

Another important area to consider is the evaluation of
outliers in data streams. Outlier detection in data streams is
usually a difficult task, because the data should be learned
and processed in real-time while concurrently making good
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predictions. Except for the Lavin et al. [230] Numenta
Anomaly Benchmark (NAB) framework, there is a lack of
benchmarks to effectively test and score the effectiveness of
real-time outlier detection methods. With more recent studies
concentrated in this domain, there is a need for proposing effi-
cient and rigorous benchmarks to evaluate real-time outlier
detection algorithms in data streams effectively.

B. TOOLS FOR OUTLIER DETECTION
In outlier detection, many tools and datasets have been used.
Here, we introduce some popular tools used for outlier detec-
tion processes and some outlier detection databases.

The prevalence of outlier detection in industrial applica-
tions has seen the development of many software tools such
as the following provided below.

Scikit-learn Outlier Detection [231]

The scikit-learn project offers some machine learning tools
that can be applied for outlier detection problems. It includes
some algorithms like LOF [8] and Isolation Forest [192].

2) Python Outlier Detection (PyOD) [232]

PyOD is used for detecting outliers in multivariate data. It is a
scalable python tool that has been used in many research and
commercial projects, including new deep learning and outlier
ensembles models [60], [62], [233].

3) Environment for Developing KDD-Applications Sup-
ported by Index-Structures (ELKI) [43]

ELKI is an open source data mining algorithm that provides
a collection of data mining algorithms, including OD algo-
rithms. It allows the ease and fair assessment and benchmark-
ing of OD algorithms. It is written in Java.

4) Rapid Miner [234]

The extension of this tool contains many popular unsuper-
vised outlier detection algorithms such as LOF, COF [80],
LOCI [82], and LoOP [81].

5) MATLAB [235]

MATLAB also supports many outlier detection algorithms
and functions. Algorithms can be implemented using
MATLAB because it is user-friendly.

6) Massive Online Analysis (MOA) tool [143].

MOA is an open source framework that provides a collection
of data stream mining algorithm. It includes some distance-
based outlier detection algorithms such as COD, ACOD,
Abstract C, MCOD, and some tools for evaluation.

C. DATASETS FOR OUTLIER DETECTION
Outlier detection methods have been applied in different
kinds of data, such as in regular and high-dimensional
data sets [240], streaming datasets, network data, uncertain
data [241], and time series data. In outlier detection literature,
two types of data are mostly considered and required for
evaluating the performance of the algorithms. They are real-
world datasets and synthetic datasets. The real-world datasets
can be obtained from publicly available databases. Some of

the most popular and useful databases that contain real-world
datasets for outlier detection include the following:

1) The UCI repository [52].
The UCI repository has hundreds of freely available data
sets, and many OD methods use the repository to evaluate
the performance of the algorithms. However, the majority
of these datasets are designed for classification methods.
In outlier detection scenarios, the generally used approach
is to preprocess the datasets. The outliers represent objects
in the minor class, and the rest are considered as the normal
ones.

2) Outlier Detection Datasets (ODDS) [51].
Unlike UCI repository, ODDS, provides open access to a
collection of datasets only suitable for the outlier detection
process. The datasets are grouped into different types includ-
ing multi-dimensional datasets, time series univariate and
multivariate datasets, and time series graph datasets.

3) ELKI Outlier Datasets [50].
ELKI has a collection of data sets for outlier detection and
also many data sets for OD methods evaluation. These data
sets are used to study the performance of several OD algo-
rithms and parameters.

4) Unsupervised Anomaly Detection Dataverse [49].
These datasets are used for evaluating unsupervised outlier
detection algorithms by making comparison with the stan-
dards. It is obtained from multiple sources with the majority
of the data sets from supervised machine learning datasets.

It is important to note that with real-world data sets, a lot
of data is not publicly accessible due to privacy and security
concerns.

Synthetic datasets are often created under the settings of
defined constraints and conditions. Synthetic datasets, when
compared to real-world datasets, are mostly less complex and
eccentric, and shows better validity of the OD algorithms
performance. For the outlier detection process, since most
of the data adopted are not purpose-specific for just OD
methods, the repurposing of supervised classification data
has been widely adopted. In many studies, the data has been
treated as it is, rather than manipulated.

As stated earlier, in outlier detection experiments, to eval-
uate the OD methods there is need to use both real-world
and synthetic data sets. Also, many benchmark datasets are
required to develop an algorithm that captures a broader view
of the problems. The availability of many benchmark datasets
also helps in the better and more robust way of reporting
and presenting the results. In most supervised classification
types of datasets, they require some preprocessing for outlier
detection tasks. Two important aspects are considered in the
preprocessing phase [226]. That is, for semantically signifi-
cant outlier datasets, the outliers are the classes related to the
minor objects and the normal data is the rest of the data.

When choosing a data set for OD methods, the data should
be tailored in terms of precise and meaningful attributes
which can fit the problem definition. For example, for an
OD method related to the data stream, it is better to use
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streaming data rather than other kinds of data. The selected
algorithm should fit the data in terms of the right attribute
types, the correct distributionmodel, the speed and scalability
and other important anticipated incremental capabilities that
can be managed and model well upon the arrival of new
objects.

