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ABSTRACT The performance of localization methods based on the receiver signal strength (RSS) is
significantly affected by the signal strength indicator’s (RSSI) instability. To date, there is no adequate
approach which significantly reduces the impact of such an instability on the localization accuracy. Hence,
in this paper, we propose a continuous wavelet transform (CWT)-based feature extraction method for
convolutional neural network (CNN)-based indoor fingerprinting localization method. The proposed feature
extraction method uses the continuous wavelet transform to extract the joint time-frequency representation
of each raw RSSI data which provides more discriminative information. The extracted features are used with
a CNN model to efficiently predict the closest reference points (RPs). Then, a K-nearest neighbors (KNN)
model is used to compute the target location. The proposed feature extraction method can be used with a
generic deep neural network model to increase the performance where the computing node is not powerful.
The proposed method has been evaluated on different datasets and has achieved good performance compared
with other well-known existing methods. The experimental results also demonstrated that the proposed
approach reduces the influence of RSSI variation.

INDEX TERMS Convolutional neural network, continuous wavelet transform, RSSI-based fingerprinting
localization.

I. INTRODUCTION
Indoor positioning and navigation services are playing an
important role in society today and are relevant keys for future
smart cities [1]–[3]. Unfortunately, with only theGlobal Posi-
tioning System (GPS) it is difficult to achieve a good localiza-
tion performance in an indoor environment due to the signal
attenuation [4]. Therefore, several studies have been carried
out to propose alternative solutions to the GPS for indoor
environments [5]. Among these methods, approaches based
on the RSS, specifically fingerprinting-based localization
method [6] is the focus of broad attention in indoor localiza-
tion literature. Location algorithms based on fingerprinting
approach have an important advantage compared with other
localization methods in indoor environment: the simplicity
of collecting the RSS measurements by today users’ handset
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and the method does not require special devices or network
architecture. RSS based fingerprinting localization methods
are pattern matching algorithms in which the RSS is used
as the pattern. The basic fingerprinting algorithm consists
of two main steps: an offline phase and an online phase.
During the offline phase, the signal strength of the available
Access Points (APs) are collected at predefined positions
called reference points and stored in a database called a radio
map database. The online phase represents the evaluation step
during which the position of target nodes are estimated based
on their measurements which are compared with those in the
radio map dataset. The estimated position of a target node is
the position of the RP whose measurements in the radio map
are the most closer to the node’s measurements.

However, due to the RSSI instability, this approach barely
gives a good location estimation. Hence, to reduce the effect
of such an instability of the RSSI on the localization per-
formance, several approaches have been proposed [7]–[9].
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Among them, methods based on Artificial Neural Net-
work (ANN) are among the promising approaches due to
ANN performance on images pattern matching. ANN has
been applied in a lot of studies to efficiently increase the
pattern matching capability of fingerprinting method, such
as approach proposed in [10]. The main challenge facing by
RSSI based fingerprinting localization methods is the unpre-
dictable variation of the RSS. Such a variation affects most
pattern matching algorithms specifically ANN based finger-
printing methods which perform worse than usual with the
RSSI comparedwith their performance on image data. In fact,
an ANN approach requires a good feature extraction method
when using the raw RSSI data as input data. Specifically,
the deep neural network approach is not quite good enough
with RSSI based fingerprinting localization because it cannot
implicitly capture the structure of the data from a raw RSSI
data as CNN may do. Indeed, CNN generally achieves better
results on image recognition than the generic deep neural
network (DNN) does.

Several methods are reported in the literature to address
the computational cost introduced by the use of CNN
models [11]. Specifically Mobilenet [12] which is one of the
most well-known light CNN achieving good performance
with low computation cost compared to other well-known
CNN models [13], [14]. Mobilenet exploits depth-wise sepa-
rable convolution [15] and pointwise convolution [16] to pro-
duce a light CNN model which has few parameters and low
computational cost. This model can be used with low compu-
tational capability devices such as smartphones. Point-wise
CNN model has been used in several studies to assess
images dehazing tasks [17], [18]. Recently, a new approach
has been proposed in [19] called EfficientNet which improves
the performance of existing light CNN such as Mobilenets.
Although there are many studies on low computation CNN,
the works for indoor positioning based on signal strength
remain limited to the generic DNN or standard CNN due
to the small size of the available datasets or the small size
of the network models. Nevertheless, methods exploiting
standard CNN, generally require two-dimensional feature
data.

