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ABSTRACT This paper investigated the networked control of a collection of continuous-time linear time-
invariant plants with medium access constraints. We aim to stabilize the plants by effectively assigning
the wireless channels and properly designing feedback controllers. By modeling the plant as a switched
system and using a time-scheduled Lyapunov function approach, computable sufficient conditions on the
stabilization and schedulability requirements are proposed in the framework of dwell time. Then, based on
the results, an interesting channel assignment policy is obtained and time-scheduled state feedback controller
design schemes are given. The effectiveness of the results is demonstrated by numerical simulations.

INDEX TERMS Medium-access constraint, dwell time, switched systems, channel assignment policy.

I. INTRODUCTION
Networked control systems (NCSs) have received substan-
tial attention due to their wide applications in transporta-
tion systems, chemical processes, and many manufacturing
plants [1]–[3]. In NCSs, information and control signals are
exchanged by shared communication network. Although the
introduce of network brings some advantages such as reduced
wiring and weight, lower cost, simple and easy installation
and maintenance [4]–[6], it has raised fundamentally new
challenges in communications. For example, when an actual
NCS involves a large amount of sensors and actuators while
the network cannot accommodate them at the same time. As a
consequence, the measurement and control signals cannot
be updated for a long time that may lead to performance
degradation or stability loss. This limitation is called medium
access constraint [7].

There are many practical applications that motivate this
issue, such as the climate monitoring system, a predication
system for oil spill, and the sensor network used for mon-
itoring earthquake [7]. To help make the motivation of this
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paper more comprehensive, consider a network of mobile
sensing/actuating agents deployed to monitor/intervene an
ongoing incident of oil pervasion in a given oceanic zone.
The agents are controlled by a remote control station via
a wireless communication network. At any time, all the
sensing/actuating agents are required to send their measure-
ment to the control station simultaneously, but owing to the
medium access constraint of the wireless network, only a part
of agents are allowed to receive control signals computed in
the control station. If not effectively schedule the communi-
cation of agents, oil diffusion may happen due to some agents
lose of control for a long time.

How to deal with the negative effects of medium access
constraint on the stability of an NCS has received ever-
increasing attention in recent years. Various modeling, anal-
ysis and channel scheduling policies have been proposed.
For example, Zhang and Hristu-Varsakelis [8] discuss the
stabilization of a NCS in which sensors and actuators of
a plant exchange information with a remote controller via
a shared communication medium. A codesign strategy of
feedback controller and scheduling policy was presented,
where the access to that medium is governed by a pair of
static periodic communication sequences. Different from [8],
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a co-design scheme of Try Once Discard (TOD) dynamic
scheduling strategy and controller is proposed for a class of
NCSs with random time delay [9] and quantized control [10],
which is albeit more robust than static ones, but require
frequent monitoring of the channel for feedback information
and complicated processing. Zhang et al. [11]–[13] proposed
a new redundant channel policy to resolve the issue of packet
dropouts and alleviate the effect of disconnection of partial
channels. But the results cannot be applied to the medium
access constraint directly because there are no redundant
channels for use in this study. To reduce the network band-
width usage, a hybrid scheduling strategy and dynamic robust
H-infinity output feedback controller is proposed in [14]. The
hybrid scheduling scheme integrates dead zone scheduling
and TOD scheduling that can get stronger adaptability and
flexibility than the single scheduling.

The phenomenon of medium access constraint also exists
in large-scale systems with numerous subsystems sharing a
commonwireless network. For a large-scale system subject to
medium access constraints, the procedure of control synthesis
involves designing not only a controller, but also a network-
access assignment policy for the plants at the same time.
To address this problem, the switched system approach was
introduced in [15]. By modeling each plant as a switched
system, sufficient condition of the existence of scheduling
policy and controller design has been obtained in the frame-
work of average dwell time and attention rate. Then, based
on the results, a scheduling and feedback control codesign
procedure is proposed for the simultaneous stabilization of
collection of networked linear time-invariant (LTI) systems
with uncertain delays. Along this line of research within the
periodic scheduling framework, the results were extended to
the case with limited communication energy [16], and a more
complicated codesign method of channel assignment, trans-
mission power allocation and stabilizing control are derived.
The presented methodology can guarantee a desired decay
rate and a given energy consumption for each plant. By using
the same average dwell time technique as in [15], [16],
an alternative methodology for most regular binary sequences
protocol and controller co-design is proposed in [17], [18],
in which the transmission intervals vary with time. Much
research is done on the codesign of the controller and sched-
uler of large-scale systems with medium access constraints.
Unfortunately, in the above work with the average dwell
time technique, the switching behaviors are always viewed to
increase the value of the Lyapunov function. This viewpoint
is too restrictive without considering the stabilization char-
acteristic of switchings. On the other hand, in many actual
applications, the stability analysis results in [15], [16] is
trivial since it is not easy to check conditions for all switching
instants, especially for non-period scheduling policy.