Some of the other concerns in dealing with datasets
include how to handle the downsampling of data, dealing
with duplicate data, transforming categorical attributes to
numeric types, normalization, and dealing with missing val-
ues. In future work, it will be crucial to study how to evaluate
dataset for outlier detection methods and what key attributes
to take into consideration.

V. CONCLUSION AND OPEN RESEARCH GAPS
In this paper, we have provided a comprehensive survey in
a structured manner that reviews state-of-the-art methods
of detecting outliers by grouping them into different cate-
gories. We have grouped the algorithms into density-based,
statistical-based, distance-based, clustering-based, ensemble-
based, and learning-based approaches. In our discussion
section, we discussed their most significant advantages,
drawbacks, and challenges. Furthermore, we attempted to
review and provide state-of-the-art open research problems
and challenges. We also discussed the evaluation techniques,
tools, and data sets adopted for outlier detection methods.
We succeeded in providing researchers with an in-depth
knowledge of the fundamental requirements of these tech-
niques before choosing a particular technique for an outlier
detection problem.

From our review, it is evident that despite the progress in
outlier detection research, there are still lots of open research
questions and issues to be addressed. It is apparent that
future studies are needed in most of the outlier detection-
based approaches. Therefore, in addition to the already stated
future work in each of the categories, the following are still
supplementary to open research gaps:
• Further studies need to be done to fully characterize
and relate some of these methods to real-life data, par-
ticularly in very large and high dimensional databases,
where first-hand techniques for estimating data densities
are worth bearing in mind. In high dimensional data sets,
the problem of the curse of dimensionality and distance
concentration are still open challenges to be addressed.

• Outliers usually show unusual local behaviors. The pro-
cess of discovering in high dimensional space these
local correlations is challenging. Also, how to accurately
determine the correlations makes the whole issue more
complicated. Therefore, solving these challenges are
still open research problems

• It would also be thought-provoking to examine the influ-
ence of extraneous features in outlier detection processes
to select the appropriate features for the outlier detection
task.

• Since a vast amount of data now comes in the form of
data streams, which are characterized by some issues

as mentioned earlier, it will be of interest for further
research work to address these challenging issues to
detect outliers more efficiently. In the existence of high
dimensional data, most existing data stream algorithms
for OD methods lose their effectiveness. Therefore,
future studies are needed on how to redesign the contem-
porary models to detect the outlying patterns correctly
and efficiently.

• The recent explosion of massive datasets, gives rise
to many openings for future research relating to the
design of efficient approaches to identify outliers, which
are usually the most significant points within the data
set. Their discoveries can lead to vital and unforeseen
insights. We will also suggest the need for designing
robust outlier detection algorithms that are scalable, can
handle large dimensional data sets, and have a minimum
run time.

• We found that in distance-basedmethods based onKNN,
the parameter K is sensitive, therefore setting of the
parameter k is very significant. Setting and finding the
appropriate k is worth considering for neighbor ranking-
based OD methods. Also, the distance metrics usually
adopted for neighbor-based approaches do not fit well
for high dimensional data. Addressing the equidistance
issue and introducing effective distance metrics is neces-
sary for high-dimensional data. The neighbor -based OD
algorithms are sensitive to the nearest neighbors which
are chosen for the models. Therefore, further studies
can be done on how to determine the precise number of
neighbors needed.

• In statistical-methods, apart from designing more
robust algorithms for detecting outliers more efficiently,
we noticed that, to the best of our knowledge, no work
has been done to compare the influence of parametric
and non-parametric approaches in the outlier detection
process. It is essential for researchers to know the pros
and cons of using the parametric and non-parametric
approaches and also to design algorithms that can be
able to outperform and address some of the drawbacks
of statistical OD methods.

• For clustering techniques, since they are generally not
considered to be designed explicitly for outlier detec-
tion, ensemble techniques, which combine the results
from dissimilar models to produce a more robust model,
will create a much better result. Ensemble methods
are well known to improve the performance of outlier
detection by both the quality of the detected outliers
and run time. Therefore, ensemble outlier detection,
which shows great potential in enhancing outlier detec-
tion algorithms, can be another worthy future research
direction. More accurate models can be proposed to
address the unexplored areas.

• For the learning methods such as subspace-based and
ensemble-based learning methods, with a large range of
the subspaces or base learners, we often get a reasonably
good performance. Therefore, finding ways to choose
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the precise subspaces and base learners is important.
Also, choosing the right quantities and combination
strategies are all still open research issues to address.

• In terms of evaluating OD methods, it is still an open
challenge on how to effectively and broadly assess the
OD methods performance. This has been difficult to
achieve because outliers are not frequent and often the
ground truth in real situations is absent.

• Another exciting open research direction for the future
is the arrival or loss of new or existing dimensions over
the period. In potential application areas such as outlier
detection in IoT (internet of things) devices, the sensors
can be on or off sporadically over the period, and new
ways are needed to detect outliers more efficiently in this
challenging scenario.

• Although considerable advances have been made in
using deep learning methods in other application areas,
However, there is a relative shortage of deep learn-
ing methods for outlier detection problems. Therefore,
the use of deep learning techniques for OD methods is
still open for further research.
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