In fact, CNN can efficiently capture the structure of
the data and it works more accurately on two-dimensional
data than one-dimensional data. Since it is necessary to
transform each independent one-dimensional RSSI data into
two-dimensional data if we want to accurately utilize the
data structure capturing capability of CNN. A simple way
to obtain two dimensional RSSI data is to collect multiple
samples per location for training as well as for the testing part.
However, due to the RSSI variation, such an approach barely
achieves a good result and it is time and memory consuming
to collect several measurements per RP and being able to
perform real-time position estimation. Another approach is
to reshape each row sample of the data into two-dimensional
data. But such a method requires an intelligent data restruc-
turing such as APs replacement to provide a good feature
representation [20].

Additionally, in a previous work [21] we have applied
scattering wavelet transform to fingerprinting localization
algorithm where the scattering coefficients were used with a
DNNmodel to achieve a good localization performance. This
approach has showed that the wavelet transform framework
is capable of efficiently extracting features from fluctuating
RSSI.

To address the RSSI fluctuation and reliable feature extrac-
tion problems, and be able to exploit the advantages of CNN,
we propose a feature extraction method that exploits the
continuous wavelet transform framework to map each row
sample considered as a time series data into two-dimensional
joint time-frequency data. Such a transformation provides
highly redundant information which is helpful for analyzing
and discovering patterns or hidden information from each row
data. By using the time and frequency (or scale) represen-
tation of the raw data, it is easier for the classifier to learn
the discriminative information. Since such a representation
provides a good feature representation at different time-scale
levels, the proposed method reduces the burden of collect-
ing several samples per location. Also, the proposed feature
extraction method can be used with most existing neural
network architectures as well as the above-mentioned light
CNN model such as Mobilenets. Nonetheless, in our case we
limit the implementation to the standard CNN with at most
5 hidden layers which is faster enough for real-time inference.

The rest of the paper is organized as follows. The next
section describes related works. Then section III details the
proposed method followed by the performance evaluation in
section IV. Finally, we conclude the study in section V.

II. RELATED WORKS
The main problem that degrades the RSSI fingerprinting
based localization methods is the unpredictable variation of
the RSSI signal in indoor environments. There has been
numerous studies to investigate the problem and different
approaches were proposed [22], [23] to mitigate the impact
of RSSI variation on the localization performance. Since the
fingerprinting method is firstly a pattern matching approach,
there has been a growing interest in applying techniques that
incorporate artificial neural network, as in [24] where the
authors combined deep neural network model with a hidden
Markov approach to accurately achieve location estimation.
In the same vein, in [25], [26] a deep autoencoder is used
to extract the discriminative features from the RSSI data
for a multi-level building classification using a deep neural
network.

As the unpredictable variation of the RSSI is the main
cause that degrades the fingerprinting method, Channel State
Information (CSI) has been considered as an alternative to
RSSI in [27], [28]. The CSI provides more information about
the radio signal such as phase and amplitude which can
be exploited for localization. Unfortunately, the CSI can be
affected by the indoor environment due to multipath propa-
gation and fading. Hence, a good pattern matching method
such as DNN is required.
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However, most existing methods based on DNN do not
always provide satisfactory results. Therefore, there has been
a growing interest in applying CNN to fingerprinting method,
since CNN is very promising on image pattern matching.
In [29], a CNN based fingerprinting method is proposed.
In that study, the authors exploited subcarriers’ information
including CSI to produce the feature data. Unfortunately, this
approach is more complex than those based on the RSSI and
it requires transmission nodes with multiple antennas.