Here, we discuss the stability of large-scale systems in the
framework of dwell time and aim to find a scheduling and
control codesign algorithm such that the collection of plants
can be simultaneously stabilized with the medium access
constraint. By constructing a new time-varying Lyapunov

function of each plant, computable sufficient conditions for
the (robust) global stabilization of a single plant are pro-
posed within the framework of dwell-time. The dwell time
is confined by a certain pair of upper and lower bounds,
which restrict the channel accessing time and disconnecting
time. Then, based on the dwell time conditions, an inter-
esting co-design framework is derived for period channel
assignment policy and switched controllers, which can guar-
antee the global stabilization of the whole set of plants with
medium access constraints. The rest of this paper is divided
into four sections. Section II introduces the definition of
the problem setup of this paper, while Section III states
our main results regarding the stabilization conditions of
switched linear systems and schedulable conditions of the
channel assignment policy. A numerical example is presented
in Sections IV and V concludes this paper.
Notation: Throughout this paper, Rn and Rn×m represent

the n-dimensional Euclidean space and the set of n × m real
matrices, respectively. N represents the set of non-negative
integers andN+ represents the set of positive integers. Super-
script ‘‘T ’’ represents the transpose. For Hermitian matrices.
and Y = Y T ∈ Rn×n, X > Y means that matrix X − Y is
positive definite. || · || represents the Euclidean norm for a
vector.

II. PROBLEM FORMULATION
Consider aNCS consisting ofM plants. The dynamics of each
plant is described by

ẋi(t) = Aixi(t)+ Biui(t), i = 1, 2, . . . , M , (1)

where xi(t) ∈ Rn and ui(t) ∈ Rm are the states and input of
plant i, Ai ∈ Rn×n and Bi ∈ Rn×m are constant matrices.
Without loss of generality, suppose that M plants share r

wireless channels at any time, where r < M . Denote binary-
valued function δi(t) : R → {0, 1}, i = 1, 2, . . . ,M , as the
channel-access status of plant i at time t . When δi(t) = 1,
plant i is accessing the channel and the remote controller i can
receive the measurement; otherwise, δi(t) = 0, no measure-
ment is transmitted and plant i falls into open-loop status. Due
to medium access constraint, the following inequality holds
true at any time t

δ1(t)+ δ2(t)+ · · · + δM (t) ≤ r .

The controller of plant i is a state feedback controller given
by

ui(t) = Ki(t)x̂i(t), (2)

where Ki(t) ∈ Rm×n is the controller gain, x̂i(t) is the state
actually received by the controller, which, according to the
above discussions, can be represented as

x̂i(t) = δi(t)xi(t). (3)

As δi(t) is a binary function describing network access
status, each plant is actually a switching system comprising
the following two modes:
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closed-loop mode

ẋi(t) = [Ai + BiKi(t)]xi(t), δi(t) = 1, t ∈ [t2j, t2j+1),

and open-loop mode

ẋi(t) = Aixi(t), δi(t) = 0, t ∈ [t2j+1, t2j+2),

where j ∈ N , t0 = 0.
In the following, we will give a definition and an assump-

tion utilized in the posterior part of the paper.
Definition 1 [19]: System (1) is globally asymptotic sta-

ble (GAS) if for all xi(0) and all σ , there exists σ0 > 0 such
that

1) ‖xi(0)‖ ≤ σ0 ⇐ ‖xi(t)‖ ≤ σ for all t ≥ 0;
2) ‖xi(t)‖ → 0 as t →∞.
Assumption 1: The following assumptions are made:
1) There exists a uniform lower-bound τi on the lengths of

[t2j, t2j+1), i.e, t2j+1 − t2j ≥ τi, for all j ∈ N .
2) There exists a uniform upper-bound 0i on the lengths

of [t2j+1, t2j+2), i.e., t2j+2 − t2j+1 ≤ 0i, for all j ∈ N .
Remark 1: Similar to [20], the dwell time proposed in

this paper has upper and lower bounds. The meaning of the
upper-bound 0i is that plant i cannot fall into the open-loop
mode indefinitely whereas the lower bound τi ensures that
plant i has enough time to fully recover from the open-loop.
In the view of switched systems, the quantities τi and 0i are
minimum dwell-time and maximal dwell-time respectively.
Denote fi as the attention rate of plant i. Then from Assump-
tion 1 we know that fi ≥ τi/(τi + 0i). Specifically, if all
the plants have the same dynamics, then the minimal number
of channels is given by rmin = dMτ/(τ + 0)e, where d·e
denotes the upper integer bound.

III. MAIN RESULTS
In this section, sufficient conditions for GAS of the single
plant are given first, which is followed by the controller
design method. Then we extend the results to nonzero dis-
turbance case with H∞ robust performance. Finally, based
on the results, schedulability requirments are given in the
framework of dwell time and a period channel assignment
policy is derived.

