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ABSTRACT The problem of low azimuth resolution has restricted the applicability for radar forward-looking
imaging in practice. In this paper, a sparse with fast majorization-minimization (SFMM) superresolution
algorithm was proposed to realize fast superresolution imaging of sparse targets in radar forward-looking
area. First, we analyzed the azimuth signal of the radar forward-looking area and modeled the azimuth
signal as a convolution of antenna pattern and targets distribution. Second, the superresolution problem was
converted into an L1 regularization issue by introducing the L1 norm to represent the distribution of the targets
under the regularization framework. Third, according to the principle of majorization-minimization (MM)
algorithm, a simple L2 regularization issue was obtained to replace the difficult L1 one, and the real target
distribution was obtained by solving the L2 regularization problem (We named it sparse with MM (SMM)
superresolution algorithm for convenience). Then, in order to improve the computational efficiency of
the algorithm, we adopted the second-order vector extrapolation idea to accelerate the conventional MM
algorithm and solve the L2 regularization problem. The simulation and real data verified that the proposed
SFMM algorithm not only improves the azimuth resolution in radar forward-looking imaging but also
increases convergence speed on the basis of SMM superresolution algorithm.

INDEX TERMS Superresolution, radar imaging, majorization-minimization, vector extrapolation.

I. INTRODUCTION
Radar has been widely used in many military and civilian
fields for its all-day and all-weather imaging ability [1], [2].
In precision guidance, autonomous landing and topographic
mapping, etc., we expect to obtain the accurate informa-
tion of interested targets in forward-looking area, so the
forward-looking region superresolution imaging is extremely
important [3], [4]. However, the traditional technologies,
such as synthetic aperture radar (SAR) and Doppler beam
sharpening (DBS), can not realize forward-looking imag-
ing due to the Doppler ambiguity [5], [6]. The bistatic
SAR whose transmitter and receiver are mounted on sep-
arate platforms can be used to realize forward-looking
imaging [7]–[9], but it is confronted with complicated
processing problems, such as synchronization and motion
compensation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xian Sun.

The real aperture radar can achieve forward-looking imag-
ing by antenna scanning in imaging region, but its azimuth
resolution is limited to antenna size in practice [10], [11].
Currently, it has been confirmed that the azimuth signal of
real aperture radar forward-looking imaging can be mod-
eled as a convolution of targets distribution and antenna
pattern, so the azimuth resolution can be improved by decon-
volution methods [12], [13]. However, the deconvolution is
ill-posed, its inverse thus being highly noise sensitive. In pre-
vious research, many methods haven been proposed to relax
the ill-posedness of deconvolution and have achieved some
results, such as Wiener filtering [14], Richardson-Lucy [15],
truncated singular value decomposition (TSVD) [16], etc, but
the resolution improvement of these methods are limited. The
spectrum-estimation-basedmethods, such as themultiple sig-
nal classification (MUSIC) algorithm andminimum-variance
beamforming technique, have been introduced in [17], [18],
but these algorithms need lots of snapshots and are usually
used for estimating the direction of arrival of point target.
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The iterative adaptive approach (IAA) is an iterative weighted
least squares approach for angular superresolution, which
remarkably improves the azimuth angular resolution with just
one snapshot, but it faces the problem of high computational
complexity [13], [19].