An RSSI based convolutional approach was discussed
in [30] where they exploited a time-series approach to con-
struct two-dimensional feature data. This approach requires
multiple samples per location or to combine different location
data which results in a reduction of the number of samples
in the database. Also, as mentioned in section I, collecting
several samples per location can be laborious or memory con-
suming. A method based on Pearson correlation coefficient
to produce 2-dimensional features from RSSI data for a CNN
based fingerprinting method is introduced in [31]. Addition-
ally, in [32] a CNN based localization method is proposed in
which the authors exploited channel impulse response infor-
mation in indoor nonline-of-sight conditions to reduce the
localization error. In their study, the CNN based approach has
outperformed the support vector based approach. In [33] an
autoencoder approach is proposed using a convolutional neu-
ral network to extract reliable features. The method achieved
good performance on simulation data. However, there are
few methods using CNN with the Wi-Fi fingerprints due to
the difficulties to produce reliable two-dimensional data from
one-dimensional data.

Moreover, several studies have been carried out to
exploit the joint time-frequency information such as Gabor
expansion, short time Fourier transform and wavelet
transform [34], [35]. Those studies showed that wavelet
transform provide better result for time-frequency represen-
tation of signals compared to others. In [36], the authors
discussed a superfamily of wavelets where they investigated
the wavelet suitability for various applications based on its
properties. In [37], the wavelet framework and its applica-
tions in signal processing from discrete to continuous wavelet
transform have been deeply investigated. The wavelet trans-
form has been useful in many medical applications that
involve time-series data such as in [38] where a discrete
wavelet transform is used to extract feature data from an
electrocardiogram signal for support vector machine. As well
in [39] a continuous wavelet transform was proposed to
extract reliable features of Surface Electromyography. These
features were then used by a DNN model to achieve better
predictions. Others applications based on time-frequency
representation have been investigated in [40], [41].

The above-mentioned works demonstrated the need and
challenge of applying CNN to RSSI based indoor finger-
printing localization. They also showed how the continu-
ous wavelet transform can be useful in pattern classification
since it well-known in signal processing for time-frequency
analysis.

FIGURE 1. Structure of the proposed method.

III. THE PROPOSED SCHEME
This section describes the proposed algorithm. Compared
with the previous work [21] where wavelet scattering trans-
form was used with a standard DNN model. In this paper,
we apply CWT to extract time-scale features from RSSI sam-
ples and use a standard CNN classifier to predict the targets’
locations. This approach is designed to exploit time-scale
information with CNN using RSSI data. To apply CWT to the
RSSI data, we consider each sample as a time-series signal
regularly collected at a unit sampling rate and the signal
length is the number of APs. Continuous wavelet decompo-
sition is used to extract joint time-frequency information for
each row of the RSSI data as presented in the block diagram
Fig.1.

The proposed model is presented in Fig.1 and is described
as follows: The RSSI data is a numerical array where each
row corresponds to a RSSI measurement or RSSI sample
from all available APs. Each sample is transformed into a
two-dimensional data via continuous wavelet transform oper-
ation. This 2D RSSI data is then used to train a convolutional
neural network. The output of the convolutional neural net-
work is the closest RPs prediction probability. To estimate
the location of the target points, a KNN is applied using these
probabilities obtained during the inference time and the RPs’
coordinates.

A. CONTINUOUS WAVELET TRANSFORM
Analogously to the Fourier transform, the CWT measures
the similarity between a signal and an analyzing function.
Fourier transform uses complex exponentials as analyzing
functions whereas the CWT uses a wavelet function9. In our
study, the analyzingwavelet function is calledmother wavelet
and is denoted by 9 ∈ L2(R)1 which is a bandwidth and
time limited function with zero-mean and unit energy [25].
An example of a standard mother wavelet is a Morlet wavelet
where the typical support is [4, 4] as shown in Fig. 2.

1denotes the space of square-integrable functions on R.
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FIGURE 2. Example of mother wavelet.

The boundaries of such wavelet can be extended to [−8, 8].
Equation (1) shows the wavelet function shown in Fig. 2.