A. STABILITY ANALYSIS
The following result is concerned with the GAS of a single
plant i.
Theorem 1: For given parameters mi, ni ∈ N+, plant i

is GAS if there exist matrices Pi,1,m,Pi,2,n > 0,
m = 0, 1, . . . ,mi − 1, n = 0, 1, . . . , ni − 1, such that

8i,1,m < 0, 8i,2,m < 0, 8i,mi < 0, (4)

9i,1,n < 0, 9i,2,n < 0, (5)

Pi,1,0 − Pi,2,ni < 0, (6)

Pi,2,0 − Pi,1,mi < 0, (7)

where

8i,1,m = (Pi,1,m+1 − Pi,1,m)mi/τi + [Ai + BiKi(t)]TPi,1,m
+Pi,1,m[Ai + BiKi(t)],

8i,2,m = (Pi,1,m+1 − Pi,1,m)mi/τi + [Ai + BiKi(t)]TPi,1,m+1
+Pi,1,m+1[Ai + BiKi(t)],

8i,mi = [Ai + BiKi(t)]TPi,1,mi + Pi,1,mi [Ai + BiKi(t)],

9i,1,n = (Pi,2,n+1 − Pi,2,n)ni/0i + ATi Pi,2,n + Pi,2,nAi,

9i,2,n = (Pi,2,n+1−Pi,2,n)ni/0i+ATi Pi,2,n+1 + Pi,2,n+1Ai.

Proof: Choose a time-varying Lyapunov function as below

Vi(t) =

{
xTi (t)Pi,1(t)xi(t), t ∈ [t2j, t2j+1)
xTi (t)Pi,2(t)xi(t), t ∈ [t2j+1, t2j+2)

, (8)

where

Pi,1(t) =


(1− β1)Pi,1,m + β1Pi,1,m+1,

t ∈ [t2j + α1,m, t2j + α1,m+1)
Pi,1,mi , t ∈ [t2j + α1,mi , t2j+1)

,

β1 = (t − t2j − α1,m)mi/τi, α1,m = mτi/mi,

m = 0, 1, . . . ,mi − 1,

Pi,2(t) = (1− β2)Pi,2,n + β2Pi,2,n+1,

t ∈ [t2j+1 + α2,n, t2j+1 + α2,n+1),

α2,n = n0i/ni, n = 0, 1, . . . , ni − 1,

β2 = (t − t2j+1 − α2,n)ni/0i, t2j+1 + α2,ni = t2n+2.

Then if t ∈ [t2j, t2j+1) and from (4), we have that

V̇i(t) = xTi (t)Ṗi,1(t)xi(t)+ 2ẋTi (t)Pi,1(t)xi(t)

=


xTi (t)[(1− β1)8i,1,m + β18i,2,m]xi(t),

t ∈ [t2j + α1,m, t2j + α1,m+1)
xTi (t)8i,mixi(t), t ∈ [t2j + α1,mi , t2j+1)

< 0

Similarly, if t ∈ [t2j+1, t2j+2), V̇i(t) < 0 can be obtained
using (5).

If t = t2j, then from (6), it arrives at Vi(t
+

2j ) =
xTi (t)Pi,1,0xi(t) < xTi (t)Pi,2,nixi(t) = Vi(t

−

2j ). Similarly,
if t = t2j+1, Vi(t

+

2j+1) < Vi(t
−

2j+1) can be obtained by
using (7). Then we can conclude that, Vi(t) monotonically
decreases in [t2j, t2j+1), [t2j+1, t2j+2) and at switching instants
t2j, t2j+1, thus the GAS of plant i can be established by the
standard Lyapunov theorem.
Remark 2: Theroem 1 provides us a sufficient condition

ensuring GAS of switched linear system (1) composed of
open-loop and closed-loop subsystems. Time-varying Lya-
punov functions have been proven to be able to formu-
late nonconservative conditions for maximum and minimum
dwell-time analysis. From Theorem 1 we know that plant i is
GAS if it gains access to the channel for enough time τi and
disconnects from the network for no more than time 0i.

B. CONTROLLER DESIGN
Theorem 2: For given parameters mi, ni ∈ N+, plant
i is globally asymptotic stabilized if there exist matrices
Si,1,m, Si,2,n > 0 and Li,1,m, m = 0, 1, . . . ,mi − 1,
n = 0, 1, . . . , ni − 1, such that

8̄i,1,m < 0 , 8̄i,2,m < 0, 8̄i,mi < 0, (9)

VOLUME 7, 2019 107313



L. Wang, W. Yue: Dwell Time Switching Approach to Channel Assignment for Stabilization of NCSs With Medium Access Constraint

9̄i,1,n < 0, 9̄i,2,n < 0, (10)

Si,1,0 − Si,2,ni > 0, (11)

Si,2,0 − Si,1,mi > 0. (12)