Recently, the sparse regularization is a widely used method
to relax ill-posedness and achieve superresolution [20], [21].
It improves the resolution by introducing targets prior infor-
mation under regularization framework [22], [23]. In radar
forward-looking imaging, usually the targets of interest are
sparse compared with whole imaging region. Therefore,
the sparse regularization method is suitable to improve the
azimuth resolution for radar forward-looking imaging. The
core of sparse regularization method is to select a reason-
able prior information of sparse targets. For this purpose,
most research chose a convex L1 norm to represent the
targets sparsity under regularization framework [24], [25],
then a L1 regularization problem was obtained, and the
superresolution was achieved by solving it using convex
optimization method. Because the L1 norm is not differ-
entiable, solving L1 regularization issue is a challenging
task. Although some alternative technologies, such as iter-
ative shrinkage threshold (IST) algorithm [26], split Breg-
man (SB) algorithm [27], augmented Lagrange method [28],
etc, have been proposed, they inevitably minimize the L1
regularization issue. The majorization-minimization (MM)
algorithm, which substitutes a simple optimization problem
for a difficult optimization problem and turns a nondiffer-
entiable problem into a smooth one [29], [30], is easier to
obtain the solution of difficult optimization problem than
above methods. For the difficult L1 regularization problem,
one would see that the MM algorithm can linearize it into
an easy L2 regularization issue in flowing section, so it is
easy to be minimized. However, traditional MM algorithm
needs large iterations because of its low convergence speed,
so the processing efficiency is limited in radar real-time
imaging. Accordingly, the research of how to improve
the efficiency of the MM algorithm is of great value in
practice.

At present, to accelerate an algorithm, one strategy is based
on the matrix analysis. This strategy reduces the time of each
iteration by fast solving the linear equations according to
the special structure of coefficient matrix, such as Toplitz
structure [31], Hankel structure [32], etc. Another strategy is
to reduce the iterations based on vector extrapolation. This
strategy employs previous and current iterative results to
extrapolate a big direction vector and predict an optimal iter-
ation point for next iteration, which benefits to convergence
to the optimal solution faster [33], [34]. In our research,
the convergence rate of the conventional MM algorithm is
unsatisfactory, so the second strategywould realize better per-
formance improvement in processing efficiency. In this paper,
a sparse with fast majorization-minimization (SFMM) super-
resolution algorithm was proposed to improve the azimuth
resolution of sparse targets in radar forward-looking imag-

ing. The proposed method essentially is an improvement of
traditional L1 regularization method. In this work, the diffi-
cult L1 regularization problem was simplified to a smooth
L2 regularization problem according to the MM principle.
Then we used the second-order vector extrapolation to
improve the convergence speed of traditional MM algo-
rithm, which greatly improved the computational efficiency.
Finally, we conducted some simulations and real data pro-
cessing to verify the superior performance of the proposed
SFMM algorithm.

The structure of this paper was as follows. In section II,
we analyzed the signal model of real aperture radar
forward-looking imaging. One can see that its azimuth sig-
nal can be built as a convolution of targets distribution and
antenna pattern. In section III, the proposed SFMMalgorithm
would be deduced. In this section, we first built the convex
optimization model by introducing the L1 norm under regu-
larization framework. Then the traditionalMMalgorithmwas
employed to solve the convex optimization problem. After
that, we used a second-order expansion strategy to accelerate
the traditional MM algorithm and obtained the proposed
SFMM algorithm. Finally, the selection of the regularization
parameter was discussed. Section IV verified the perfor-
mance of the proposed SFMM algorithm by experiments,
which included simulations and real data. The conclusionwas
discussed in section V.

II. SIGNAL MODEL
To realize forward-looking imaging, the radar works in scan-
ning model, and its antenna scans the imaging region all the
time. For moving platform imaging, its geometric configu-
ration is shown in FIGURE 1, where [−8,8] is the imaging
region,ω is the scanning speed, so we can obtain the sampling
number in azimuth is N = 28/ω, where N is the sampling
number in azimuth. Besides, θ0 and R0 are the scanning
angle and range distance, respectively, at the initial time,
θ (t) and R(t) are the scanning angle and range distance at
time t .

From FIGURE 1, the range history of a target P is
expressed as

R (t) =
√
R02 + V 2t2 − 2R0Vt cos θ0 (1)

Its Taylor expansion is

R (t) ≈ R0 − V cos θ0t +
V 2 sin θ02

2R0
t2 (2)

In forward-looking imaging, the range distance is usu-
ally large, which makes the quadratic term in Eq. (2) much
smaller than R0 − V cos θ0t , so Eq. 2 can be simplified
as [35]

R (t) ≈ R0 − V cos θ0t (3)
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FIGURE 1. Geometric configuration of radar forward-looking imaging.