9(t) = e
−t2
2 cos(5t). (1)

The CWT requires shifted and stretched versions of the
analyzingmother wavelet function9 which is comparedwith
the signal. We refer to the stretched or compressed versions
of the mother wavelet as dilated wavelets in our investigation
and denote them by 9α,µ. The mother wavelet 9 is dilated
and scaled as defined as follows:

9α,µ(t) =
1
√
α
9(
µ−t
α

), (2)

where µ ∈ R is a translation factor and α ∈ R+ (α > 0) is
a scaling factor. Let x(t) be the input signal of the wavelet
transform at time t . We denote by Ux(α,µ) the CWT and
< . > the inner product. Then we can write the continuous
wavelet transform as follows:

Ux(α,µ) = < x(t).9α,µ(t) >

=

∫
+∞

−∞

x(t)
1
√
α
9∗(

µ− t
α

)dt, (3)

where the star exponent denotes the complex conjugate oper-
ator. This transformation compares the signal x to the wavelet
at various scales α and positionµ to produce a function which
is a two-dimensional representation of the one-dimensional
signal. Obviously, the frequencies can be derived using the
scaling factor α. Let ω9 be the angular frequency of the
wavelet 9. The corresponding scaling frequency f (α) is
defined as follows:

f (α) =
ω9

2πα
. (4)

In the paper, we represent each RSSI sample as a signal
X = [X (1),X (2), . . .X (N )] where N is equal to the number
of APs that we have considered. The support of the wavelet
function 9(t) is compact and band limited by definition.
We assume that the sampling rate of the signal and thewavelet
is 1. Thenwe can rewrite the above equation (3) withUX (α, n)
representing the continuous wavelet transform of the input
vector X as follows:

UX [α, n] =
N−1∑
k=0

X (k)
1
√
α
9∗(

n− k
α

), (5)

FIGURE 3. Example of RSSI sample and its continuous wavelet transform
result.

where n ∈ Z, andN is the number of APs or the length of each
rowRSSI data. For amathematical convenience we define the
stretched wavelet as 9α(n) in equation (6).

9α(n) =
1
√
α
9(

n
α
), (6)

where 9α(n) = 0 if n < 0. Based on the stretched wavelet in
equation (6), we can rewrite equation (5) as follows:

UX [α, n] =
N−1∑
k=0

X (k)9∗α(n− k)

= X ? 9∗α(n), (7)

where n = 0, 1, . . . ,N − 1, and the star (?) denotes the con-
volutional operator. Such approach of computing the CWT is
known as fast continuous wavelet transform.

To generate the two-dimensional features from the
one-dimensional data, we define a sequence of M scaling
factors α = α1, α2, . . . , αM . Then, we compute the contin-
uous wavelet transform for each scaling factor to produce
a M × N joint time-frequency or time-scale representation
feature matrix for each row data. Fig. 3 shows a sample of
RSSI measurement from a RP where 77 APs are considered
and its CWT computed with 37 scaling factors (frequency
components). We can easily change the output image’s height
of the CWT by changing the number of scaling factors.
However, the output image’s width is related to the number
of APs (input length) which can be large and computation-
ally expensive. Therefore, dimensionality reduction can be
applied to reduce the input length to an affordable length and
the CWT computation cost. In Fig. 3.a, from around the 25th

AP to the 77th AP there was no available RSS signal for these
APs, so their RSSI values are set to −110 dBm.

B. ARTIFICIAL NEURAL NETWORKS MODELS
In this section, we describe briefly the convolutional neural
network architecture used in our algorithm. To accurately pre-
dict the closest RPs from the extracted feature data, we used a
CNN model with four hidden layers and one fully connected
layer as shown in Fig. 4. A convolutional neural network
is a sequence of layers, where each layer transforms one
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FIGURE 4. Proposed convolutional neural network architecture.

TABLE 1. CNN parameters.

volume of activation to another using differentiable functions.
A simple CNN consists of three main layers: convolutional
layer, pooling layer, and fully-connected layer. The input
time-frequency representation of the raw RSSI is assimilated
to a grayscale image data where the depth is one.

The convolutional layer performs a convolutional opera-
tion on the input using two-dimensional filters to decompose
the input image in cluster outputs that are passed through
a linear rectifier activation function relu such as relu(x) =
max(0, x). Each cluster of neurons is downsampled to a single
neuron using the max pooling operation. A max pooling
operation uses the maximum value of each cluster of neurons
produced from the previous layer. The last part of the CNN
is a fully-connected layer (FC) which is a generic neural
network classifier. In the FC, the feature image from the last
convolutional layer is flattened and passed through differ-
ent layers where every neuron in one layer is connected to
every neuron in the next layer to the output layer. SoftMax
activation function [42] is commonly used as output layer
for classification. Therefore, in this study, the CNN’s output
layer consists of a SoftMax layer which outputs the close-
ness probabilities of different RPs. The probabilities obtained
during the online phase are then used by a KNN method
to estimate the target node’s location. Table 1 describes the
CNN’s parameters.