The controller gain is given by

Ki(t) = Li(t)S
−1
i,1 (t), (13)

where

8̄i,1,m = AiSi,1,m + Si,1,mATi + BiLi,m + L
T
i,mB

T
i

−(Si,1,m+1 − Si,1,m)mi/τi,

8̄i,2,m = AiSi,1,m+1 + Si,1,m+1ATi + BiLi,m+1 + L
T
i,m+1B

T
i

− (Si,1,m+1 − Si,1,m)mi/τi,

8̄i,mi = AiSi,1,mi + Si,1,miA
T
i + BiLi,mi + L

T
i,miB

T
i ,

9̄i,1,n = AiSi,2,n + Si,2,nATi − (Si,2,n+1 − Si,2,n)ni/0i,

9̄i,2,n = AiSi,2,n+1 + Si,2,n+1ATi − (Si,2,n+1 − Si,2,n)ni/0i,

Li(t) =


(1− β1)Li,m + β1Li,m+1,

t ∈ [t2j + α1,m, t2j + α1,m+1)
Li,mi , t ∈ [t2j + α1,mi , t2j+1)

, (14)

Si,1(t) =


(1− β1)Si,1,m + β1Si,1,m+1,

t ∈ [t2j + α1,m, t2j + α1,m+1)
Si,1,mi , t ∈ [t2j + α1,mi , t2j+1)

. (15)

Proof: Define Si,2(t), t ∈ [t2j, t2j+1) as

Si,2(t) = (1− β2)Si,2,n + β2Si,2,n+1, t ∈ [t2j+1, t2j+2),

where β2 is defined in (8).
Since Si,1,m > 0, m = 0, 1, . . . ,mi − 1 and Si,2,n > 0,

n = 0, 1, . . . , ni − 1, we have Si,1(t) > 0 and Si,2(t) > 0.
Define the Lyapunov function as below

Vi(t) =

{
xTi (t)S

−1
i,1 (t)xi(t), t ∈ [t2j, t2j+1)

xTi (t)S
−1
i,2 (t)xi(t), t ∈ [t2j+1, t2j+2)

. (16)

From the proof lines in Theorm 1, we have to prove

V̇i(t) < 0, ∀ t ∈ [t2j, t2j+1), (17)

V̇i(t) < 0, ∀ t ∈ [t2j+1, t2j+2), (18)

Vi(t
+

2j ) < Vi(t
−

2j ), Vi(t
+

2j+1) < Vi(t
−

2j+1). (19)

For t ∈ [t2j, t2j+1), (17) can be guaranteed by

[Ai+BiKi(t)]T S
−1
i,1 (t)+S

−1
i,1 (t)[Ai+BiKi(t)]+Ṡ

−1
i,1 (t) < 0.

(20)

Using Ṡ−1i,1 (t) = −S
−1
i,1 (t)Ṡi,1(t)S

−1
i,1 (t), (20) is equivalent to

[Ai + BiKi(t)]T S
−1
i,1 (t)+ S

−1
i,1 (t)[Ai + BiKi(t)]

− S−1i,1 (t)Ṡi,1(t)S
−1
i,1 (t) < 0 (21)

Multiplying both sides of (21) by Si,1(t), it arrives at

Si,1(t)[Ai + BiKi(t)]T + [Ai + BiKi(t)]Si,1(t)− Ṡi,1(t) < 0.

Then, by the similar guidelines in Theorem 1 and structure
of . and Li(t) = Ki(t)Si,1(t), (17) can be established by (9).

Similarly for t ∈ [t2j+1, t2j+2), (18) can be ensured under
condition (10), This completes the proof.

According to Theorem 2, for given τi, the maximal time
0i of tolerating the disconnecting from the network of plant i
can be obtained by solving Problem 1.
Problem 1: 0i = max τ

s.t. (9), (11), (12)

AiSi,2,n + Si,2,nATi + (Si,2,n+1 − Si,2,n)ni/τ < 0, ,

AiSi,2,n+1 + Si,2,n+1ATi + (Si,2,n+1 − Si,2,n)ni/τ < 0.

C. ROBUST PERFORMANCE ANALYSIS
If there is a disturbance wi(t) ∈ L2[0,∞) in system (1). Then
the dynamics of each plant is described by

ẋi(t) = Aixi(t)+ Biui(t)+ Ciwi(t), i = 1, 2, . . . , M ,

(22)

In this section, we are interested in establishing a design
methodology in the sense that the above system (22) is
robustly GASwith aH∞ disturbance attenuation level γ > 0,
namely, system (22) is GAS with wi(t) = 0 and the state xi(t)
under zero initial condition satisfies∫

∞

0
xTi (t)xi(t)dt ≤ γ

2
∫
∞

0
wTi (t)wi(t)dt

Theorem 3: For given parameters mi, ni ∈ N+, if there
exist matrices Pi,1,m,Pi,2,n > 0, m = 0, 1, . . . ,mi − 1,
n = 0, 1, . . . , ni − 1, such that[
8i,1,m + I Pi,1,mCi
CT
i Pi,1,m −γ 2I