The radar transmits linearized frequency modulation (LFM)
signal. Then after scanning, the received signal is

y (t, τ ) =
M∑
j=1

N∑
i=1

σijx (t) rect
(
τ−τd

T

)
exp

[
jπKp(τ−τd )2

]
× exp

(
−jπ

4R (t)
λ

)
(4)

where y(·) represents the received signal, t and τ represent
the slow time and fast time, respectively, where the slow time
denotes the time change in the angular dimension, which is
related to the antenna scanning, and the fast time denotes
the time change in the range dimension, which depends on
the light speed, M and N are the sampling number in range
and azimuth, respectively, σi,j is the amplitude of the i, jth
target, x(t) is the modulation of antenna pattern, rect(·) is a
rectangular window function, T the pulse width, Kp is the
chirp rate, λ is the wave length, and τd is the time delay which
can be expressed as τd=2R (t) /c.

After pulse compression and range walk correction,
the received signal can be written as

y (R, θ) =
M∑
i=1

N∑
j=1

σi,jÃ (θ − θ0) sinc
[
2B
c
(R− R0)

]

× exp
(
−j

4π
λ
V
θ − θ0

ω

)
(5)

where θ = θ0 + ωt , exp
(
−j

4π
λ
V
θ − θ0

ω

)
is the Doppler

shift.
For static platform, we can see that the Doppler shift equals

zero. For the motion platform with low speed moving or high
speed scanning, the Doppler shift only has small effect to the
received signal. As a result, it is usually negligible in practice.
Then, the received signal (5) can be written as a convolution,
i.e,

y (R, θ) = h (R, θ)⊗ σ (R, θ) (6)

with

h (R, θ) θ = Ã (θ) sinc
(
2B
c
R
)

(7)

For convenience, the convolution model expressed in
Eq. (6) can be rewritten as a product of matrix and vector
(Considering the noise), i.e,

y = Aσ + n (8)

where y is the received signal, A is the convolution matrix, σ
is the targets distribution, and n is the noise.

III. Algorithm
In this section, we research the traditional SMM algorithm
and use a second-order extrapolation strategy to accelerate
it. The research is started by introducing the regularization
model for sparse superresolution problem.

A. REGULARIZATION MODEL FOR SPARSE
SUPERRESOLUTION PROBLEM
To estimate real targets σ from the noise-polluted real
beam echo y is usually ill-posed, thus yielding highly
noise-sensitive solutions. To relax the ill-posedness, a typical
regularization criteria is written as

σ̂ = min
σ

1
2
‖Aσ − y‖22 + µf (σ ) (9)

where σ̂ is the estimation of σ , µ is the regularization
parameter which controls the weight added to the regularizer,
f (σ ) denotes a penalty function expressing the targets prior
information, and the use of penalty function was expected
to constraint the range of solutions thereby suppressing the
noise amplification. Recent research have proposed many
penalty functions according to different targets prior, such
as Lp, total variation (TV), low rank (LK) [36], etc.

For sparse superresolution problem, usually the Lp norm
with 0 ≤ p ≤ 1 was employed as penalty function. We know
that the stronger sparsity needs a smaller p. However, the sit-
uation p = 0 leads to a N-P hard problem and it is very
difficult to solve. Besides, a non-convex problem would to
be solved with 0 < p < 1, and finding the globally optimal
solution is also N-P hard. Therefore, in this work, we selected
the convex L1 norm to represent the sparsity of targets, then
the regularization model is

σ̂ = min
σ

1
2
‖Aσ − y‖22 + µ‖σ‖1 (10)

B. SOLUTION BY MM ALGORITHM
To solve the problem in (10), the MM algorithm requires to
replace it by a finite-dimensional optimization problem, i.e,

σ̂ = min
σ
L (σ ) (11)

where

L (σ ) =
1
2
‖Aσ − y‖22 + µ‖σ‖1 (12)
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The function L (σ ) is called cost function, and we note that
it’s convex but nondifferentiable.