To compute the network predictions, let the result of the
last hidden layer output be HL = [h1, h2, . . . , hM ]T which is
a column vector and the output layer’s weights beWL = [wij],

(i = 1, . . . ,N , j = 1, . . . ,M ). WLHL = [z1, z2, . . . , zN ]
represents the input feature vector of the SoftMax layer,
where N is the number of RPs. Then, the ith output (pi) of
the neural network or SoftMax output corresponds to the ith

RP’s prediction probability as follows:

pi =
ezi∑N
j=1 e

zj
. (8)

To estimate the location of a given node T , we consider
only the first three RPs whose predictions are greater than the
defined threshold denoted by thres. Let 0T be the first three
RPs’ index for which the prediction probabilities are greater
or equal to the threshold and (xi, yi), i ∈ 0T , the correspond-
ing coordinates. Then we compute the estimated position of
the target node (T ) defined as (x̂, ŷ) as follows:

x̂ =

∑
i∈0T xi.pi∑
i∈0T pi

ŷ =

∑
i∈0T yi.pi∑
i∈0T pi

, (9)

where pi ≥ thres.
To describe the localization error evaluation, we assume

that there are q target points with real and estimated coordi-
nates respectively as (xi, yi) and (x̂i, ŷi), i = 1, . . . , q. Then,
the localization error is computed as follows:

err =
1
q

q∑
j=1

√
(xj − x̂j)2 + (yj − ŷj)2. (10)

The localization error is evaluated by considering the average
error introduced by each target point.

IV. PERFORMANCE EVALUATION
All experiments were conducted using the same desktop with
the following characteristics: Intel core i5-2500 64bits CPU
3.30Ghz quad core, Intel Sandybridge graphic, and 8Gb of
RAM.Alsowe only used the CPU to perform all experiments.

To evaluate the performance of the proposed method,
we carried out different types of experiments using different
RSSI datasets. Then we compared the proposed algorithm
performance with those of the neural network model used
in [10], [24]–[26] which is a stacked autoencoder classifier
model and referred as DNN+SAE or SAE+DNN. We used
the SAE+DNN as DNN approach for the performance com-
parison with the proposed method because it is one of the
commonly implemented state-of-the-art DNN based finger-
printing approach. The SAE+DNNmodel used in this paper,
has five hidden layers for the autoencoder whose number
of neurons are respectively 128, 64, 32, 64, and 128. The
classifier part uses the encoded part of the autoencoder(128-
64-32) and two extra hidden layers are added with number of
neurons respectively 128 each one. We ran the experiments
for different random seed values to demonstrate the stability
of each methods.
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FIGURE 5. Corridor environment.

TABLE 2. Results of the experiment on the corridor.

A. PERFORMANCE EVALUATION WITH OUR DATA
This experiment was carried out in a corridor area of 50m×
1.95m at Ajou University. Fig. 5 presents the part of the
corridor in which the experiment has been carried out.

In the database, there are 100 samples per reference point
collected with a frequency of 10 seconds. The dataset has
21 RPs and 11 test points for which only one sample per
test point was collected. And only 36 APs RSSI were used in
the process of experimentation. Then we defined the number
of scaling factors equal to the half of the number of APs
and used a Morlet wavelet. The test results of our method
compared to other techniques as presented in Table 2 showed
that the proposed method outperformed other methods. With
the proposed feature extraction method, we achieved good
localization performance with the CNN as well as with
DNN. This demonstrates that the CWT produces discrimi-
native information that works with different neural network
architectures.

The inference times in this experiment for 11 test samples
were approximately 20ms for the proposed CNN method
and 5ms for the SAE+DNN method. However, the proposed
method achieved the best results with lower variance. Thus,
it is more stable than the SAE+DNN model.