]
< 0,[

8i,2,m + I Pi,2,mCi
CT
i Pi,2,m −γ 2I

]
< 0, (23)[

8i,mi + I Pi,miCi
CT
i Pi,mi −γ 2I

]
< 0, (24)[

9i,1,n + I Pi,1,nCi
CT
i Pi,1,n −γ 2I

]
< 0,[

9i,2,n + I Pi,2,nCi
CT
i Pi,2,n −γ 2I

]
< 0, (25)

Pi,1,0 − Pi,2,ni < 0, Pi,2,0 − Pi,1,mi < 0, (26)

where the parameters 8i,1,m, 8i,2,m, 8i,mi , 9i,1,n, 9i,2,n are
defined in Theorem 1. Then, system (22) is robustly GAS
with a H∞ disturbance attenuation level γ > 0.
Proof: The GAS of system (22) with wi(t) = 0 can be

easily obtained from (23)-(26). Hereby, we mainly focused
on the robust performance analysis. With the similar steps as
in Theorem 1 and from (23)-(25), we can obtain that

xTi (t)xi(t)− γ
2wTi (t)wi(t)+ V̇i(t) < 0. (27)

Now, integrate (27) from 0 to∞ with respect to t yields∫
∞

0
xTi (t)xi(t)dt < γ 2

∫
∞

0
wTi (t)wi(t)dt + Vi(0)− Vi(∞)
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Since x(0) = 0 and V (∞) > 0, then it is straightforward
that ∫

∞

0
xTi (t)xi(t) < γ 2

∫
∞

0
wTi (t)wi(t),

which means that the system (22) has a H∞ disturbance
attenuation level γ > 0.
Theorem 4: For given parameters mi, ni ∈ N+, system

(22) is robust globally asymptotic stabilized if there exist
matrices Si,1,m, Si,2,n > 0 and Li,1,m, m = 0, 1, . . . ,mi − 1,
n = 0, 1, . . . , ni − 1, such that 8̄i,1,m Ci Si,1,m

CT
i −γ 2I 0

Si,1,m 0 −I

 < 0, (28)

 8̄i,2,m Ci Si,2,m
CT
i −γ 2I 0

Si,2,m 0 −I

 < 0, (29)

 8̄i,mi Ci Si,mi
CT
i −γ 2I 0

Si,mi 0 −I

 < 0, (30)

 9̄i,1,n Ci Si,2,n
CT
i −γ 2I 0

Si,2,n 0 −I

 < 0, (31)

 9̄i,1,n Ci Si,2,n+1
CT
i −γ 2I 0

Si,2,n+1 0 −I

 < 0, (32)

Si,1,0 − Si,2,ni > 0, Si,2,0 − Si,1,mi > 0.

(33)

The controller gain is given by

Ki(t) = Li(t)S
−1
i,1 (t),

where the parameters 8̄i,1,m, 8̄i,2,m, 8̄i,mi , 9̄i,1,n, 9̄i,2,n are
defined in Theorem 2.
Proof: Define the same Lyapunov function as in (16),

then with using the similar lines of the proof of Theorem 2,
we have that V̇i(t) < 0∀ t ∈ [t2j, t2j+1), which can be
guaranteed by [

8̂i,1 + I S−1i,1 Ci
CT
i S
−1
i,1 −γ 2I

]
< 0, (34)

where

8̂i,1 = [Ai + BiKi(t)]T S
−1
i,1 (t)+ S

−1
i,1 (t)[Ai + BiKi(t)]

− S−1i,1 (t)Ṡi,1(t)S
−1
i,1 (t).

Multiplying both sides of (34) by diag{Si,1(t), I } and sub-
stituting Li(t) = Ki(t)Si,1(t) into (34), it arrives at[

8̄i,1 + Si,1Si,1 Ci
CT
i −γ 2I

]
< 0,

which by Schur complement and the structure of Si,1(t),
is equivalent to (28)-(30).

The proof of conditions (31)-(32) is similar to that of
(28)-(30), so we omit the details here. Then combine (33) and

from Theorem 3, we know that system (22) is robust globally
asymptotically stable with disturbance attention level γ > 0.

D. CHANNEL ASSIGNMENT POLICY
If there exist uniform lower-bound τi and upper-bound 0i
such that the plant i is GAS or robustly GAS with controller
Ki(t) = Li(t)S

−1
i,1 (t). Then in order to achieve simultaneous

stabilization for all the plants, it is necessary to carefully
schedule the channel accessing time for the collection of
NCSs so that the lower-bound τi and upper-bound 0i of each
plant can be met. This section concentrates on finding a
channel assignment policy for establishing and terminating
communication between each plant and its controller in a way
that stabilize all plants.
Theorem 5: Suppose that each plant is GAS or robustly

GAS for lower-bound τi and upper-bound 0i, and the channel
accessing time 1i of each plant satisfy the following condi-
tions for parameter T > 0

6M
i=11i ≤ rT , 1i ≥ τi, T −1i ≤ 0i. (35)

Then there exists a scheduling policy stabilizes the M plants
simultaneously. The channel assignment policy is given as
below

1) CHANNEL ASSIGNMENT POLICY A
1) Choose the scheduling period as T ;
2) Close r control loops for their plants at any time instant.