Because the cost function L (σ ) is not differentiable, it is
not easy to obtain its solution. Using the MM idea, we would
minimize a succedaneous function G

(
σ |σ k

)
that easier to

be solved. So the key of the MM algorithm is to specify the
function G

(
σ |σ k

)
which is easier to be minimized and also

approximate L (σ ), i.e

σ k+1 = min
σ
G
(
σ |σ k

)
(13)

where

G
(
σ |σ k

)
≥ L (σ ) (14)

for all σ , and

G (σ |σ ) = L (σ ) (15)

From Eq. (14) and (15), the function G
(
σ |σ k

)
is an upper

band for L (σ ), and it ensures that the iterative value L
(
σ k
)

is monotonically decreasing, which makes theMM algorithm
converge to optimization, i.e,

L
(
σ k+1

)
= L

(
σ k+1

)
− G

(
σ k+1|σ k

)
+ G

(
σ k+1|σ k

)
≤ G

(
σ k+1|σ k

)
≤ G

(
σ k |σ k

)
= L

(
σ k
)

(16)

For the MM algorithm to succeed, the core is to choose
an appropriate upper band of the cost function. In this work,
we want to select a function G

(
σ |σ k

)
that satisfies (13), (14)

and (15).
In (12), we can see that the difficulty of solving the problem

comes from the L1 norm ‖σ‖1, so the upper band of ‖σ‖1
needs to be specified firstly. For a function f (t) = |t|,
an upper band can be chosen as a quadratic function, i.e:
g (t) = at2 + b, which satisfies g (t) ≥ f (t) for all t and
g
(
tk
)
= f

(
tk
)
, as Fig. 2 shows. Especially, at t = tk ,

the upper band can be chosen as [37]:

g (t) =
1

2
∣∣tk ∣∣ t2 + 1

2

∣∣∣tk ∣∣∣ (17)

Let σ (n) for t and add all σ (n), we have∑
n

[
1

2
∣∣σ k (n)∣∣σ 2 (n)+

1
2

∣∣∣σ k (n)∣∣∣] ≥∑
n

|σ (n)| (18)

that is,

1
2
σ T3kσ +

1
2

∥∥∥σ k∥∥∥
1
≥ ‖σ‖1 (19)

where 3k = diag
(
1/
∣∣σ k ∣∣).

Accordingly, using the MM idea, the objective function in
Eq. (13) can be specified as

G
(
σ |σ k

)
=

1
2
‖Aσ − y‖22 +

µ

2
σ T3−1

k
σ +

µ

2

∥∥∥σ k∥∥∥
1

(20)

FIGURE 2. Upper band of f (x).

Removing the constant term, the MM algorithm
update (13) for σ k is

σ k+1=min
σ

1
2
‖Aσ − y‖22 +

µ

2
3k ‖σ‖

2
2 (21)

where

3k = diag

(
µ∣∣σ k ∣∣
)

(22)

Obviously, using the MM algorithm, the difficult L1 regu-
larization problem (11) and (12) have been converted into an
easy L2 regularization problem (21). It can be easily solved
by iterating

σ k+1 =
(
ATA+3k

)−1
AT y (23)

C. SOLUTION BY FMM ALGORITHM
Although the problem (21) can be directly minimized by (23),
this iterative technique operates on the result of the previous
iteration and are normally slow to converge toward the final
result, resulting in large iterations. In this section, a fast
MM (FMM) algorithm based on vector extrapolation was
used to accelerate the conventional MM algorithm.

The ideal of vector extrapolation is to predict the next iter-
ation using the current and previous iterative information to
extrapolate a big vector, thus converging to the optimization
solutions faster. This process was shown in FIGURE 3.
In FIGURE 3, σ k is iterated point, vk the predicted point,

dk is the direction vector defined as

dk = σ k − σ k−1 (24)

For a minimization problem σ̂ = min
σ
f (σ ), we supposed

that its optimization solution can be obtained by iterating
σ k+1 = ξ

(
σ k
)
. According to vector extrapolation idea,

the predicted point in current iteration can be obtained by
Taylor expansion,

vk = σ k + αk∇σ k +
1
2!
α2k∇

2σ k + · · · +
1
n!
αnk∇

nσ k (25)
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FIGURE 3. Vector extrapolation diagram.

where αk is acceleration parameter, ∇nσ k is the n-order
difference at point σ k . After that, the accelerated algorithm
can be realized by iterating

σ k+1 = ξ
(
vk
)

(26)

In fact, higher-order Taylor expansion of vk provides more
accurate predicted point or faster acceleration for above
acceleration algorithm. However, it results in high computa-
tional complexity to obtain an accurate acceleration parame-
ter αk . So in recent research, only the first and second Taylor
expansions were used [33].