B. PERFORMANCE EVALUATION WITH A PUBLIC DATASET
In this section, we evaluated the proposed method using a
publicly available dataset [43] which consists of 25 subsets

TABLE 3. Results of the experiment for the first scenario.

of datasets collected at different periods independently from
620 APs. In that database, there are 12 samples collected
per location for the training data with 48 RPs. The data
were collected in a building at the fifth and third floor only
as described in [43]. Therefore, it is suitable for testing the
impact of RSSI variation in the same environment and loca-
tion at different dates. To evaluate the proposed model on that
dataset, we first considered the first subset of the database
and defined two experimental scenarios. We downsampled
the number of APs to 77 before applying the CWT. However,
we noticed that the way we downsampled the number of
APs was affecting the floor prediction rate of the SAE+DNN
in the first scenario. Since, we used the raw RSSI with-
out downsampling and that have significantly improved the
SAE+DNN’s performance on floor prediction but did not
reduce significantly the prediction error. Although the floor
hit rate has been improved in the first scenario, it has been
degraded in the second experiment and also the inference time
has increased. We used 576 test samples for both scenarios.

The first scenario aimed to check the stability of the
proposed method in relation to the RSSI instability. Hence,
we only considered the training data (tr01rss) and test data
(tst01rss) which have been collected at the same location. he
results of that experiment are presented in Table 3.

We noticed that, in Table 3, the proposed algorithm
achieved almost 100% on floor classification and matched
most of the test points to their correct location. The result
demonstrates that the proposed scheme can significantly
reduce the influence of RSSI variation compared with other
methods. The proposed method also has a small standard
deviation in both floors and position estimation compared to
SAE+DNN approach.
Secondly, we evaluated the proposed algorithm using the

first subset of the test data of the 25th month and the first
subset of the training data of the first month dataset. Since
the training and the test data were collected at different time
periods, they are likely different due to the RSSI fluctuation.
The purpose of this experiment is to evaluate the perfor-
mance of the proposed method on a long period compared
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TABLE 4. Results of the experiment of the second scenario.

with SAE+DNN. Table 4 shows the localization error of the
second scenario.

Although, the proposed method achieved similar results
on floor classification with the SAE+DNN model, it has
achieved better localization accuracy compared with the
DNN+SAE and KNN methods. The inference times in
both scenarios for 576 samples were approximately 1.5s for
the proposed CNN method and 25ms for the SAE+DNN
approach.We noticed that in this database the floor misclassi-
fication did not affect significantly the localization error when
using multilabel classification. This is due to the way the
coordinate system and the RPs were defined by the authors
of the data set. In fact, they defined the RPs of upper floor to
be correspondingly above those in the lower floor.

In this study, we have proposed a CWT-based time-
frequency feature extraction for RSSI based fingerprinting
localization. CWT has been applied to each RSSI samples
considered as a time-series data. Then a deep convolutional
neural network model is used to efficiently predict the closest
position. The results showed that the proposed method has
achieved good performance in all experiments. They have
demonstrated that the variance of the localization error for
the proposed method is lower compared to other methods.

The present study provides an insight of how to exploit
time-frequency or time scaled information of the RSSI. The
results have proved that it is a promising approach. Regarding
the scalability of the proposed algorithm, a dimension reduc-
tion method may be applied to reduced the samples’ length in
case there are lots of APs.We have also carried out a test using
Mobilenet [12] with the proposed feature extraction method.
However, this test result was not satisfactory. The Mobilenet
model give less than 20% where the proposed CNN model
produced 100%. We believe that further investigations are
required to apply Mobilenet to RSSI based fingerprinting.

V. CONCLUSION
In this paper, we have proposed a new approach for extracting
discriminative features for indoor fingerprinting localization
algorithm. The proposed method uses continuous wavelet

transform to extract time-frequency or time-scaling informa-
tion from each RSSI samples. Then we used a CNN classifier
to predict the closest RPs. The proposed method achieved
a better performance on the overall experiment than some
existing deep neural network-based method. Since the feature
extraction method exploits time-scaling information of the
signal, it can reduce the burden of collecting several samples
per location and there is no need of reshaping the dataset
to produce 2-dimensional data. Furthermore, the proposed
feature extraction method can provide input features to most
neural network models. In future works, we hope to extend
our investigation to the use of light CNN as Mobilnet and
Efficientnet with RSSI for indoor localization.
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