Activate the control loops from 1 to M in order, and
let the i th control loop work for a time interval of
length 1i.

Let C1,C2, · · · ,Cr denote channels 1 to r and P1,
P2, · · · ,PM denote plants 1 to M . Then the sequence of
plants accessing to network in one scheduling period T can
be described as follows

C1 : P1 · · ·P1︸ ︷︷ ︸
11

P2 · · ·P2︸ ︷︷ ︸
12

· · · Pn1 · · ·Pn1︸ ︷︷ ︸
1̄n1

C2 : Pn1 · · ·Pn1︸ ︷︷ ︸
1n1−1̄n1

Pn1+1 · · ·Pn1+1︸ ︷︷ ︸
1n1+1

· · · Pn2 · · ·Pn2︸ ︷︷ ︸
1̄n2

...
...

... · · ·
...

Cr : Pnm−1‘ · · ·Pnm−1︸ ︷︷ ︸
1nr−1−1nr−1

Pnm−1‘+1 · · ·Pnm−1+1︸ ︷︷ ︸
1nr−1+1

· · · PM · · ·PM︸ ︷︷ ︸
1M

,

where ns = {a = 1, . . . ,M
∣∣sT ≤ 6a

i=11i < (s+ 1)T },
1̄ns = sT −

∑ns−1
i=1 1i, s = 1, . . . , r − 1.

From the above channel assignment policy, we know that at
each time, only r plants can access the communication chan-
nel, then themedium access constraint is satisfied. In Channel
assignment policy A, each plant gains access the channel
for the time 1i and disconnects from the channel for the
time T − 1i. From (35) we know that 1i ≥ τi and
T −1i ≤ 0i. So each plant has enough time to fully recover
the open-loopmode and does not fall into the open-loopmode
indefinitely. In other words, the uniform lower-bound τi and
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TABLE 1. Computation on 0i with d = 5.

TABLE 2. Computation on 01 with different d .

upper-bound 0i of each plant is guaranteed by the choice of
scheduling period T . Then from Theorem 1 or Theorem 3 we
can conclude that the above scheduling policy can guarantee
the simultaneous stabilization of all the plants.
Remark 3: Theorem 3 gives a sufficient condition for

the existence of period scheduling policy in the frame-
work of dwell time. The obtained channel assignment policy
generated from dwell time is easy for the implementation
of time-varying switched controllers in Theorem 2.

IV. SIMULATION
A. STABILITY ANALYSIS WITH A NUMERICAL EXAMPLE
Consider three plants whose dynamics are given, respectively,
by

ẋ1(t) =

[
1 0
2 1

]
x1(t)+

[
10
5

]
u1(t),

ẋ2(t) =

[
1.6 1
0 −1.1

]
x2(t)+

[
8
0

]
u2(t),

ẋ3(t) =

[
0.5 1
1 −1.5

]
x3(t)+

[
1
1

]
u3(t).

It is assumed that there are two wireless channels avail-
able, i.e., r = 2. Assuming τ1 = τ2 = τ3 = 1s here,
we try to design a stabilizing controller to maximize 0i,
i = 1, 2, 3, i.e., maximizing the capability of tolerating the
disconnecting from the network. Then, by Theorem 2 and
letting mi = ni = d , the upper dwell time bound 0i,
i = 1, 2, 3 is given in Table 1 with respect to d = 5. From
Table 1 we can see that for the same d and τs, different plants
corresponding to different 0i, i.e., different systems differ in
the capability of tolerating the disconnecting from the net-
work. The upper dwell time bound of plant 1 01 for different
values d is given in Table 2. From Table 2 one can see that
upper dwell time bound 01 increases with d , i.e., the larger
d is, the lager capability of tolerating the disconnecting from
the network is. Thus we can say a less conservative result can
be obtained by a larger d , but with a larger computational
cost.