Another key problem of this acceleration algorithm is to
select a reasonable acceleration parameter. The acceleration
parameter provides correction step to adjust the step length
and further guarantee the stability of the solutions. To use the
two-order acceleration, it has been proved that the accelera-
tion parameter was expressed as [33]

αk =

√√√√(
dk−1

)T
dk−1(

dk−2
)T
dk−2

, 0 < αk < 1 (27)

In our work, the two-order vector extrapolation was
used to accelerate the traditional MM algorithms. We let
σ k be the iterated point, vk the predicted point, then
the second order Taylor expansion of vk at point σ k

is

vk = σ k + αk∇σ k +
1
2!
α2k∇

2σ k (28)

where ∇σ k is the gradient of σ k , ∇2σ k is the second order
gradient of σ k , which was defined as

∇
2σ k = ∇σ k −∇σ k−1

+

(
σ k − σ k−1

)
−

(
σ k−1 − σ k−2

)
= σ k − 2σ k−1 + σ k−2 (29)

Consequently, using the second-order vector extrapola-
tion strategy, the proposed SFMM algorithm was listed in
TABLE 1, where K is the iterations.

Compared with traditional SMM algorithm, the accel-
erated SFMM algorithm does not make the next iteration
on the current iterated point σ k , but rather at the point vk

TABLE 1. Flow chart of the proposed SFFM algorithm.

which relies on current point σ k and previous point σ k−1.
It can be found that the main computational complexity in
the traditional SMM algorithm and accelerated SMM algo-
rithm remains the same, namely in (23). For the accelerated
SFMM algorithm, only two additional steps are requested
to compute αk and vk , which is marginal compared with
the main computational complexity. However, the iterations
of the traditional SMM algorithm were greatly reduced
after acceleration, which would be verified in the next
section.

D. SELECTION OF REGULARIZATION PARAMETER
For the proposed SFMM algorithm, we can see that its per-
formance relies on the regularization parameter µ. We know
that a small µ may lead to higher resolution, but the noise
might be amplified. A largeµ can smooth the noise, but leads
to limited resolution improvement. So in practice, we need
to select a reasonable regularization parameter to balance
noise amplification and smoothness. In our work, the L-curve
method was employed to select the regularization parameter
µ [38], [39].

The L-curve method selects the regularization parameter
by maximizing the curvature function:

J (µ) =
X ′′ (µ)Y ′ (µ)− X ′ (µ)Y ′′ (µ)[

X ′(µ)2 + Y ′(µ)2
]3/2 (30)

whereX (µ) = log
(∥∥Aσ̂µ − y∥∥2),Y (µ) = log

(∥∥∇ ∣∣σ̂µ∣∣∥∥2),
∇ (·) is the gradient operator, and

(
′
)
denoting the differenti-

ation with respect to µ.
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TABLE 2. The system parameters of point target simulation.

IV. EXPERIMENTS
In this section, some experiments were conducted to prove
the superior performance of the proposed algorithm. To verify
the recovering ability, the experimental results are compared
with some traditional superresolution methods, including
TSVD [16] and iterative adaptive approach (IAA) [13]
methods.

A. POINT TARGET SIMULATIONS
The experiments started from a point target simulation.
We first employed two adjacent targets located at −0.5◦

and 0.5◦, respectively, with same amplitude. The antenna
pattern was a sinc2 function which is defined as sinc (x) =
sin (πx) / (πx), and its main lobe width is 2.5◦. The system
parameters are illustrated in TABLE 2.