Let d = 5, then by Matlab software, the feedback con-
trollers are given as below

Ki(t) = Li(t)S
−1
i,1 (t),

where

Li(t) =

 (1− β1)Li,m + β1Li,m+1,
t ∈ [t2j + α1,m, t2j + α1,m+1)

Li,mi , t ∈ [t2j + α1,mi , t2j+1)
,

β1 = 5(t − t2j)− m, α1,m = 0.2m, m = 0, 1, . . . , 4,

Si,1(t) =

 (1− β1)Si,1,m + β1Si,1,m+1,
t ∈ [t2j + α1,m, t2j + α1,m+1)

Si,1,mi , t ∈ [t2j + α1,mi , t2j+1)
.

plant 1:

S1,1,0 =
[
64.7053 5.9076
5.9076 19.0193

]
,

L1,0 = [−9.6066 −10.5836 ]

S1,1,1 =
[
53.9544 3.8779
3.8779 11.2310

]
,

L1,1 = [−8.7491 −8.1890 ]

S1,1,2 =
[
42.2572 2.8213
2.8213 4.6930

]
,

L1,2 = [−7.8492 −5.7350 ],

S1,1,3 =
[
29.3365 2.5546
2.5546 1.2390

]
,

L1,3 = [−6.8287 −3.4300 ],

S1,1,4 =
[
15.2018 1.6153
1.6153 0.7274

]
,

L1,4 = [−5.6813 −1.4686 ],

S1,1,5 =
[

0.2433 −0.8690
−0.8690 3.1423

]
,

L1,5 = [−4.1855 0.6188 ].

plant 2:

S2,1,0 =
[
25.7133 0

0 10.9895

]
, L2,0 = [−7.4831 0 ],

S2,1,1 =
[
19.8866 0

0 8.6005

]
, L2,1 = [−6.2588 0 ],

S2,1,2 =
[
14.4927 0

0 7.0327

]
, L2,2 = [−5.0406 0 ],

S2,1,3 =
[
9.5678 0

0 6.0097

]
, L2,3 = [−3.9415 0 ],

S2,1,4 =
[
4.8522 0

0 5.3265

]
, L2,4 = [−2.9851 0 ],

S2,1,5 =
[
0.0043 0

0 4.8325

]
, L2,5 = [−2.0355 0 ].

plant 3:

S3,1,0 =
[
5.6233 1.4098
1.4098 2.6415

]
,

L3,0 = [−8.6322 0.3880 ],

S3,1,1 =
[
4.2936 1.0786
1.0786 2.2104

]
,

L3,1 = [−7.3626 0.2661 ],
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FIGURE 1. System states.

S3,1,2 =
[
3.1096 0.7297
0.7297 1.8390

]
,

L3,2 = [−6.0747 0.1658 ],

S3,1,3 =
[
2.0644 0.3853
0.3853 1.5013

]
,

L3,3 = [−4.9166 0.0536 ],

S3,1,4 =
[
1.1015 0.0335
0.0335 1.1726

]
,

L3,4 = [−3.9519 −0.0807 ],

S3,1,5 =
[

0.1443 −0.3433
−0.3433 0.8315

]
,

L3,5 = [−3.0531 −0.1936 ].

According to Theorem 5, there exists a period channel
assignment policy stabilizes the three plants at the same time
with 11 = 1, 12 = 1, 13 = 1.6. Let T = 2s, Then the
channel assignment policy over a scheduling period is given
as below

C1 : P1 · · ·P1︸ ︷︷ ︸
1s

P2 · · ·P2︸ ︷︷ ︸
1s

C2 : P3 · · ·P3︸ ︷︷ ︸
1.6s

,

The states of the three plants are given in Figure 1, from
which we can see that the above channel assignment policy
can guarantee the stability of the three plants.

B. ROBUST ANALYSIS WITH VEHICLE PLATOON EXAMPLE
In this section, we will show how to apply the results to a
platoon of vehicles. Consider a platoon of 11 vehicles running
a horizontal road as in Figure 2, where 0 denotes the leading
vehicle.

The dynamics of each vehicle i is written as [3]

żi(t) = Aizi(t)+ Biui(t),

FIGURE 2. Platoon of vehicles.

where Ai =

 0 1 0
0 0 1
0 0 −1/ςi

, Bi =

 0
0

1/ςi

,
zi(t) =

 si(t)
vi(t)
ai(t)

, si, vi and ai denote the position, velocity

and acceleration of the i-th following vehicle respectively,
with i = 1, 2, . . . , 10, and i = 0 denoting the leading vehicle.
ςi is the time constant of the lag in tracking any desired
acceleration command, ui(t) is the control input.
The objective is to design a controller and channel schedul-

ing policy for each following vehicle that can keep a constant
distance with its preceding vehicle. The following vehicle
exchanges information on preceding vehicle via wireless net-
work. But due to the medium access constraint, at each time,
only 9 following vehicles can gain access the channel and
receive the information (i.e., inter-vehicle distance and the
preceding vehicle’s velocity and acceleration) of preceding
vehicle. Denote by esi(t) = si−1−si−d−L, evi(t) = vi−1−vi
and eai(t) = ai−1 − ai the tracking error, velocity error and
acceleration error, where i = 1, 2, . . . , 10, L is the desired
vehicle spacing and d is the vehicle length. Then the vehicle
following error model can be written as

ẋi(t) = Aixi(t)− Biui(t)+ Biwi(t),

where xi(t) =
[
esi(t) evi(t) eai(t)

]T , w(k) = ui−1(k) is
the disturbance.