The simulation results are shown in FIGURE 4. Because
the noise can not be avoided in applications, the real beam
echo was polluted by white Gaussian noise, and we let the
SNR = 20dB. From the real beam echo, the adjacent targets
can not be distinguished because their interval is smaller
than antenna beam width. After superreoslution processing,
the TSVD can partly distinguish adjacent targets, but the
resolution is poor, and the side lobes increase. The IAA
algorithm has better performance in resolution improvement
than TSVD, so the adjacent targets were distinguished. How-
ever, compared with the SMM and SFMMmethods, its noise
suppression ability is limited. The sparse algorithms not
only distinguishes adjacent targets, but also better suppress
noise.

In addition, to quantitatively evaluate the superresolu-
tion performance of different algorithms, some performance
indexes were listed in TABLE 3, including peak signal-to-
noise ratio (PSNR) and image entropy. In this work, thePSNR
was employed to appraise the noise suppression ability of
different algorithms, and the image entropy was employed to
evaluate the blur level of image since the entropy increase
with the increase of image blurring level [40], [41]. The
PSNR is defined as

PSNR = 20 log10
smax

nmax
(31)

where smax and nmax denote themaximum amplitude of signal
and noise, respectively. From TABLE 3, we can firstly see
that the SMM and SFMM methods can better suppress the
noise thus have higher PSNR than other methods. Besides,

FIGURE 4. Point target simulation results.

TABLE 3. Performance indexes for FIGURE 4.

from the perspective of image entropy, we noted that the
image entropy of the real beam echo is 6.7. After superres-
olution processing, the entropy of the results processed by
SMM and SFMM algorithms are lower than those processed
by TSVD and IAA, which indicates that the sparse methods
can obtain clearer superresolution image than other methods.
Although the image entropy of the result processed by the
proposed SFMM algorithm is slightly higher than the result
of SMM algorithm, their difference is small compared with
the results of TSVD and IAA. Besides, the RT of the pro-
posed SFMM algorithm seriously decrease compared with
the SMM algorithm. Although the TSVD has faster process-
ing speed than the proposed SFMM algorithm, its super-
resolution performance was much lower than the proposed
SFMM algorithm.

B. AREA TARGET SIMULATION
In this section, an area target simulation was conducted to
prove the performance of the proposed method. The original
scene was shown in FIGURE 5(a), which is a fleet cov-
ering 11 boats. Compared with the whole imaging scene,
these boats are sparse. The system parameters are listed in
TABLE 4.

The simulation results are illustrated in FIGURE 5, where
FIGURE 5(b) is the real beam echo whose SNR is 20dB.
We can see that the real beam echo has low resolution, making
the adjacent targets hard to be distinguished, and we can not
distinguish how many targets are covered. After superresolu-
tion processing, the resolution was improved by TSVD, IAA
and sparse methods. However, the resolution improvement
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FIGURE 5. Results of area target simulation. (a) Original scene. (b) Real beam echo. (c) TSVD. (d) IAA. (e) SMM. (f) SFMM.

TABLE 4. The system parameters of area target simulation.

of TSVD is limited, and many side lobes increase,
as FIGURE 5(c) shows. The IAA algorithm can further
enhance the resolution, but some noise is enlarged, as FIG-
URE 5(d) shows. From FIGURE 5(e) and FIGURE 5(f),
the sparse methods not only has higher resolution improve-
ment than TSVD and IAA methods, but also suppress the
noise.

In order to verify the above conclusion more intuitively,
the profiles of FIGURE 5 was plotted in FIGURE 6, and
the target area has been marked by red rectangle in FIG-
URE 5. From these profiles, it can be found that the
sparse algorithms has better superresolution performance
than the TSVD and IAA methods. They have better beam
sharpening ability and noise suppression ability than other
methods.