Let ςi = 0.25, r = 3, mi = ni = 3, τi = 0.9s and
0i = 0.1s, then from Theorem 4 and using Matlab LMI
toolbox, the controller gain of each following vehicle is given
by

K (t) = L(t)S−11 (t),

where

L(t) =


(1− β1)Lm + β1Lm+1,

t ∈ [t2j + αm, t2j + αm+1)
L3, t ∈ [t2j + α3, t2j+1),

S1(t) =


(1− β1)S1,m + β1S1,m+1,

t ∈ [t2j + αm, t2j + αm+1)
S1,3, t ∈ [t2j + α3, t2j+1).

with β1 = 5(t − t2j)− m, αm = 0.3m, m = 0, 1, 2,

S1,0 =

 0.5678 −0.3916 0.0223
−0.3916 0.6611 −0.9403
0.0223 −0.9403 21.8355

 ,
VOLUME 7, 2019 107317



L. Wang, W. Yue: Dwell Time Switching Approach to Channel Assignment for Stabilization of NCSs With Medium Access Constraint

FIGURE 3. Profile of the leading vehicle.

FIGURE 4. Distance errors.

S1,1 =

 0.5227 −0.3645 0.0195
−0.3645 0.5755 −0.9358
0.0195 −0.9358 8.2858

 ,
S1,2 =

 0.4808 −0.3379 0.0275
−0.3379 0.5079 −0.9021
0.0275 −0.9021 8.0672

 ,
S1,3 =

 0.4397 −0.3034 0.0706
−0.3034 0.4346 −0.7774
0.0706 −0.7774 3.0931

 ,
L1,0 =

[
−0.0548 1.4958 66.2026

]
,

L1,1 =
[
−0.1280 0.9134 28.9724

]
,

L1,2 =
[
−0.1397 0.9125 26.7082

]
,

L1,3 =
[
−0.1613 0.7905 24.5844

]
.

Suppose that the leading vehicle accelerates first and then
decelerate. The profile of the leading vehicle’s velocity and
acceleration is shown in Figure 3.

According to Theorem 5, there exists a period channel
assignment policy that stabilizes the vehicle platoon systems
with period T = 1s. In one scheduling period T , each
following vehicle gain access the channel for 0.9s and then
disconnected from the network for 0.1s. The communication

FIGURE 5. Speed of following vehicles.

FIGURE 6. Acceleration of the following vehicles.

scheduling policy for the 11 following vehicles is given as
below.

C1 : V1 · · ·V1︸ ︷︷ ︸
0.9s

V2 · · ·V2︸ ︷︷ ︸
0.1s

C2 : V2 · · ·V2︸ ︷︷ ︸
0.8s

V3 · · ·V3︸ ︷︷ ︸
0.2s

C3 : V3 · · ·V3︸ ︷︷ ︸
0.7s

V4 · · ·V4︸ ︷︷ ︸
0.3s

C4 : V4 · · ·V4︸ ︷︷ ︸
0.6s

V5 · · ·V5︸ ︷︷ ︸
0.4s

C5 : V5 · · ·V5︸ ︷︷ ︸
0.5s

V6 · · ·V6︸ ︷︷ ︸
0.5s

C6 : V6 · · ·V6︸ ︷︷ ︸
0.4s

V7 · · ·V7︸ ︷︷ ︸
0.6s

C7 : V7 · · ·V7︸ ︷︷ ︸
0.3s

V8 · · ·V8︸ ︷︷ ︸
0.7s

C8 : V8 · · ·V8︸ ︷︷ ︸
0.2s

V9 · · ·V9︸ ︷︷ ︸
0.8s

C9 : V9 · · ·V9︸ ︷︷ ︸
0.1s

V10 · · ·V10︸ ︷︷ ︸
0.9s
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All the following vehicles are controlled to follow the lead
vehicle by the proposed controller and scheduling policy.
The distances error, velocity and acceleration of the follow-
ing vehicles are given in Figure 4, Figure 5 and Figure 6,
respectively. From Figure 4 one can see that all the distances
errors converge to zeros. Then we can conclude that the pro-
posed controller and scheduling policy can drive the follow-
ing vehicles to keep a desired spacing with their proceeding
vehicles no matter whether the leading vehicle accelerates or
decelerates.

V. CONCLUSION
This paper addressed a joint problem of control and channel
allocation for simultaneous stabilization of a collection of
LTI systems sharing a limited bandwidth communication
network. By employing a time-scheduled Lyapunov func-
tion, sufficient conditions on the GAS stability of each plant
are presented which relates to a pair of upper and lower
bounds of dwell time. Correspondingly, based on this stability
condition, a co-design methodology of channel scheduling
and feedback control was presented. The periodic channel
assignment policy proposed is easy for implementation, but it
is worthwhile and interesting to extend the framework to non-
periodic scheduling schemes in the future work. As channels
may be stochastically assigned in practice, the results of
this study can also be extended to the case of stochastically
assigned channels.
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