Similarly, the image entropy and RT were used to quanti-
tatively evaluate the superresolution performance of different

FIGURE 6. Profiles for FIGURE 5.

algorithms. From Fig. 6, we can see that the IAA also has
good noise suppression ability, so the PSNR cannot reflect
the performance of the proposed method. In area target sim-
ulation, the beam sharpening ration (BSR) was employed to
evaluate the sharpening ability. In this paper, the BSR was
defined as the ratio of main lobe sampling points between
real beam echo and superresolution result. The performance
indexes were shown in TABLE 5. From TABLE 5, we can
see that the SMM and SFMM methods have better beam
sharpening ability than other methods. As for image entropy
and RT, we also noted that the image entropy of the real beam
echo is 5.01, and the same conclusion was obtained as point
target simulation.
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FIGURE 7. Original scene of real data.

FIGURE 8. Scene picture of the experiment.

TABLE 5. Performance indexes for FIGURE 5.

C. REAL DATA PROCESSING
Above simulations have proved the superior performance
of the proposed SFMM algorithm in sparse target imaging.
In this section, a real data was further processed to verify its
performance in practice.

The experiment was conducted in Pucheng, Xi’an, China.
The original scene was an airport runway with 5 plants and
2 cars and have been marked by red rectangle, as FIGURE 7
shows. In this experiment, a X-band radar was hanged on a
transport plane and was marked by red circle, as FIGURE 8
shows. The main system parameters of the radar were listed
in TABLE 6.
FIGURE 9 illustrated the experimental results, where FIG-

URE. 9(a) is the real beam echo, and FIGURE 9(b) to 9(e)

TABLE 6. The system parameters of radar.

TABLE 7. Performance indexes for FIGURE 9.

are the superresolution results processed by different algo-
rithms. From the superresolution results, we can know that
the real beam echo has low resolution and strong noise, mak-
ing adjacent planes and cars almost undistinguishable. The
TSVD method has poor resolution improvement, thus many
false targets appear because of the elevation of side lobes.
The IAA algorithm has better resolution enhancement than
TSVD, but its performance is lower than SMM and SFMM
algorithms. Besides, some false targets appeared in the result
of IAA. Obviously, the noise level of IAA is higher than that
of SMMand SFMM.As for the SMMand SFMMalgorithms,
they have greatly improved the resolution and suppressed the
noise, so their results are clearer than others.

To prove above conclusions, the profiles of two adjacent
targets marked by red circles in FIGURE 7 and 9 were
illustrated in FIGURE 10. From the profiles, a high saddle
and high side lobes remained in the profiles of real beam
echo, TSVD and IAA results, resulting in low resolution.
The SMM and SFMM algorithms can better distinguish the
adjacent targets with low side lobes, but their performance
was not the same.

According to the system parameters of the radar, we can
know that the matrix size of the real beam echo is 1500×167.
Similar to area target simulations, the relative performance
indexes were showed in TABLE 7. Although TSVD has
higher processing efficiency than IAA, SMM and SFMM
algorithms, its PSNR was much lower than the IAA, SMM
and SFMM algorithms. Even for the result of IAA, its PSNR
was also much lower than the result of SMM and SFMM
algorithms, demonstrating that the SMM and SFMM algo-
rithms have better noise suppression ability than TSVD and
IAA methods. As for the image entropy, we note that the
image entropy of the real beam echo is 3.65. After supreres-
olution processing, the image entropy of SMM and SFMM
algorithms are lower than TSVD and IAA. As for the SFMM
algorithms, despite some performance degradation after
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FIGURE 9. Results of area target simulation. (a) Real beam echo. (b) TSVD. (c) IAA. (d) SMM. (e) SFMM.

FIGURE 10. Two-targets’ profiles for FIGURE 9.

accelerating, the RT was much less than SFMM algorithm,
and the degradation was inappreciable compared with TSVD
and IAA methods.

V. CONCLUSION
In this paper, we focused on the problem of low azimuth
resolution in radar forward-looking imaging and proposed
a SFMM algorithm to realize superresolution imaging. The
proposed SFMM algorithm converts the difficult L1 regu-
larization problem to an easy L2 problem according to MM
idea. In addition, the acceleration based on second-order

vector extrapolation reduced the iterations and RT of tradi-
tional SMM algorithm. From the simulations and real data,
the proposed SFMM algorithm not only effectively enhanced
the azimuth resolution and suppressed the noise, but also
decreased the time cost compared with conventional SMM
algorithm.
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